
Hybrid Verification of Declarative Programs
with Arithmetic Non-Fail Conditions

Michael Hanus

Institut für Informatik, Kiel University, Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Functions containing arithmetic operations have often re-
strictions not expressible by standard type systems of programming lan-
guages. The division operation requires that the divisor is non-zero and
the factorial function should not be applied to negative numbers. Such
partial operations might lead to program crashes if they are applied
to unintended arguments. Checking the arguments before each call is
tedious and decreases the run-time efficiency. To avoid these disadvan-
tages and support the safe use of partially defined operations, we present
an approach to verify the correct use of operations at compile time. To
simplify its use, our approach automatically infers non-fail conditions
of operations from their definitions and checks whether these conditions
are satisfied for all uses of the operations. Arithmetic conditions can
be verified by SMT solvers, whereas conditions in operations defined on
algebraic data types can be inferred and verified by appropriate type
abstractions. Therefore, we present a hybrid method which is applicable
to larger programs since only a few arithmetic non-fail conditions need
to be checked by an external SMT solver. This approach is implemented
for functional logic Curry programs so that it is also usable for purely
functional or logic programs.

1 Introduction

Programs often contain partially defined operations that do not yield meaningful
results for particular argument values. A typical example is the division operation
which is not defined if the divisor is zero. User-defined operations might also have
restrictions on argument values. For instance, consider the following definition
of the factorial function in the functional language Haskell [31]:

fac :: Int → Int

fac n | n == 0 = 1

| n > 0 = n * fac (n - 1)

Due to the conditions “n == 0” and “n > 0”, a run-time error occurs if fac is
applied to a negative number since there is no branch for this case. Such an
error might be avoided at compile time by restricting the argument type of fac
to natural numbers and checking whether each call satisfy this restriction. Un-
fortunately, this restriction is not expressible in type systems of current strongly
typed declarative programming languages, such as Haskell. This is also due to

the fact that a call like fac (m-n) must be considered as ill-typed if m is smaller
than n, i.e., the correct typing depends on values available at run time.

In order to avoid program crashes due to such errors, one could transform the
factorial function into a total function that returns a specific value indicating a
meaningless result. In Haskell, this could be expressed by using the predefined
type of partial values

data Maybe a = Nothing | Just a

Nothing represents “no value” and Just x the value x. Using this type, we could
define a “totalized” version of fac as follows:

facT :: Int → Maybe Int

facT n | n < 0 = Nothing

| n == 0 = Just 1

| n > 0 = case facT (n - 1) of Nothing → Nothing

Just m → Just (n * m)

This total programming style yields ugly and less comprehensible code (note
that also each client of facT has to check and transform the computed result).
Moreover, the code is less efficient due to the additional case distinction in each
recursive call.

In order to use the partially defined function fac without the risk of run-
time errors, one can check the value of the argument before the actual call. For
instance, the following code snippet defines an operation to read a number and,
if it is non-negative, prints its factorial (readInt reads a string from the user
input until it is an integer):

printFac = do putStr "Factorial computation for: "

n <- readInt

if n<0 then putStrLn "Negative number!" >> printFac

else print (fac n)

By checking the value of n before evaluating (fac n), printFac never fails.
In this paper we present a fully automatic tool which can verify the non-

failure of this program. For this purpose, our tool infers the non-fail condition

fac’nonfail :: Int → Bool

fac’nonfail n = (n == 0) || (n > 0)

from the definition of fac. Then it checks whether this condition is satisfied at
all call sites of fac. For instance, it is satisfied for the recursive call fac (n - 1)

since n > 0. This property is automatically checked by an SMT solver [29]. The
entire process is iterative since a non-fail condition for some operation f might
require new non-fail conditions for operations that use f . For the operation

fac2 n = n * fac (n + 2)

the non-fail condition of fac requires fac2’nonfail n = (n+2 == 0) || (n+2 > 0).
Non-fail conditions [16] are predicates which restrict the standard types of

operations so that run-time failures are excluded. This idea is also present in
dependent types, as in Agda [30], Coq [9], or Idris [10], or refinement types [32],
as used in LiquidHaskell [36,37]. Since the development of programs w.r.t. such
advanced type systems requires more work [34], we intend to support the tra-

2

ditional programming style with automated verification support where non-fail
conditions are inferred. If they are not precise enough, the programmer can
provide explicit non-fail conditions.

