
All Sorts of Permutations (Functional Pearl)

Jan Christiansen
Flensburg University of Applied

Sciences, Germany
jan.christiansen@hs-flensburg.de

Nikita Danilenko
University of Kiel, Germany
nda@informatik.uni-kiel.de

Sandra Dylus
University of Kiel, Germany
sad@informatik.uni-kiel.de

Abstract
The combination of non-determinism and sorting is mostly asso-
ciated with permutation sort, a sorting algorithm that is not very
useful for sorting and has an awful running time.

In this paper we look at the combination of non-determinism
and sorting in a different light: given a sorting function, we apply it
to a non-deterministic predicate to gain a function that enumerates
permutations of the input list. We get to the bottom of necessary
properties of the sorting algorithms and predicates in play as well
as discuss variations of the modelled non-determinism.

On top of that, we formulate and prove a theorem stating that no
matter which sorting function we use, the corresponding permuta-
tion function enumerates all permutations of the input list. We use
free theorems, which are derived from the type of a function alone,
to prove the statement.

Categories and Subject Descriptors D.1.4 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software
Engineering]: Software/Program Verification—Correctness proofs

General Terms Languages, Algorithms

Keywords Haskell, monads, non-determinism, permutation, sort-
ing, free theorems

1. Introduction
In a functional language, non-deterministic functions can be ex-
pressed by using lists to model multiple non-deterministic results.
In order to explicitly distinguish list values in the common sense
and list values that are used to model non-determinism, we intro-
duce the following type synonym, which is simply a renaming of
the list data type. That is, in the following we use the type ND for
all lists that represent non-deterministic choices.

type ND α = [α]

We can naturally extend well-known functions to support non-
determinism by simply applying functions to all non-deterministic
results and combine all the non-deterministic results of these ap-
plications. In the list model we can use the function concatMap
– whose type is (α → ND β) → ND α → ND β in a non-
deterministic setting – to apply a non-deterministic function to all
choices of a non-deterministic value and combine the results via
concatenation.

[Copyright notice will appear here once ’preprint’ option is removed.]

Let us consider the following Haskell function1

filterND :: (α→ ND Bool)→ [α]→ ND [α],

which is a non-deterministic extension of the well-known higher-
order function filter . It is folklore knowledge that some non-
deterministic extensions of predicate-based higher-order functions
can be used to derive new non-deterministic functions by using a
predicate that yields True and False . For example, when we apply
filterND to the non-deterministic predicate

coinPredND :: α→ ND Bool
coinPredND = [True,False]

we get a function that non-deterministically enumerates all sublists
of a given list.

Intuitively, when we apply filterND to coinPredND and a list
xs , the resulting function non-deterministically chooses to keep or
remove it from the result list for every element of xs . This decision
is made for every element in the argument list independently, hence,
we get all sublists of the argument list.

Similarly, this “trick” can be used to implement a function
enumerating all permutations by sorting with a non-deterministic
binary predicate. That is, for some non-deterministic version of a
sorting algorithm

sortND :: (α→ α→ ND Bool)→ [α]→ ND [α],

when applied to the non-deterministic comparison function

coinCmpND :: α→ α→ ND Bool
coinCmpND = [True,False]

the resulting function enumerates all permutations of its argument.
Although improbable, to the best of our knowledge this connec-

tion has been first noted in the context of functional logic program-
ming on the mailing list of Curry in a thread by Fischer and Chris-
tiansen (2009). A functional logic programming language can be
considered as a functional language with built-in non-determinism
similar to the non-determinism provided by the above construction.

Another thread on the Haskell mailing list by Pollard et al.
(2009) discusses these connections in more detail and in the con-
text of the functional programming language Haskell. These two
mailing list threads raise the following interesting questions.

• Does the comparison function have to be consistent? That is,
does the comparison function have to make the same decisions
if one element is less or equal to another one when it is invoked
multiple times within a specific non-deterministic branch.
• Does the comparison function have to be transitive? The cor-

rectness of most sorting algorithms relies on the fact that the
comparison function is transitive.

1 The predefined Haskell function is called filterM and actually has a more
general type, namely Monad µ ⇒ (α → µ Bool) → [α] → µ [α], but
for the sake of accessibility we consider the more specific type here.

1 2016/7/1

• Does the enumeration version of a sorting algorithm generate
results multiple times or results that are not actually permuta-
tions of the input list?
• Do we have to use a set-based rather than a multiset-based (like

with lists) approach for non-determinism in order to enumerate
every permutation exactly once?

Finally, the thread by Pollard et al. (2009) contains some infor-
mal reasoning why every sorting algorithm should indeed be able
to generate all permutations of a list.

“Every sorting algorithm [Int] → [Int] that actually sorts
can describe every possible permutation (if there is a permu-
tation that cannot be realised by the sorting algorithm then
there is an input list that cannot be sorted). Hence, if this
sorting algorithm is sort p for some predicate p then there
are possible decisions of p to produce every possible per-
mutation. If p makes every decision non-deterministically
then certainly the specific decisions necessary for any spe-
cific permutation are also made.”

Sebastian Fischer

If you keep on reading, you can expect to read about the follow-
ing.

• We answer all the questions raised by the two mailing list
threads by a case study of common sorting algorithms.
• We formally prove the quote above, namely, that the non-

deterministic extension of any sorting algorithm enumerates
every permutation if it is applied to the predicate coinCmpND .
Instead of considering a list version, we use a monadic exten-
sion of these functions to prove this statement.
• It might not be surprising, that the non-deterministic extension

of every sorting algorithm is able to enumerate all permutations.
However, we will see that there are a couple of sorting functions
that enumerate every permutation exactly once, even if they are
applied to a predicate as simple as coinCmp.
• In contrast there are sorting functions that enumerate elements

that are not even permutations of the argument, when they are
applied to coinCmp. As assumed there even is a sorting algo-
rithm that relies on a non-deterministic predicate that respects
transitivity in order to enumerate all permutations exactly once.
However, it is none of the algorithms that first come to mind.

We can generalise the list-based non-determinism presented
above to a more general, monadic approach. Let us consider a
slightly different implementation of the non-deterministic function
coinCmpND .

coinCmpND :: α→ α→ ND Bool
coinCmpND = singleton True ++ singleton False

Instead of constructing the list explicitly, we use a function
singleton , which yields a singleton list, and the list concatenation
++. In order to generalise the function coinCmpND we use the
type class MonadPlus .

Here and in the following we introduce potentially advanced
concepts like MonadPlus in info boxes like the following; readers
familiar with a concept can skip the according box.

Type class MonadPlus

An instance of the type class MonadPlus is a type constructor
µ that provides the following operations.

mzero :: µ α
(⊕) :: µ α→ µ α→ µ α

List instance of MonadPlus

The list data type is an instance of MonadPlus .

instance MonadPlus [] where
mzero = []
xs ⊕ ys = xs ++ ys

Every type constructor – like lists – that is an instance of the type
class MonadPlus has to be an instance of the type class Monad
as well. In the following we introduce the type class Monad .

Type class Monad

An instance of the type class Monad is a type constructor µ
that provides the following operations.

return :: α→ µ α
(>>=) :: µ α→ (α→ µ β)→ µ β

List instance of Monad

The list data type is an instance of Monad .

instance Monad [] where
return x = singleton x
xs >>= f = concatMap f xs

As the list data type is an instance of the type classes Monad
and MonadPlus , we can generalise coinCmpND as follows. We
replace the functions singleton and ++ by their monadic counter-
parts return and⊕, respectively. In the end we obtain the following
generalised definition of a non-deterministic comparison function
coinCmp.

coinCmp :: MonadPlus µ⇒ α→ α→ µ Bool
coinCmp = return True ⊕ return False

Readers that are not so familiar with the type classes Monad
and MonadPlus can always think of the type µ as the type ND ,
of return as singleton and of ⊕ as ++ in the following code
examples. If the reader prefers a more abstract view, the functions
mzero, return , and mplus can be considered as the basic building
blocks for non-determinism. Here, mzero represents a failure, that
is, no result, return lifts a single value into a non-deterministic
context, that is, return represents a single result, and ⊕ is a non-
deterministic choice between two non-deterministic values.