We specify and implement our approach in the declarative multi-paradigm
language Curry [19] which extends Haskell by logic programming features. Thus,
our approach can also be applied to purely functional or logic programs [17]. In
this context, it is important to distinguish non-fail conditions and preconditions
[7]: a precondition must be satisfied for any call of an operation, whereas a
satisfied non-fail condition assures that a computation does not fail. Hence, it
is an error if a precondition is not satisfied for some call, whereas in a logic
computation, where one searches for values or solutions, one could also invoke
operations with unsatisfied non-fail conditions. Hence, non-fail conditions as well
as preconditions are meaningful concepts in functional logic programming (com-
puting with failures is a feature enabling new design patterns [4]). Since top-level
computations should not fail, subcomputations with possible failures must be en-
capsulated by specific search handlers. This provides also an opportunity to deal
with complex non-fail conditions which cannot be inferred or checked automati-
cally: encapsulate calls to such operations and check whether such a subcompu-
tation has no result. This view is different from approaches where constraints or
dependent types are generated [20,32,35] to ensure that no failures occur.

This paper is structured as follows. After reviewing the basics of Curry in
the next section, we discuss non-fail conditions in Sect. 3. Section 4 defines
our method to check and infer valid non-fail conditions for all operations in a
program. Section 5 reviews call types which can be considered as abstract non-
fail conditions for algebraic data types. Both kinds of non-fail conditions are
combined and implemented in our hybrid verification tool which we describe
and evaluate in Sect. 6 before we conclude with a discussion of related work.

2 Functional Logic Programming with Curry

We develop and implement our method in Curry so that it is also applicable
to purely functional or logic programs. The declarative programming language
Curry [19] amalgamates features from functional programming (demand-driven
evaluation, strong typing, higher-order functions) and logic programming (com-
puting with partial information, unification, constraints), see [6,15] for surveys.
The syntax of Curry is close to Haskell1 [31]. In addition to Haskell, Curry applies
rules with overlapping left-hand sides in a (don’t know) non-deterministic man-
ner (where Haskell always selects the first matching rule) and allows free (logic)
variables in conditions and right-hand sides of defining rules. The operational
semantics combines lazy and non-deterministic evaluation [3].

A Curry program consists of data type definitions introducing constructors
for data types (as shown with the type Maybe in Sect. 1) and functions or oper-

1 Variables and function names start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted
by juxtaposition (“f e”).

3

P ::= D1 . . . Dm (program)
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable)

| c(x1, . . . , xn) (constructor application)
| f(x1, . . . , xn) (function call)
| e1 or e2 (disjunction)
| let x1, . . . , xn free in e (free variables)
| let x = e in e′ (let binding)
| case x of {p1 → e1; . . . ; pn → en} (case expression)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of the intermediate language FlatCurry

ations on these types. As an example, we show the definition of two operations
on lists: the list concatenation “++” and an operation aPos which returns some
positive number occurring in a list of integers:2

(++) :: [a] → [a] → [a] aPos :: [Int] → Int

[] ++ ys = ys aPos xs | xs == ys++[z]++zs && z>0

(x:xs) ++ ys = x : (xs ++ ys) = z where ys,z,zs free

The equation “xs == ys ++ [z] ++ zs” in the condition of aPos is solved by search-
ing for appropriate lists such that they concatenate to xs and contain some
element z. aPos is also called a non-deterministic operation, because it might
deliver more than one value for a given argument, e.g., aPos [0,-1,2,-3,4] yields
2 and 4. Such operations, interpreted as mappings from values into sets of values
[14], are an important feature of contemporary functional logic languages.

To collect the results of non-deterministic operations and use them in purely
deterministic computations (e.g., to print them), Curry offers search handlers,
i.e., operations to encapsulate non-deterministic computations and return their
results in some data structure (e.g., [5,11,22,23]). For instance, allValues returns
all values of its argument expression in a list. The handler oneValue returns a
single value in a Maybe structure and Nothing in case of a failure. These operations
can be used to avoid program crashes with partially defined operations. For
instance, the total operation facT shown in Sect. 1 can be defined as

facT n = oneValue (fac n)

Since Curry has many more features than described so far, language processing
tools for Curry (compilers, analyzers,. . .) often use an intermediate language,
called FlatCurry [1,15], where the syntactic sugar of the source language has
been eliminated and the pattern matching strategy is explicit. Since our inference
method is based on FlatCurry, we sketch the structure of FlatCurry programs.

The abstract syntax of FlatCurry is summarized in Fig. 1. A FlatCurry
program consists of a sequence of function definitions (for the sake of simplicity,

2 Curry requires the explicit declaration of free variables, as ys,z,zs in the rule of
aPos, to ensure checkable redundancy.

4

data type definitions are omitted), where each function is defined by a single rule.
Patterns in source programs are compiled into case expressions, overlapping rules
are joined by explicit disjunctions, and arguments of constructor and function
calls are variables (introduced in left-hand sides, let expressions, or patterns).
We assume that FlatCurry programs satisfy the following properties:

– All variables introduced in a rule (parameters, free variables, let bindings,
pattern variables) have unique identifiers.

– Let bindings are non-recursive, i.e., all recursion is introduced by functions.

– The patterns in case expressions are non-overlapping and cover all data
constructors of the type of the discriminating variable. Hence, if this type
contains n constructors, there are n branches without overlapping patterns.
This can be ensured by adding missing branches with failure expressions,
e.g., the predefined Curry operation failed which has no value.

For instance, the operation fac is transformed into the following FlatCurry pro-
gram (which contains infix operators and some non-variable arguments for the
sake of readability):

fac(n) = let n0 = n == 0 in

case n0 of { True → 1

; False → let n1 = n > 0 in

case n1 of { True → n * fac(n-1)

; False → failed } }

Note that conditional rules are translated into nested case distinctions. The final
failed branch is included to ensure that each case expression branches over all
data constructors of a type. Usually, the front end of a Curry compiler transforms
source programs into such a simplified form for easier compilation [2,8].

3 Non-Fail Conditions

A non-fail condition, as introduced in [16], is a predicate to specify when an op-
eration can be used without running into a failure. A satisfied non-fail condition
does not ensure that some value is eventually computed—an infinite compu-
tation has no run-time failure. A non-fail condition of an n-ary operation f
of type τ1 → · · · → τn → τ is specified as an operation f’nonfail of type
τ1 → · · · → τn → Bool. For instance, a non-fail condition for the factorial func-
tion fac as defined above can be specified as

fac’nonfail :: Int → Bool

fac’nonfail n = n >= 0

As a further example, the integer division operation div has the non-fail condition

div’nonfail :: Int → Int → Bool

div’nonfail x y = y /= 0

Although non-fail conditions can be defined by the user, our objective is to
provide a tool which frees the programmer from this task, i.e., non-fail conditions

5

are inferred for all user-defined operations. This is useful especially for local and
auxiliary operations.

The trivial non-fail condition for an n-ary operation f has the form

f’nonfail :: τ1 → · · · → τn → Bool

f’nonfail x1 . . . xn = True

and is the default if there is no explicitly defined non-fail condition. The unsat-
isfiable non-fail condition

f’nonfail :: τ1 → · · · → τn → Bool

f’nonfail x1 . . . xn = False

expresses that there is no known condition under which the operation does not
fail. For instance, the predefined operation failed mentioned above has the non-
fail condition

failed’nonfail :: Bool

failed’nonfail = False

An unsatisfiable non-fail condition might be used for non-trivial logic-oriented
operations, like aPos defined in Sect. 2:

aPos’nonfail :: [Int] → Bool

aPos’nonfail xs = False

Due to the logic-oriented non-deterministic definition of aPos, there are no ar-
gument values ensuring a computation without failures, e.g., the evaluation of
aPos [1] contains, apart from the successful computation, also non-deterministic
failing branches. This means that an application of aPos should be encapsulated
by a search handler like allValues.

4 Checking and Inferring Non-Fail Conditions

In this section we present our first method to infer and check non-fail conditions
without considering algebraic data types in a specific manner. In a first step
(Sect. 4.1), we present a method to check non-fail conditions if they are provided
for all operations. In a second step (Sect. 4.2), we modify this method to infer
non-fail conditions such that they can be successfully checked.

4.1 Checking Non-Fail Conditions

In order to check non-fail conditions, we assume that, for each defined operation
f of arity n, a non-fail condition f’nonfail is defined as an n-ary predicate.
This predicate can be predefined by some formula, which is usually the case
for externally defined operations, or it might be defined by a Boolean Curry
operation.3

3 The precise structure of non-fail conditions is not relevant. In the implementation it
is only necessary to decide whether an implication w.r.t. a non-fail condition holds,
which is done by an SMT solver by axiomatizing the semantics of operations defined
in Curry, see Sect. 6.2. If it cannot be decided, e.g., due to a timeout, it is assumed
that the implication does not hold.