The function coinCmp explicitly introduces non-determinism
– as it chooses between the values True and False . Therefore,
coinCmp uses the type class MonadPlus . In contrast neither the
non-deterministic filter nor the non-deterministic sorting function
introduces any kind of non-determinism. All non-determinism is
provided by the potentially non-deterministic predicate. As these
functions do not introduce non-determinism, we can use the less
strong type class Monad instead of MonadPlus for their types.

filterM :: Monad µ⇒ (α→ µ Bool) → [α]→ µ [α]
sortM :: Monad µ⇒ (α→ α→ µ Bool)→ [α]→ µ [α]

In the following, we call a function that is polymorphic in a
monadic type constructor a monadic function and use a subscript
type in order to denote a concrete instance of such a monadic
function. For example, if fM is a monadic function, we denote
the concrete instance by fM κ, where κ is the concrete monad.
That is, filterM [] corresponds to filterND . Moreover, in order to
keep the code short, we use the following type synonym for non-
deterministic comparison functions.

type Cmp α µ = α→ α→ µ Bool

2 2016/7/1

We will use the terminology of the less than or equal relation on
integers even when we talk about an arbitrary comparison function
to keep things simple. That is, when we say that value A is smaller
than value B, we are referring to the less than relation that is
provided by the context. Finally, our reasoning will not take general
recursion into account. Instead our proofs will be “morally correct”
in the sense of Danielsson et al. (2006). That is, although we only
consider total functions and finite data structures, the statements
still hold with these restrictions in a language like Haskell.

2. Insertion Sort
The first sorting algorithm we consider is insertion sort. We begin
with a simple warm-up exercise and implement a standard pure
version. At first, we implement a function that inserts an element
into a list. The element is inserted in front of the first element in the
list that is greater than or equal to the element to insert.

insert :: (α→ α→ Bool)→ α→ [α]→ [α]
insert x [] = [x]
insert p x yys@(y : ys) =

if p x y then x : yys else y : insert p x ys

By means of insert we can define a function to sort a list as follows.

insertSort :: (α→ α→ Bool)→ [α]→ [α]
insertSort [] = []
insertSort p (x : xs) = insert p x (insertSort p xs)

As an example of the application, it hopefully comes as no surprise
that insertSort (6) xs sorts the elements of the list xs in ascend-
ing order with respect to 6.

In order to apply this sorting function to a non-deterministic
predicate, we have to lift it to a monadic context. More specifically
we have to transform a function of type

(α→ α→ Bool)→ [α]→ [α]

into a function of type

Monad µ⇒ (α→ α→ µ Bool)→ [α]→ µ [α]

This monadic extension has to satisfy only one simple requirement,
namely, when we use no effect, that is, we instantiate the monad
with the identity monad, the resulting function has to behave like
the original function. The identity monad is a data type with a single
constructor containing a value. This data type is an instance of
the type class Monad . We use the name Id for the type and the
constructor and runId for a function that extracts the value.

Id instance of Monad

The data type Id is an instance of Monad .

instance Monad Id where
return x = Id x
Id x >>= f = Id (f x)

More formally, for every sorting function

sort :: (α→ α→ Bool)→ [α]→ [α]

the monadic extension

sortM :: Monad µ⇒ (α→ α→ µ Bool)→ [α]→ µ [α]

has to satisfy

runId ◦ sortM Id (λx y → Id (p x y)) ≡ sort p.

for all p :: τ → τ → Bool .
Here and in the following we use the letters α and µ for type

variables and τ and κ for concrete type instances.

The monadic liftings of insert and insertSort are defined as
follows2.

insertM :: Monad µ⇒ Cmp α µ→ α→ [α]→ µ [α]
insertM x [] = return [x]
insertM p x yys@(y : ys) =

p x y >>= λb →
if b then return (x : yys)

else fmap (y :) (insertM p x ys)

insertSortM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
insertSortM [] = return []
insertSortM p (x : xs) =

insertSortM p xs >>= λys → insertM p x ys

The operation >>= of the Monad type class plays the role of a
sequencing operator between two (or more) expressions. In the
context of monads, Haskell adopted the so-called do-notation that
smooths the handling of these sequencing operators in function
definitions. A do-block contains monadic expressions and ←-
symbols, where each >>= operator is implicitly added between
two monadic expressions that are separated by new lines.

We can rewrite the above function definitions and obtain the
following code that explicitly uses do-notation. As a side benefit,
the definition looks very similar to the original implementation and
can thus be read naturally.

insertM :: Monad µ⇒ Cmp α µ→ α→ [α]→ µ [α]
insertM x [] = return [x]
insertM p x yys@(y : ys) = do

b ← p x y
if b then return (x : yys)

else fmap (y :) (insertM p x ys)

insertSortM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
insertSortM [] = return []
insertSortM p (x : xs) = do

ys ← insertSortM p xs
insertM p x ys

Next, we want to test if the requirement of the monadic lifting holds
for insertSortM and it is still capable of sorting. For simplicity, we
only consider the comparison of values of type Int to demonstrate
the sorting capability, but we could use comparison functions for
other types as well.

cmpId :: Cmp Int Id
cmpId x y = return (x 6 y)

Now we are ready to apply the monadic version of insertSort to
this predicate. Et voilà, we get the original sorting capability.

sort1 :: [Int]
sort1 = runId (insertSortM cmpId (reverse [1 . . 5]))

-- [1, 2, 3, 4, 5]

It is good to know that the monadic extension of a sorting
function can still sort the input list, but this is not the exciting
application of this function. The monadic extension becomes far
more interesting when we use coinCmp as predicate: by means of
the non-deterministic function coinCmp we can define a function
that enumerates all permutations.

perms1 :: [[Int]]
perms1 = insertSortM coinCmp [1 . . 3]

-- [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

And, indeed, we get a function that enumerates exactly all permu-
tations when we use the list monad.

2 The function fmap f m is defined as m >>= return ◦ f .

3 2016/7/1

Monad Laws

(m >>= f)>>= g ≡ m >>= λx → (f x >>= g)
(Bind associativity)

return x >>= f ≡ f x (Bind left identity)

m >>= return ≡ m (Bind right identity)

MonadPlus Laws

mzero ⊕m ≡ m (MPlus left zero)

m ⊕mzero ≡ m (MPlus right zero)

m ⊕ n >>= f ≡ (m >>= f)⊕ (n >>= f)
(Bind-MPlus left distributive)

Miscellaneous

return x ⊕ return x ≡ return x (MPlus idempotent)

m >>= λx → n ⊕ o ≡ (m >>= λx → n)⊕ (m >>= λx → o)
(Bind-MPlus right distributive)

Figure 1. Various monadic rules.

What is happening here exactly? In order to “demystify” the
behaviour of the non-deterministic predicate, we inline the predi-
cate into the monadic function insertM . We use the suffix NDM
for the non-deterministic versions that result from inlining the non-
deterministic predicate. If we consider the empty list as second ar-
gument of insertM , we get the right hand side

return [x].