6

Varnf Γ,C ⊢ x

Consnf Γ,C ⊢ c(x1, . . . , xn)

Funcnf Γ,C ⊢ f(x1, . . . , xn) if C implies f’nonfail(σΓ (x1), . . . , σ
Γ (xn))

Ornf
Γ,C ⊢ e1 Γ,C ⊢ e2

Γ,C ⊢ e1 or e2

Freenf
Γ,C ⊢ e

Γ,C ⊢ let x1, . . . , xn free in e

Letnf
Γ,C ⊢ e Γ [x 7→ e], C ⊢ e′

Γ,C ⊢ let x = e in e′

Casenf
Γ,C ⊢ x Γ,C1 ⊢ e1 . . . Γ, Cn ⊢ en

Γ,C ⊢ case x of {p1 → e1; . . . ; pn → en}
where Ci = C ∧ σΓ (x) = pi

Fig. 2. Checking non-fail conditions

The checking of non-fail conditions is defined by the rules shown in Fig. 2.
This inference system derives judgements of the form “Γ,C ⊢ e” where Γ is
a mapping from variables into expressions, also called heap in operational de-
scriptions like [1], C is the current assertion, i.e., a Boolean expression satisfied
in the current branch under consideration, and e is a (FlatCurry) expression.
The heap Γ contains the bindings of variables introduced by let expressions. We
denote by Γ [x 7→ e] the heap Γ ′ with Γ ′(x) = e and Γ ′(y) = Γ (y) for all x ̸= y.
σΓ denotes the substitution, i.e., a mapping from expressions into expressions,
represented by the heap Γ . σΓ satisfies σΓ (x) = x if Γ (x) = x (i.e., there is
no binding for x) and σΓ (x) = σΓ (e) if Γ (x) = e with x ̸= e. This recursive
definition is well defined since there are no cyclic bindings in Γ , which is ensured
by our restrictions on FlatCurry programs (non-recursive let bindings). σΓ can
also be interpreted as dereferencing w.r.t. Γ .

Intuitively, Γ,C ⊢ e means that, if σ is a substitution such that σ(C) holds,
the expression σ(σΓ (e)) evaluates without a failure, i.e., the non-fail conditions
of all operations occurring during this evaluation are satisfied. To check the non-
fail condition of an operation f defined by f(x1, . . . , xn) = e, we try to derive
the judgement {}, f’nonfail(x1, . . . , xn) ⊢ e. Thus, we analyze the right-hand
side of the rule under the assumption that the non-fail condition is satisfied.
Now we discuss the rules in Fig. 2 in more detail.

Rule Varnf states that the evaluation of a variable cannot cause a failure. This
is justified because the variable is either free or it is bound to some expression
which cannot fail because rule Letnf checks each bound expression (even if it
is not required in a lazy evaluation). Similarly, the evaluation of a constructor-
rooted expression cannot fail, as expressed by rule Consnf . Rule Funcnf requires
that the current assertion C implies the non-fail condition of the operation to be
evaluated. Since the argument variables x1, . . . , xn might be bound to expressions
introduced by let expressions, they have to be dereferenced by σΓ .

7

Rule Ornf states that both expressions of a choice must be evaluable without
a failure. It could be relaxed by requiring that at least one of the choices is
free of failures, but we put this stronger condition since completely fail-free
computations could support simpler and more efficient implementations.

Rule Freenf checks the expression without a binding for the free variables in
the heap so that they are universally quantified when testing the implication in
rule Funcnf . This is different in rule Letnf where the binding x 7→ e is put into
the heap before the main expression is checked. The bound expression is also
checked but without a binding for x because we assume that bindings are non-
recursive. Since the property whether x is actually evaluated in e′ is undecidable
in general, we safely approximate it by assuming that x might be evaluated, i.e.,
we require that the evaluation of e yields no failure.

Rule Casenf is the most important rule to ensure that a potentially failing
operation does not cause a problem if its application is wrapped by an appro-
priate condition. Each branch of a case expression is checked with an extended
assertion which takes into account that the discriminating variable must be equal
to the corresponding branch pattern.4 This extended assertion is used to check
further function calls occurring in this branch by rule Funcnf so that it is im-
portant to collect the condition about the discriminating variable in the current
assertion. For instance, consider an extended definition of the factorial function:

facInt x = if x < 0 then 0 else fac x

This is translated into the FlatCurry definition

facInt(x) = let y = x < 0 in

case y of { True → 0 ; False → fac(x) }

Assume that facInt’nonfail(x) = true and fac’nonfail(x) = x ≥ 0. When
checking the case expression of facInt, we have Γ = {y 7→ x < 0} and C = true.
Then the expression fac(x) of the False-branch is checked with the extended
assertion C2 = true ∧ (x < 0) = false which is equivalent to x ≥ 0. Hence, C2

implies the non-fail condition of fac.
Checking non-fail conditions can also be used to ensure that operations de-

fined by rules with several guards are completely defined. For instance, consider
the operation to compute the absolute value of an integer:

abs n | n >= 0 = n

| n < 0 = 0 - n

Similarly to the FlatCurry representation of fac shown in Sect. 2, abs has the
FlatCurry representation

abs(n) = let c1 = n>=0 in

case c1 of { True → n

; False → let c2 = n<0 in

case c2 of { True → 0 - n

; False → failed } }

4 In principle, we could omit the premise Γ,C ⊢ x since it is always satisfiable by rule
Varnf , but we included it to make it explicit that the discriminating argument must
be also non-failing.

8

When checking this definition with the trivial non-fail condition of abs, the
assertion in the final failed branch is (n ≥ 0) = false ∧ (n < 0) = false. Since
this can be shown as unsatisfiable by an SMT solver, this branch is unreachable
so that the operation failed will never be called, i.e., abs is totally defined.
Hence, a compiler could use this information to transform the code into the
following slightly more efficient code:

abs(n) = let c1 = n>=0 in case c1 of { True → n

; False → 0 - n }

We can state the correctness of the inference rules in Fig. 2 as follows.

Theorem 1. Assume that the non-fail conditions of all defined operations are
successfully checked by the rules in Fig. 2. Let f be defined by f(x1, . . . , xn) = e,
C = f’nonfail(x1, . . . , xn) and {}, C ⊢ e be derivable by these inference rules,
and σ be a substitution such that σ(C) holds. If g(t1, . . . , tm) is reduced in any
reduction of σ(e), g’nonfail(t1, . . . , tm) holds.

Hence, if all non-fail conditions are successfully checked and we evaluate an oper-
ation with a satisfied non-fail condition, the non-fail conditions of all operations
reduced during this evaluation hold. The proof, which is omitted due to lack of
space, is by induction on the number evaluation steps and a nested induction on
the height of the inference tree.

4.2 Inferring Non-Fail Conditions

In order to infer non-fail conditions for user-defined operations, we start with
trivial non-fail conditions for all operations, except for externally defined oper-
ations with non-trivial non-fail conditions, like division operators or failed. As
can be seen in the rules of Fig. 2, the only situation where a rule might not be
applicable is rule Funcnf due to its side condition. Hence, if this condition does
not hold, we enforce it by adding the implication, i.e., the formula

¬C ∨ f’nonfail(σΓ (x1), . . . , σ
Γ (xn))

is added as a conjunct to the non-fail condition of the operation currently
checked. If the extended non-fail condition is unsatisfiable, we set it to false.

As an example, consider the operation fac where its FlatCurry definition is
shown in Sect. 2. When checking the occurrence of failed, the current assertion
is (n = 0) = false ∧ (n > 0) = false. Obviously, this does not imply the non-fail
condition false of failed. Therefore, we add the conjunct

¬ ((n = 0) = false ∧ (n > 0) = false) ∨ false

which is equivalent to (n = 0) ∨ (n > 0), to the existing trivial non-fail condi-
tion of fac. When we re-check the definition of fac with this modified non-fail
condition, the current assertion when checking failed is

((n = 0) ∨ (n > 0)) ∧ (n = 0) = false ∧ (n > 0) = false

This is equivalent to false (i.e., the current branch is not reachable) so that the
non-fail condition of failed holds. Similarly, the new non-fail condition holds for
the recursive call to fac. Thus, the inferred non-fail condition of fac is valid.