For the case of a non-empty list y : ys we get the right hand side

return (x : y : ys)⊕ fmap (y :) (insertCoin x ys)

for the application insertM coinCmp x (y : ys). We do not
present this transformation here as it is straightforward: it uses
the definitions of coinCmp and insertM as well as a couple of
monadic laws. Here and in the following we make use of a variety
of laws related to instances of Monad and MonadPlus , these laws
are presented in Figure 1. Inlining the predicate coinCmp into
insertM yields the following definition.

insertNDM :: MonadPlus µ⇒ α→ [α]→ µ [α]
insertNDM x [] = return [x]
insertNDM x yys@(y : ys) =

return (x : yys)⊕ fmap (y :) (insertNDM x ys)

The function insertNDM , which is derived after inlining
insertM used with a non-deterministic predicate, is exactly the
definition of a non-deterministic insertion that is used to define a
permutation function, for example in the context of the functional
logic programming language Curry (Hanus 1994). According to
Sedgewick (1977) this permutation algorithm was developed inde-
pendently by Trotter (1962) and Johnson (1963). The implementa-
tion of the permutations function in Haskell is also based on this
approach but has been improved with respect to non-strictness via
a mailing list discussion by van Laarhoven et al. (2007). Exploring
these improvements would probably allow for a separate paper.

3. Selection Sort
In this section we consider the permutation algorithm that can be
derived from selection sort. After the warm-up in the previous sec-
tion, we feel comfortable enough not to implement the original se-
lection sort implementation first, but directly provide its monadic

+-[1,2,3]
+- 1 <= 2 -+
| | +-[2,1,3]
| +- 1 <= 3 -+
| +-[2,3,1]

+- 2 <= 3 -+
| +-[1,3,2]
+- 1 <= 3 -+

| +-[3,1,2]
+- 1 <= 2 -+

+-[3,2,1]

Figure 2. The decision tree of insertSort .

extension. Selection sort is based on the idea of finding the mini-
mum of a list and putting this minimum in front of the result list.
The argument list without the minimum is sorted recursively.

minM :: Monad µ⇒ Cmp α µ→ α→ α→ µ α
minM p x y = do

b ← p x y
return (if b then x else y)

minimumM :: Monad µ⇒ Cmp α µ→ [α]→ µ α
minimumM [x] = return x
minimumM p (x : xs) = do

y ← minimumM p xs
minM p x y

selectSortM :: (Eq α,Monad µ)
⇒ Cmp α µ→ [α]→ µ [α]

selectSortM [] = return []
selectSortM p xs = do

x ← minimumM p xs
fmap (x :) (selectSortM p (delete x xs))

Again, when considering the identity instance of this func-
tion, we get the original sorting function and if we use the non-
deterministic predicate instead, we get a permutation enumeration.

perms2 :: [[Int]]
perms2 = selectSortM coinCmp [1 . . 3]

-- [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]
-- , [1, 2, 3], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

However, in contrast to insertion sort, the resulting function enu-
merates some permutations multiple times. More precisely, we get

2
n(n−1)

2

permutations, where n is the length of the argument list. Note that
this function grows much faster than the number of permutations
n!; for example, for n = 10 we have n! = 3 628 800 permutations,
as if this is not bad enough, a modified version of perms2 with the
list [1 . . 10] yields

2
10∗9

2 = 245 = 35 184 372 088 832

results.
In order to understand the difference between insertion sort

and selection sort, we have a look at the decision trees of these
algorithms. Decision trees reflect all possible control flows for
a sorting function depending on the results of the comparison
function. Figure 2 shows the decision tree of insertion sort whereas
Figure 3 shows the tree for selection sort3. The numbers in these

3 The ASCII art diagrams are generated by running the monadic sorting
function in the free monad and pretty printing the underlying MonadPlus
structure.

4 2016/7/1

decision trees can be considered as the position of the element with
respect to the input list – note, in contrast to an index we are starting
at position 1. That is, the term 2 <= 3 denotes the comparison of
the element at position 2 with the element at position 3. The upper
successor reflects the result True and the lower successor False .

We can observe that the tree for selection sort contains the same
comparisons multiple times. For example, initially we compare 2
and 3 and after we have compared 1 with 2, we again compare 2 and
3. Obviously, the path that ends in the upper result underlined with
^^^ will never be taken by the original sorting algorithm. There is
no pure comparison function that yields True for a comparison
first and False later. The same argument applies to the second
underlined result. In the context of a non-deterministic predicate,
we call this behaviour consistent: a non-deterministic predicate
behaves consistently, if it yields the same Boolean value for every
application to the same pair of values.

As a next step, we define a modification of our non-deterministic
predicate that is consistent. We benefit from our monadic imple-
mentation as we can simply add a state transformer to record the
choices we make. By checking whether we have made a specific
choice before, we get a consistent non-deterministic predicate.

We will not introduce the implementation of a state transformer
here but refer the interested reader to its introduction by Liang et al.
(1995). Intuitively, by adding a state transformer to an instance of
MonadPlus , for every non-deterministic branch we add a separate
state. We use this state to remember the choices we have made
before within one non-deterministic branch.

For convenience we use a simple list to record choices, but we
could as well use a more efficient data structure like a search or
radix tree.

type Choices α = [((α, α),Bool)]

noChoices :: Choices α
noChoices = []

addChoice :: α→ α→ Bool → Choices α→ Choices α
addChoice x y b cs = ((x , y), b) : cs

By means of addChoice we define a function that remembers
the choice of a non-deterministic predicate. The following function
records the choice of the provided non-deterministic predicate and
additionally takes a function that transforms the list of choices after
adding a new choice. This function will be the identity in the case
of consistency and will be of greater interest later.

store :: (Eq α,MonadPlus µ)
⇒ (Choices α→ Choices α)
→ Cmp α µ→ Cmp α (StateT (Choices α) µ)

store update p x y = do
b ← lift (p x y)
modify (update ◦ addChoice x y b)
return b

The final missing piece is a function that looks up whether we
have made a choice before. If not, we use the provided state-based
predicate to make the choice and store it. Otherwise, thus, if we
have made the choice before, we simply yield this choice.

check :: (Eq α,MonadPlus µ)
⇒ Cmp α (StateT (Choices α) µ)
→ Cmp α (StateT (Choices α) µ)

check p x y = do
s ← get
maybe (p x y) return (lookup (x , y) s)

By means of these helper functions we define a non-deterministic
choice that is consistent.

+-[1,2,3]
+- 2 <= 3 -+
| +-[1,3,2]

+- 1 <= 2 -+ ^^^^^^^
| | +-[2,1,3]
| +- 1 <= 3 -+
| +-[2,3,1]

+- 2 <= 3 -+
| +-[1,2,3]
| +- 2 <= 3 -+ ^^^^^^^
| | +-[1,3,2]
+- 1 <= 3 -+

| +-[3,1,2]
+- 1 <= 2 -+

+-[3,2,1]

Figure 3. The decision tree of selectSort .

+-1
+- 1 <= 2 -+
| +-2

+- 2 <= 3 -+
| +-1
+- 1 <= 3 -+

+-3

Figure 4. The decision tree of minimumM .

consistentCoin :: (Eq α,MonadPlus µ)
⇒ Cmp α (StateT (Choices α) µ)

consistentCoin = check (store id coinCmp)

By making use of consistentCoin we indeed get a permutation
enumeration function from selectSortM that enumerates exactly
all permutations.

perms2Cons :: [[Int]]
perms2Cons =

evalStateT (selectSortM consistentCoin [1 . . 3])
noChoices

-- [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

While this implementation does not enumerate permutations
multiple times any more, we would like to derive an implemen-
tation that can do without the additional State . Instead of choosing
a predicate that makes the right choices, we can as well use a set-
based monad instead of a multiset-based monad to prevent dupli-
cates. The following implementation uses a Set monad to prevent
the enumeration of permutations multiple times.

perms2Set :: [[Int]]
perms2Set = Set .toList (selectSortM coinCmp [1 . . 3])

-- [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

However, we do not want to remove the permutations after
we have already enumerated them, because this would be quite
inefficient. So, let us take a closer look at the algorithm. Figure 4
shows the decision tree of minimumM when we enumerate the
permutations of [1, 2, 3].

As we can see, minimumM enumerates 1 twice – even if we
use the consistent comparison function consistentCoin . This rep-
etition in minimumM causes the additional branches in Figure 3.

When we use a set-based monad, minimumM indeed gener-
ates 1 only once and the resulting function enumerates every per-
mutation exactly once. However, we would like to avoid the ad-
ditional comparisons that are performed by a set-based monad to

5 2016/7/1

check whether an element was enumerated before. Therefore, in
the following we will derive a purely non-deterministic implemen-
tation minimumNDM in two steps.

We first inline the comparison coinCmp into minimumM
and get the following implementation by using the definitions of
minM , coinCmp, if then else and applying the monad law
(Bind-MPlus left distributive).

minimumNDM :: MonadPlus m ⇒ [α]→ m α
minimumNDM [x] = return x
minimumNDM (x : xs) = do

y ← minimumNDM xs
return x ⊕ return y

This definition still yields duplicate elements when we consider the
list instance whereas it does not yield duplicates when we use the
set monad.

This behaviour can be explained by the following observa-
tion. The set monad satisfies the laws (MPlus idempotent) and
(Bind-MPlus right distributive) whereas the list monad does not.
For example, (Bind-MPlus right distributive) does not hold as the
following example shows.

[1, 2]>>= λx → return x ⊕ return x
≡
[1, 1, 2, 2]
6≡
[1, 2, 1, 2]
≡
([1, 2]>>= λx → return x)⊕ ([1, 2]>>= λx → return x)

In a monad that satisfies (Bind-MPlus right distributive) we can
change the implementation of minimumNDM as follows.

minimumNDM (x : xs)>>=
λy → return x ⊕ return y
≡ { (Bind-MPlus right distributive) }
(minimumNDM xs >>= λy → return x)⊕
(minimumNDM xs >>= λy → return y)
≡ { (Bind right identity) }
(minimumNDM xs >>= λy → return x)⊕

minimumNDM xs

We end up with a definition where we apply >>= to return
where the argument of return is a constant value that does not
depend on the first argument of >>=. In a monad that satisfies
(MPlus idempotent) we can derive the following equality that can
be used to simplify this expression.

Lemma 1. For all xs :: [τ] and all c :: τ we have

minimumNDM xs >>= λx → return c ≡ return c.

We can prove this statement by structural induction over xs
by using the monad laws (Bind left identity), (Bind associativity),
(Bind-MPlus left distributive), and (MPlus idempotent).

Thus, as a second step, with Lemma 1 at hand we can derive the
following implementation.

minimumSet :: MonadPlus µ⇒ [α]→ µ α
minimumSet [x] = return x
minimumSet (x : xs) = return x ⊕minimumSet xs

Note that minimumSet is only equivalent to minimumNDM
if we consider an instance of MonadPlus that satisfies the laws
(MPlus idempotent) and (Bind-MPlus left distributive). In monads
where (MPlus idempotent) or (Bind-MPlus right distributive) do
not hold, like the list monad for example, minimumSet might
yield results in a different order and duplicates. For example, we

have
minimumSet [1, 2, 3] ≡ [1, 2, 3]

and
minimumNDM [] [1, 2, 3] ≡ [1, 2, 1, 3].

Coincidentally, as before, we have defined a function that is
used in the context of functional logic programming languages.
The function minimumSet enumerates the elements of a list
non-deterministically and its definition resembles a function that
is called elemOf by Antoy and Hanus (2011). By means of
minimumSet we can define a selection sort based permutation
enumeration.

selectSortND :: (Eq α,MonadPlus µ)⇒ [α]→ µ [α]
selectSortND [] = return []
selectSortND xs = do

x ← minimumSet xs
fmap (x :) (selectSortND (delete x xs))

As we can see from the result, in comparison to perms2Cons ,
the order of enumeration has changed, but, on the positive side, the
implementation does not require an additional state.

perms2ND :: [[Int]]
perms2ND = selectSortND [1 . . 3]

-- [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

Instead of choosing a random element from the list and remov-
ing it from the original input, we can as well combine minimumM
and delete into a single function to prevent unnecessary traversals
of the input list. For example, Gibbons and Hinze (2011) present an
implementation of this fused function. We define a similar function
selectM as follows.

selectM :: Monad µ⇒ Cmp α µ→ [α]→ µ (α, [α])
selectM [x] = return (x , [])
selectM p (x : xs) = do

(y , ys)← selectM p xs
b ← p x y
return (if b then (x , xs) else (y , x : ys))

Because a total function is preferable over a partial function, we
could add a rule for the empty list like Gibbons and Hinze (2011)
do. However, we would like to avoid using a MonadPlus context
instead of the Monad context where possible. Because of the
Monad context, when applying selectM to a non-deterministic
predicate, we know that all non-determinism is introduced by the
predicate only. We use this fact in order to prove that a monadic
sorting function actually enumerates all permutations in Section 7.

4. Bubble Sort
We define an implementation of a bubble sort algorithm that bub-
bles the minimum element to the front of a list4. Of course, we
could also bubble the maximum element to the end, but bubbling
an element to the front allows for a more efficient selection of the
minimum element and the rest of the list.

bubbleM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
bubbleM [x] = return [x]
bubbleM p (x : xs) = do

y : ys ← bubbleM p xs
b ← p x y
return (if b then x : y : ys else y : x : ys)

By means of this implementation we can define bubble sort.

4 There is some dispute about the name, for example, the variation that
bubbles the maximum element to the end is sometimes called sinking sort.

6 2016/7/1

+-[1,2,3]
|

+- 2 <= 3 -+
| +-[1,3,2]

+- 1 <= 2 -+
| | +-[2,1,3]
| +- 1 <= 3 -+
| +-[2,3,1]

+- 2 <= 3 -+
****** | +-[1,3,2]

| +- 3 <= 2 -+
| | ****** +-[1,2,3]
+- 1 <= 3 -+ ^^^^^^^

| +-[3,1,2]
+- 1 <= 2 -+

+-[3,2,1]

Figure 5. The decision tree of bubbleSort .

bubbleSortM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
bubbleSortM [] = return []
bubbleSortM p xs = do

y : ys ← bubbleM p xs
fmap (y :) (bubbleSortM p ys)

When we enumerate permutations with this algorithm, we get
the same number of results as for selection sort. However, even if
we use the consistent non-deterministic predicate, we get permuta-
tions multiple times.

When we take a look at the decision tree of bubbleSort in Fig-
ure 5, we see why the function enumerates permutations multi-
ple times even if the predicate is consistent. The path that yields
[1, 2, 3] (underlined with ^^^ in Figure 5) compares the elements
2 and 3 twice (underlined with *** in Figure 5). A sorting algo-
rithm will never take this path because of the totality of the pro-
vided predicate. For a total predicate p we have p x y or p y x
for all x and y . Therefore, if we have decided that 2 <= 3 does not
hold, we later have to decide that 3 <= 2 does hold. Note, in the
case that 2 <= 3 holds, totality does not imply that 3 <= 2 does
not hold; hence, we cannot add any decision in this case.

We can get rid of the duplicates shown in the decision tree easily
by closing the list of choices according to totality every time we
add a new choice. Therefore, we define the following function to
calculate the total closure of a list of choices.

totalClosure :: Eq α⇒ Choices α→ Choices α
totalClosure xs = nub (xs ++ concatMap add xs)

where
add ((x , y), b) = if b then [] else [((y , x),True)]

We pass this closure to store in order to calculate the total clo-
sure of the choices every time we add a new choice. The following
state-based predicate is consistent and respects totality.

totalCoin :: (Eq α,MonadPlus µ)
⇒ Cmp α (StateT (Choices α) µ)

totalCoin = check (store totalClosure coinCmp)

Using this enriched predicate, the non-deterministic bubble sort
yields the correct number of permutations.

perms3Total :: [[Int]]
perms3Total =

evalStateT (bubbleSortM totalCoin [1 . . 3]) noChoices
-- [[1, 2, 3], [1, 3, 2], [3, 1, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]]

Let us try to derive a non-deterministic version bubbleSortND
that does not need a state-based predicate. When we apply the func-
tion bubbleM to coinCmp, the resulting function non-deterministi-
cally swaps pairs of consecutive elements in the argument list. That
is, it yields 2(n−1) non-deterministic results, because there are n−1
positions for a list of length n to swap two elements. For example,
we get the following result for a list with three elements.

swaps :: [[Int]]
swaps = bubbleM coinCmp [1, 2, 3]

-- [[1, 2, 3], [2, 1, 3], [1, 3, 2], [3, 1, 2]]

As the implementation of bubbleSortM splits the results of
bubbleM into head and tail, we get multiple splits with the
same head. The tails of the splits with the same head are not
equal, but they contain the same elements. Because we recur-
sively generate all permutations of theses tails and we get the
same set of permutations if the lists contain the same elements,
bubbleSortM coinCmp generates duplicates.