9

Note that the inference of non-fail conditions is an iterative process. For
instance, if our program contains the definition of fac as well as the operation

facMult n = n * fac n

then checking facMult is successful w.r.t. the initial trivial non-fail conditions.
After refining the non-fail condition of fac, we have to check facMult again and
infer a refined non-fail condition also for facMult, which is identical to the non-
fail condition of fac. Checking facMult w.r.t. the refined non-fail condition is
successful so that no further iteration is necessary.

The iterative refinement of non-fail conditions has the risk of non-termina-
tion. For instance, consider the operation

infpos n | n > 0 = infpos (n - 1)

When checking it with the trivial non-fail condition, we obtain the refined non-
fail condition n > 0. Using this condition in the next iteration, we obtain the
refined non-fail condition n > 0 ∧ (n − 1) > 0 which is equivalent to n > 1.
Further iterations yields the non-fail conditions n > 2, n > 3, and so on. To
avoid such infinite loops, one has to stop the refinements at some point and
set the non-fail condition to false. In our implementation, we stop it after the
second refinement. Although this heuristic seems limited, the manual inspection
of the few cases where unsatisfiable non-fail conditions are inferred in existing
programs (see Sect. 6.3) showed that better results would not be computable by
increasing this limit.

4.3 External Operations and User-Defined Non-Fail Conditions

The inference of non-fail conditions is based on the analysis of the rules defining
operations. In particular, the inferred non-fail conditions are determined by the
structure of case expressions. This has the consequence that externally defined
operations, i.e., predefined operations defined by the run-time system, cannot be
analyzed. Therefore, we assume that predefined operations have a trivial non-
fail condition except for a few operations where a non-fail condition is explicitly
defined, like the always failing operation failed, division operations (mod, div,
“/”,. . .) where the divisor must be non-zero, the square root operation where
the argument must be non-negative, among others.5

Based on the non-fail conditions of external operations, one can infer non-fail
conditions for all user-defined operations as described in the previous section.
In the worst case, unsatisfiable non-fail conditions might be derived, as for the
operation infpos shown above, but our evaluation in Sect. 6.3 shows that mean-
ingful non-fail conditions are inferred in most practical cases. However, there
are also cases where an inferred non-fail condition is not precise enough. For
instance, consider the operation nth which selects the n-th element of a given
list:

5 Search handlers are treated differently: their arguments are not transformed into
let expressions so that the arguments are not checked, because their failures are
encapsulated.

10

nth :: [a] → Int → a

nth (x:xs) n | n == 0 = x

| n > 0 = nth xs (n - 1)

The inferred non-fail condition, in a simplified form, is

nth’nonfail xs n = not (null xs) && n <= 0 && n >= 0

(the predicate null is satisfied if the argument is an empty list). This is equivalent
to

nth’nonfail xs n = not (null xs) && n == 0

Although this condition is satisfiable and ensures that nth does not fail for ar-
guments satisfying this condition, it is obviously too strong. A reasonable and
more relaxed non-fail condition has to ensure that the index is not negative and
the argument list has enough elements for the selection. This can be specified
by the following condition:

nth’nonfail xs n = n >= 0 && length xs > n

This non-fail condition can be successfully checked with our method. The po-
tentially failing branches for an empty list xs or a negative number n are not
reachable due to the condition that n is non-negative and the length of the list
is positive. Furthermore, the non-fail condition of the recursive call to nth holds.
For this purpose, one has to verify that the current assertion at this call

n ≥ 0 ∧ length(xs) > n ∧ xs = (y:ys) ∧ n ̸= 0 ∧ n > 0

implies the non-fail condition

(n− 1) ≥ 0 ∧ length(ys) > (n− 1)

of the recursive call. The proof of the first conjunct uses reasoning on integer
arithmetic, as supported by SMT solvers, and the second conjunct can also be
proved by SMT solvers when the rules of the operation length are axiomatized
as logic formulas (see Section 6.2).

Due to these considerations, our tool takes into account explicit user-defined
non-fail conditions. If they do not hold, i.e., they are refined as described in
Sect. 4.2, then they are replaced by an unsatisfiable non-fail condition so that
the resulting conditions are always correct.