We can change the implementation of bubbleM to prevent this
behaviour. In order to improve the implementation we consider the
case that x , the first element of the input list, is smaller than y , the
element we have bubbled to the front of the remaining list. In this
case, instead of using the list y : ys we can as well use the list xs
because the result of bubbleM is supposed to contain the same list
elements as its argument. We end up with the following implemen-
tation of bubbleM , where we have replaced the expression x :y :ys
in the then branch of the if -expression by x : xs .

bubbleM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
bubbleM [x] = return [x]
bubbleM p (x : xs) = do

y : ys ← bubbleM p xs
b ← p x y
return (if b then x : xs else y : x : ys)

When we use this implementation of bubbleM , the resulting
bubbleSortM coinCmp yields exactly all permutations. However,
this transformation is kind of cheating as we have removed the key
property that makes bubbleSortM an implementation of bubble
sort. In fact, we have simply transformed our bubble sort imple-
mentation into an implementation of selection sort. The function
bubbleM as seen above is equivalent to selectM – that is a com-
bination of minimum and delete – as defined in Section 3. The
only difference is that selectM yields a pair of an element and a
list while bubbleM simply yields a non-empty list where the first
element of the list is the first component of the pair.

As an additional optimisation, the number of comparisons per-
formed by bubble sort can be improved by adding an additional
Boolean value. The value states whether bubbleM has performed
any swap at all. If we have not performed a swap, the list is al-
ready sorted and we can stop. This implementation has a linear
running time for pre-sorted lists instead of the quadratic running
time of the naive implementation. If we use this improved imple-
mentation for enumerating permutations, some of the comparisons
that cause inconsistent choices are not performed any more. Yet,
while this optimisation reduces the number of inconsistent choices,
it does not completely eliminate them. Therefore, we still need a
non-deterministic predicate that is consistent and respects totality
in order to enumerate exactly all permutations.

5. Quicksort
Let us consider the following monadic implementation of quicksort
that is based on a monadic version of filter and has the reputation
of being very declarative and compact.

7 2016/7/1

quickSortM :: Monad µ⇒ Cmp α µ→ [α]→ µ [α]
quickSortM [] = return []
quickSortM p (x : xs) = do

ys ← filterM (λy → p y x) xs
zs ← filterM (λy → fmap not (p y x)) xs
ys ′ ← quickSortM p ys
zs ′ ← quickSortM p zs
return (ys ′ ++ [x] ++ zs ′)

When we use quicksort for enumerating permutations, the result
is rather disappointing in contrast to the previous enumerations.
The resulting list contains elements that are not even permutations
of the original list, as the following example demonstrates.

perms4 :: [[Int]]
perms4 = quickSortM coinCmp [1, 2]

-- [[2, 1], [2, 1, 2], [1], [1, 2]]

Besides the permutations [1, 2] and [2, 1] there are also the lists [1]
and [2, 1, 2], which obviously are no permutations of the list [1, 2].

One might think that these non-permutations are enumerated
because the non-deterministic predicate does not respect transitiv-
ity, but the behaviour is caused by mere inconsistency. If we use
the predicate that is consistent, the permutation function enumer-
ates exactly all permutations.

perms4Cons :: [[Int]]
perms4Cons =

evalStateT (quickSortM consistentCoin [1 . . 3])
noChoices

-- [[3, 2, 1], [2, 3, 1], [2, 1, 3], [3, 1, 2], [1, 3, 2], [1, 2, 3]]

How can this behaviour be explained? Let us inspect the imple-
mentation of filterM in detail. The predicate λy → coinCmp y x ,
which is used by the application of quickSortM coinCmp, is
equivalent to coinPred for all x . The application

filterM coinPred xs

yields all subsequences of the list xs . For example, consider the
following application.

subsequences :: [[Int]]
subsequences =

filterM coinPred [1 . . 3]
-- [[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3], []]

The second application of filterM in quickSortM also yields all
subsequences of the input list, but in reversed order.

subsequencesRev :: [[Int]]
subsequencesRev =

filterM (λy → fmap not (coinPred y)) [1 . . 3]
-- [[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]]

Now, let us consider the following part of the implementation
of quickSortM .

filterTwiceNDM :: MonadPlus µ
⇒ (α→ µ Bool)→ [α]→ µ ([α], [α])

filterTwiceNDM p xs = do
subxs1 ← filterM p xs
subxs2 ← filterM (λy → fmap not (p y)) xs
return (subxs1 , subxs2)

When we apply this function to coinPred , the resulting function
enumerates the cross product of all subsequences of the input list.

splits :: [([Int], [Int])]
splits = filterTwiceNDM (coinCmp 0) [1, 2]

-- [([1, 2], []), ([1, 2], [2]), ([1, 2], [1]), ([1, 2], [1, 2]), ...

In contrast when we use the consistent comparison function, we get
only correct splits of the input list.

splitsState :: [([Int], [Int])]
splitsState =

evalStateT (filterTwiceNDM (consistentCoin 0) [1, 2])
noChoices

-- [([1, 2], []), ([1], [2]), ([2], [1]), ([], [1, 2])]

With a consistent non-deterministic predicate, the second applica-
tion of filterM will make the same choices as the first application
of filterM for every non-deterministic branch. For example, if the
first application removes all elements from the list, the second ap-
plication will keep all elements of the list.

Instead of implementing quickSortM by means of filterM , we
can as well implement it by means of partitionM . In this case the
resulting monadic sorting function enumerates exactly all permu-
tations even if the predicate is not consistent. As opposed to the
implementation with two applications of filter, this implementation
cannot make conflicting choices because the predicate is only used
once per list element.

The non-deterministic version of partition splits a list non-
deterministically into two sublists. Compared with the non-deter-
ministic version of filter , partition yields all subsequences and
for each subsequence it additionally yields the rest of the input list
that is not part of the subsequence.

splits2 :: [([Int], [Int])]
splits2 = partitionM coinPred [1, 2]

-- [([1, 2], []), ([1], [2]), ([2], [1]), ([], [1, 2])]

This example nicely illustrates the connection between the num-
ber of non-deterministic results in the list monad and the number
of applications of the predicate in the deterministic version. More
precisely, the quicksort implementation that is based on two appli-
cations of filter applies the predicate twice as often as the imple-
mentation that is based on partition. As the additional comparisons
of the filter-based implementation are not necessary, these com-
parisons cause duplicate non-deterministic branches in the non-
deterministic context.

6. Other Sorting Algorithms
In this section we will take a look at some additional sorting algo-
rithms that we do not have considered in the previous sections. As
mentioned in the introduction, there is actually a sorting algorithm,
whose corresponding permutation algorithm only enumerates ex-
actly all permutations, if the non-deterministic predicate respects
transitivity. Yet, it is not one of the sorting algorithms that might
come to mind. Even permutation sort – sometimes also referred to
as stupid sort – does not rely on transitivity. Permutation sort uses
a generate and test approach to sort a list. It enumerates all permu-
tations of a list and filters the one permutation that is sorted. The
predicate that checks whether a list is sorted naturally exploits tran-
sitivity as it typically only checks consecutive elements. If it did not
employ transitivity, it would have to compare every element in the
list with every other element. Nevertheless, we have found one al-
gorithm that explicitly tests elements although it would not have to
because of transitivity, namely patience sort by Mallows (1963).

Patience sort is based on the corresponding card game and
consists of two phases. In the first phase the list to be sorted is
divided into several piles, where each pile is already sorted. In
order to get a list of sorted piles, each element of the input list
is recursively added to the oldest (with respect to its creation)
pile, whose top element is larger (with respect to the provided
comparison function) than the considered element. If no such pile
exists, a new pile with that element is created. The second phase

8 2016/7/1

applies an n-way merge to the piles. Since all piles are already
sorted, it suffices to consider only the current head elements of
all piles and pick the minimum with respect to the comparison
function. The minimum of all head elements will be the smallest
element of all the remaining elements.

As we have already seen plenty of sorting algorithms, we do
not show the implementation of a monadic version of patience sort
here, but reference such an implementation as patienceSortM . As
the following application shows, patienceSortM even generates
duplicates when we use the non-deterministic comparison function
that respects totality.

perms5Cons :: [[Int]]
perms5Cons =

evalStateT (patienceSortM totalCoin [1 . . 3])
noChoices

-- [[1, 2, 3], [2, 3, 1], [2, 1, 3], [1, 3, 2], [2, 1, 3], [3, 1, 2]
-- , [3, 2, 1]]

In particular, the list [2, 1, 3] is enumerated twice. While this might
seem to be a minor problem, the number of duplicates grows quite
fast, for example the same application yields 195 213 results for the
list [1 . . 8], while there are only 40 320 permutations of this list.
So, why does patienceSortM enumerate the list [2, 1, 3] twice?

In order to understand the behaviour we illustrate the process
of sorting the list [5, 7, 2] with a deterministic version of patience
sort. First, we will create a singleton pile with 5. In order to insert
7 into the list of piles we check 7 6 5. As it does not hold, we
add a new pile with 7 to the list of piles and end up with the
list of piles [[5], [7]]. Next, we compare 2 with the head of the
oldest pile namely 5. As 2 6 5 holds, we insert 2 into the pile
[5] ending up with the list of piles [[2, 5], [7]]. In order to merge
this list of piles we will first determine the minimum element of
all heads of all piles. In particular we will check whether 2 6 7
holds. However, as we know that 7 6 5 does not hold, by totality
5 6 7 must hold. Furthermore, we additionally know that 2 6 5
holds, because we have already checked it when creating the piles.
By transitivity we get 2 6 5 6 7. That is, by transitivity (and
totality) we would not have to check 2 6 7. Because patience sort
performs this comparison anyhow, in the non-deterministic setting
the predicate might decide that 2 6 7 does not hold although this
decision conflicts with other decisions made before.

We can enumerate exactly all permutations using patience sort
if we use a non-deterministic predicate that respects transitivity.
If transitiveClosure is a function that calculates the transitive
closure of a list of choices, we can define a non-deterministic
choice that respects transitivity as follows.

transitiveCoin :: (Eq α,MonadPlus µ)
⇒ Cmp α (StateT (Choices α) µ)

transitiveCoin = check (store cl coinCmp)
where

cl = totalClosure ◦ transitiveClosure ◦ totalClosure

Besides the implementations we have considered so far, we can
derive permutation enumerations from all kinds of sorting func-
tions. For example, when we apply the monadic version of an im-
plementation of merge sort to the predicate coinCmp the resulting
function enumerates exactly all permutations. When we implement
a permutation enumeration “by hand” we would probably not come
up with an implementation like this. A similar argument applies to
enumerating permutations by using a sorting function that is based
on a binary search tree.

One final sorting algorithm we would like to mention here is
heap sort. Heap sort can be considered as an improved version
of selection sort. Instead of looking up the minimum element of
a list on every pass, we initially create a heap structure from the list

and use this structure to get and remove the minimum element effi-
ciently. While the worst case complexity of selection sort isO(n2),
the worst case complexity of heap sort is O(n logn). This reduc-
tion in the number of comparisons also improves the derived per-
mutation enumeration. While the permutation enumeration that is
based on selection sort enumerates permutations multiple times, the
permutation enumeration that is based on heap sort enumerates ex-
actly all permutations of a list. However, note that the worst case
complexity of a sorting function does not determine the number
of non-deterministic results of the corresponding permutation enu-
meration. For example, while the worst case complexity of inser-
tion sort is n2 the corresponding permutation enumeration enumer-
ates exactly all permutations while selection sort has the same worst
case complexity and enumerates permutations multiple times. Sim-
ilarly, the two implementations of quicksort are in the same com-
plexity class for the best, average, and worst case and still behave
differently.

These examples illustrate the beauty of deriving permutation
enumerations from sorting functions because we get as many per-
mutation enumerations as there are sorting functions and their im-
plementations can profit from improvements of the sorting func-
tions. Interestingly, we can also derive a sorting function from every
permutation enumeration by using the permutation sort approach.
Yet, this way we end up with quite inefficient sorting functions.

7. Proving Fischer’s Intuition
In this section we will make use of free theorems as presented
by Wadler (1989). Free theorems are a means to prove statements
about a function by only considering its type. The statements rely
on the fact that a function cannot invent a value of a polymorphic
type. Therefore, this style of proof especially allows for quite strong
statements if the function type at hand is very general. A well-
known trick to apply free theorems to a concrete problem is to
make a function “more polymorphic” by introducing a higher-order
argument that abstracts the non-polymorphic part. In our case, the
higher-order argument is a predicate that abstracts the concrete type
of the elements of the list we are sorting.

sortM :: Monad µ⇒ (α→ α→ µ Bool)→ µ [α]→ µ [α]

Besides abstracting the type of the list elements, this function
type also abstracts the non-deterministic context. More precisely,
the type of sortM does not even mention the MonadPlus context.
This context is only provided by the argument that we pass to
sortM . In other words, the function sortM itself cannot introduce
any non-determinism.

In order to prove statements about function types that involve
type constructor classes like monads, we make use of an extension
of free theorems to cover type constructor classes as presented by
Voigtländer (2009). We have to provide a relational interpretation
of the type constructor to prove a statement about a monadic func-
tion. This relational interpretation is a function that takes a relation
and yields a relation.

As we would like to prove that the non-deterministic variant of
a sorting function actually enumerates all permutations of a given
list, we have to express an is element of relation. The natural choice
would be to use the function

elem :: Eq α⇒ α→ [α]→ Bool

that checks whether an element is found in a given list. In order to
apply a free theorem we have to interpret the type of a function by
a relation. That is, we would like to define a relation that expresses
an is element of relation.

Elem := {(x , xs) | elem x xs ≡ True}

9 2016/7/1

In the case of the list monad, instead of using elem , we can as
well express an is element of relation by means of (++) and equality
as follows.

Elem := {(x , xs) | ∃ys, zs :: [α] . ys ++ singleton x ++ zs ≡ xs}
In contrast to the relation that is based on elem , we can generalise
this relation to arbitrary MonadPlus instances as follows.

Elem := {(x ,m) | ∃n, o :: κ α . n ⊕κ returnκ x ⊕κ o ≡ m}
In the case of the list monad this simply means that the element x
is an element of the list m .

Before we start with the actual proof, we observe a connection
between the is element of relation and the corresponding monadic
bind operator. The following lemma states that if y is an element
of m and x is an element of g y , then x is also an element of
m >>=κ g .

Lemma 2. For all types τ , all MonadPlus instances κ, all y :: τ ,
all m :: κ τ and all g :: τ → κ τ we have that if

(y ,m) ∈ Elem and (x , g y) ∈ Elem (∗)
then

(x ,m >>=κ g) ∈ Elem.

We do not prove this statement here, it is a straightforward ap-
plication of (Bind-MPlus left distributive), (Bind left identity), and
the preconditions (∗).

In order to prove statements about a function involving a type
constructor class, we have to define a so-called Monad -action. A
Monad -action M is a function that maps a relation over the “result
type” of a monad to a relation that relates two concrete instances
of a Monad . Furthermore, a Monad -action has to be compatible
with return and >>= in the sense that if we consider values that are
related, the images of return and>>= have to be related as well. We
outline the precise statements shortly. If you are interested in more
details, Voigtländer (2009) presents an introduction to Monad -
actions as well as a couple of applications.

As a first step we define the following relational action that
relates elements of the identity monad to elements of some specific
instance κ of MonadPlus by means of the relation5 Elem .

E R := { (Id x ,m) | ∃y . (x , y) ∈ R ∧ (y ,m) ∈ Elem }
In order to use this relational action in a free theorem about

monadic functions, we have to show that E is a Monad -action.
Note that, because of the relation Elem , the type constructor κ
has to be an instance of MonadPlus . Yet, we are only considering
Monad -actions and not MonadPlus-actions in the following be-
cause the function we are considering, sortM , only has a Monad
context.

Lemma 3. E is a Monad -action.

Proving Lemma 3 requires showing two statements about the
relation E . First, we need to show that for all relationsR we have

(returnId , returnκ) ∈ R → E R .

The following info box introduces the idea of the operator → on
relations that is used in this statement.

Function lifting of relations R→ S

For relations R : α ↔ β and S : γ ↔ δ the relation R → S
relates functions of the type α → γ to functions of the type
β → δ, and we have

(f , g) ∈ R → S ⇐⇒ ∀ (x , y) ∈ R . (f x , g y) ∈ S .

5 Using the relational operations of multiplication ; and inverse −1, E R
can be written E R = Id−1;R;Elem .

The statement about return is easily shown using the definition
of Elem and the laws (MPlus left zero) and (MPlus right zero). As
a second step, we need to verify that for all relationsR and S

((>>=Id), (>>=κ)) ∈ E R→ (R→ E S)→ E S
holds. The main ingredients in proving this statement are Lemma 2,
as well as careful considerations of the relational arrow and the
relation E . Clearly, the second statement is slightly more technical
than the first one, since it involves more conditions and conclusions.

Now, we can use this Monad -action to prove a statement about
sortM . In order to relate the results of two concrete instances of
sortM we have to relate the two arguments of these functions, that
is, two comparison functions. More precisely, we will show that
for an arbitrary MonadPlus instance κ the results of the functions
cmpId and coinCmpκ are related by the relation E I . The term
I denotes the identity relation that relates elements of a specific
type with itself. We have to use the identity relation, because the
non-monadic content type of the result type of the two comparison
functions is Bool . In the context of free theorems, non-polymorphic
types like Bool have to be interpreted by the identity relation.

As cmpId only takes arguments of type Int , the following state-
ment only considers relations whose first component uses values of
type Int .

Lemma 4. For allR : Int ↔ τ we have

(cmpId , coinCmpκ) ∈ R → R→ E I.

Proof. Let R : Int ↔ τ be a relation, (x1, y1) ∈ R, and
(x2, y2) ∈ R. We want to show that

(Id (x1 6 x2), coinCmpκ y1 y2) ∈ E I

and know that

cmpId x1 x1 = Id (x1 6 x2)

and

coinCmpκ y1 y2 = returnκ True ⊕κ returnκ False.

We can distinguish two cases:

(1) x1 6 x2 ≡ True

returnκ True ⊕κ returnκ False
≡ { (MPlus left zero) }

mzeroκ ⊕κ returnκ True ⊕κ returnκ False
≡ { x1 6 x2 ≡ True }

mzeroκ ⊕κ returnκ (x1 6 x2)⊕κ returnκ False

(2) x1 6 x2 ≡ False

returnκ True ⊕κ returnκ False
≡ { (MPlus right zero) }

returnκ True ⊕κ returnκ False ⊕κ mzeroκ
≡ { x1 6 x2 ≡ False }

returnκ True ⊕κ returnκ (x1 6 x2)⊕κ mzeroκ

We get (x1 6 x2, coinCmpκ y1 y2) ∈ Elem by definition of
Elem . In addition, we have (x1 6 x2, x1 6 x2) ∈ I . With these
facts at hand, the definition of E yields

(cmpId x1 x2, coinCmpκ y1 y2) ∈ E I.

Now we are ready to relate the results of two instances of
sortM . In order to make the following statements more readable,
we use the abbreviations

sort = sortM Id cmpId

and
permute = sortM κ coinCmpκ.

10 2016/7/1

We will only consider the relational action E R in the special
case that R is a function. Note that in this case (Id x ,m) ∈ E f
for some function f implies (f x ,m) ∈ Elem .

Before we start with the actual proof, we provide a road map.
Let τ be a type, xs, ys :: [τ], such that ys is a permutation of xs . In
the following theorem we will show that permute xs enumerates
ys , in other words, permute generates every permutation of a list.

Our approach is different from the intuition of Fischer as stated
in Section 1. In order to prove the statement via the intuition
we would have to provide an ordering that is able to generate
ys from xs via “sorting” for every list xs and permutation ys .
Instead of showing that the sorting function is able to generate
every permutation, we will show that the sorting function is able to
undo every permutation of a sorted list. In this case we can always
use the same ordering independent of the permutation ys .

In order to illustrate the following proof we will consider a
less general statement, which constitutes the underlying idea and
is easier to grasp. That is, we will resort to lists of indices instead
of using xs and ys . Working with indices is much simpler as we can
use the well-known order on integers to sort them and do not have
to bother about duplicate elements. That is, instead of showing that
permute xs generates ys , we will show that permute is generates
pis where is = [0 . . length xs − 1] and pis is a permutation of is .

The key argument in the proof of this statement is the relation of
two instances of sortM , namely sort and permute . We relate these
functions by using the free theorem for the function sortM . The
free theorem for sortM states that using related predicates yields
related functions.

In a free theorem a type variable in a function type is interpreted
by a relation. Because the function sortM uses the polymorphic
type variable µ twice – once in the result type of the functional
argument and once in the result type of the function – we are able
to connect the result of the functional argument and the result of
the application of sortM . More precisely, we will show that two
concrete functional arguments are related by the relational action
E . By the free theorem for sortM , we get that the results of the
application of sortM to these functional arguments are related by
E as well.

First, by Lemma 4 we have

(cmpId , coinCmpκ) ∈ I → I → E I.

Second, by the free theorem for sortM , we get that the applications
of sortM to cmpId and coinCmpκ are related by E I as well, thus,
we get

(sort , permute) ∈ [I]→ E I.

List lifting of relations [R]

For a function f we have

(x, y) ∈ [f] ⇐⇒ y = map f x .

The identity relation I is the function id , thus

(x, y) ∈ [I] ⇐⇒ y = map id x = x .

That is, for equal arguments the results of sort and permute are
related by E I . This implies

(sort pis, permute pis) ∈ E I.

Third, because is = [0 . . length xs − 1] and pis is a permutation
of is , we have sort pis ≡ Id is and, therefore,

(Id is, permute pis) ∈ E I.

Finally, by definition of E we have (is, permute pis) ∈ Elem .
That is, permute of the permutation of a list of indices actually
yields the sorted list of indices.

This statement about sorting lists of indices can be generalised
to arbitrary lists. However, as this generalisation requires additional
setup, we apply a different approach that works for arbitrary lists as
well. Instead of using the identity relation, we use a more general
relation that connects a list with a list of indices. In order to prove
this generalised statement we will need the following property that
is often used when the behaviour of a function is characterised by
its behaviour on a list of indices.

Lemma 5. For all types τ and all lists xs :: [τ] we have

map (xs!!) [0 . . length xs − 1] ≡ xs.

Now we are ready to tackle the main proof about sorting with a
non-deterministic predicate.

Theorem 1. For all types τ , all lists xs :: [τ], and all permutations
ys :: [τ] of xs we have

(ys, permute xs) ∈ Elem.

We prove this statement by proceeding as illustrated above but
replacing the relation I by the relation [(ys!!)] as shown in Ap-
pendix A.

Now we know that the monadic instance of any sorting function
actually enumerates all permutations of a list. In other words, we
have formally proven the intuition of Fischer as shown in Section 1.

8. Final Remarks
There is a lot more to the idea of applying a monadic function
to a non-deterministic predicate than we would have thought in
the beginning. While working on this idea, we discovered a lot
of questions related to the enumeration of permutations that we
did not follow in the end. We would like to address some of these
directions here in order to present some potential topics for future
work.

We did only consider the non-deterministic predicate coinCmp,
while there are other non-deterministic predicates that can be used
to affect the order of enumeration. For example, the following
function lifts a predicate cmp to a non-deterministic context.

liftCmp :: MonadPlus µ
⇒ (α→ α→ Bool)→ Cmp α µ

liftCmp p x y = return (p x y)⊕ return (not (p x y))

When we use this function to lift a comparison function and pass
it to a monadic version of merge sort, we get a special kind of per-
mutation function: it enumerates permutations in lexicographical
order.

Like listing the results in lexicographical order there are lots
of properties related to permutations that have been investigated
since the idea of enumerating permutations has been presented.
For example, enumerating derangements, that is, enumerating all
permutations where an element does not appear at its original
position or enumerating all permutations of a sublist of a given list.

Yet, not only these permutation related topics emerged during
this work; there are also topics that are related to the specific
Haskell implementation of the algorithms. For example, we did not
investigate the time complexity or the memory consumption of the
presented permutation enumerations. While we need n∗n! steps to
enumerate all permutations, we do not know whether the presented
functions are even worse. Another interesting topic would be other
monadic instances of the permutation enumerations besides the list
or the set instance. For example, by using a random value generator
monad we might be able to generate permutations efficiently by
using sampling instead of simply enumerating them.

Finally, the two examples that were the motivation for conduct-
ing this research, namely non-deterministic filtering and sorting,
share a common structure. More precisely, we can process both

11 2016/7/1

cases in one if we abstract a type constructor ϕ and consider a func-
tion of type

(ϕ α→ Bool)→ [α]→ [α].

In order to model filtering we use Id for ϕ whereas we use the
following data type for sorting.

data Two α = Two α α

Furthermore, we would like to consider other type constructors like
a data type Three and check how these functions are connected.

Acknowledgments
We would like to thank the anonymous reviewers who have helped
to improve this paper through their criticism and suggestions.
Moreover, we especially thank Koen Claessen for asking the right
questions and investing a considerable amount of time for guiding
us to improve the final version of this paper.

References
S. Antoy and M. Hanus. New Functional Logic Design Patterns. WFLP’11,

pages 19–34. Springer LNCS 6816, 2011.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.
Fast and Loose Reasoning is Morally Correct. POPL’06, pages 206–217.
ACM, 2006.

Sebastian Fischer and Jan Christiansen. Curry mailing list, July
2009. URL http://www.informatik.uni-kiel.de/~mh/curry/
listarchive/0781.html.

Jeremy Gibbons and Ralf Hinze. Just do it: Simple Monadic Equational
Reasoning. ICFP’11, pages 2–14. ACM, 2011.

Michael Hanus. The Integration of Functions into Logic Programming:
From Theory to Practice. Journal of Logic Programming, pages 583–
628, 1994.

Selmer M Johnson. Generation of Permutations by Adjacent Transposition.
Mathematics of computation, pages 282–285, 1963.

Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and
Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
333–343. ACM, 1995.

Colin L Mallows. Patience Sorting. SIAM review, 1963.

George Pollard, Sebastian Fischer, Ganesh Sittampalam, and Ryan Ingram.
Haskell mailing list, July 2009. URL https://mail.haskell.org/
pipermail/haskell-cafe/2009-July/064339.html.

Robert Sedgewick. Permutation Generation Methods. ACM Computing
Surveys (CSUR), pages 137–164, 1977.

H. F. Trotter. Algorithm 115: Perm. Commun. ACM, pages 434–435, 1962.

Twan van Laarhoven et al. Haskell mailing list, December 2007.
URL https://mail.haskell.org/pipermail/haskell-cafe/
2009-July/064339.html.

Janis Voigtländer. Free Theorems Involving Type Constructor Classes:
Functional Pearl. ICFP’09, pages 173–184. ACM, 2009.

Philip Wadler. Theorems for Free! FPCA’89, pages 347–359. ACM, 1989.

A. Proof of Theorem 1
Proof. Let τ be a type, xs :: [τ] a list, ys :: [τ] a permutation of xs ,
and n = length xs − 1.

Before we start, we have to formalise the notion of a permuta-
tion: ys being a permutation of xs is equivalent to the following.

• There exists a function σ :: Int → Int , which is bijective when
we restrict domain and codomain to { 0, . . . ,n }.
• For all i ∈ { 0, . . . ,n } we have ys !! i = xs !! σ i .

Because we want to show that we are able to undo every permu-
tation, we move σ to the left-hand side of the equation by using its
inverse. That is, for all i ∈ { 0, . . . ,n } we have

ys !! σ−1 i ≡ xs !! i .

Let is = [0 . .n] and pis = map σ−1 is . We are interested in the
list pis because we know that it will be sorted by sort , hence, it
holds sort pis ≡ is .

Additionally, we can relate pis and xs as follows.

map (ys!!) pis
≡ { definition of pis }

map (ys!!) (map σ−1 is)
≡ { property of map }

map (λi → ys !! σ−1 i) pis
≡ { definition of σ−1 }

map (λi → xs !! i) is
≡ { Lemma 5 }

xs

Instead of using the identity relation in the proof sketch above,
we can use the relation (ys!!), that is, a relation that relates indices
to the elements in ys . More precisely, we use the relation [(ys!!)]
where

(vs,ws) ∈ [(ys!!)]

implies
ws = map (ys!!) vs.

With the knowledge that (ys!!) ∈ Rel(Int , τ) holds, Lemma 4
yields

(cmpId , coinCmpκ) ∈ (ys!!)→ (ys!!)→ E I

and by the free theorem of sortM , we get

(sort , permute) ∈ [(ys!!)]→ E [(ys!!)],

since we have

permute = sortM κ coinCmpκ

and
sort = sortM Id cmpId .

Because (pis,map (ys!!) pis) ∈ [(ys!!)] we get

(sort pis, permute (map (ys!!) pis)) ∈ E [(ys!!)].

On the other hand we have

(sort pis, permute (map (ys!!) pis))
≡ { sort = sortM Id cmpId is a sorting function }
(Id is, permute (map (ys!!) pis))
≡ { equation above }
(Id is, permute xs)

and thus
(Id is, permute xs) ∈ E [(ys!!)].

Now the definition of E [(ys!!)] states there exists y , such that

(is, y) ∈ [(ys!!)]

and
(y , permute xs) ∈ Elem.

With this statement we get y ≡ map (ys!!) is ≡ ys , where the
second equation is due to Lemma 5, which finally proves

(ys, permute xs) ∈ Elem.

That is, the permutation ys is an element of the resulting lists of
lists permute xs .

12 2016/7/1

http://www.informatik.uni-kiel.de/~mh/curry/listarchive/0781.html
http://www.informatik.uni-kiel.de/~mh/curry/listarchive/0781.html
https://mail.haskell.org/pipermail/haskell-cafe/2009-July/064339.html
https://mail.haskell.org/pipermail/haskell-cafe/2009-July/064339.html
https://mail.haskell.org/pipermail/haskell-cafe/2009-July/064339.html
https://mail.haskell.org/pipermail/haskell-cafe/2009-July/064339.html

	Introduction
	Insertion Sort
	Selection Sort
	Bubble Sort
	Quicksort
	Other Sorting Algorithms
	Proving Fischer's Intuition
	Final Remarks
	Proof of Theorem 1