5 Combining Non-Fail Conditions and Call Types

So far, we discussed the verification of arithmetic non-fail conditions, although
our method can also be applied to conditions involving algebraic data types, as
shown by the list index operation nth above. However, operations on algebraic
data types might require more complex reasoning about input/output depen-
dencies. For instance, consider the following operation which splits a list into
sublists of ascending elements [27]:

risers [] = []

risers [x] = [[x]]

risers (x:y:etc) = let (s:ss) = risers (y:etc)

in if x <= y then (x:s):ss else [x]:(s:ss)

11

In order to show the non-failure of this operation on all lists, one has to verify
that the recursive call to risers always returns a non-empty list (so that the
pattern matching in the let expression does not fail). Though this is not true in
general, an analysis of risers shows that it returns an empty list for an empty
input list and, for a non-empty input list, it returns a non-empty result list.
Hence, the pattern matching on the result of the recursive call is non-failing.

Such a type-based reasoning is proposed in [18] where input/output type
relations (also called in/out types) are approximated for operations. These are
used to approximate call types, i.e., under-approximations of sets of argument
values which ensure the non-failing execution of operations. For this purpose, a
domain of abstract types is used where each element in the domain approximates
a set of concrete values. For instance, the domain of top constructors (also called
depth-1 abstraction in [33]) contains sets of data constructors as abstract ele-
ments or the specific constraint ⊤ denoting any value. Sets of data constructors
denote terms having one of the constructors at the root. In this case, the in/out
type of risers is

{{[]} ↪→ {[]}, {:} ↪→ {:}}

This can be read as: if the argument is an empty list ({[]}), the result is an
empty list, and if the argument is a non-empty list ({:}), the result is a non-
empty list. Hence, the in/out type of risers ensures that the recursive call always
returns a non-empty list, which is used to verify risers as non-failing. Therefore,
{[], :} is a valid call type of risers. This verification does not demand any user
annotation. In contrast, LiquidHaskell requires an explicit specification of the
input/output behavior of risers to verify it as a total operation [36].

As another example, consider the definition of an operation to return the last
element of a list:

last [x] = x

last (_:x:xs) = last (x:xs)

A valid call type of last is {:} since it fails on the empty list.

If the domain of abstract types is finite (as the top constructor domain
sketched above), fixpoint iterations with such types terminate (when monotonic
operations are used). This can yield more precise results compared to our method
which might stop iterations too early (as discussed in Sect. 4.2). On the other
hand, our method can deal with more precise information on arithmetic domains
but requires an external verifier to check implications. Thus, it is reasonable to
use a hybrid approach where both methods are combined. An implementation
of this idea is sketched in the next section.

6 Implementation and Evaluation

We implemented the hybrid verification method, based on the ideas discussed
above, in a fully automatic tool written in Curry6 and exploiting the SMT solver

6 Available as package https://cpm.curry-lang.org/pkgs/verify-non-fail.html.

12

https://cpm.curry-lang.org/pkgs/verify-non-fail.html

Z3 [29]. In the following, we sketch its implementation and show the result of
applying it to various libraries.

6.1 Basic Implementation Scheme

In order to enable the verification of larger programs, the verification is per-
formed in an incremental modular manner: when a Curry module M has been
checked, the analysis results of M (non-fail conditions and call types) are stored
so that they are available for other modules importing M . Thus, our tool per-
forms the following steps to check a single Curry module:

– The module is translated into a corresponding FlatCurry program by the
standard front end of Curry.

– For all imported modules, their non-fail conditions and call types are loaded
(after they have been checked). This is necessary since imported operations
might be used in the right-hand sides of operations defined in the current
module.

– For each operation defined in the current module, in/out types and call types
are inferred, as described in [18]. If an inferred call type is empty, i.e., there
is no condition on the arguments, expressible as a call type, to ensure that
the operation does not fail, a non-fail condition is inferred and checked as
described in Sect. 4.

– If a non-fail condition or call type of some operation is refined (as discussed
in Sect. 4.2), the current module is checked again w.r.t. the new condition.
This fixpoint computation terminates when all conditions are stabilized. For
an efficient computation, a call dependency graph is computed so that one
has to re-check only operations with refined conditions and the operations
that use them.

Thus, non-fail conditions are not computed (i.e., they are trivial) and checked
if the set of non-failing arguments can be expressed by a call type, as in the
operation last above. This hybrid method is useful since the satisfaction of non-
trivial non-fail conditions (see rule Funcnf in Fig. 2) is checked by invoking an
SMT solver: this might be costly since the formulas to be checked may contain
operations defined in Curry that have to be translated into SMT formulas, as
described next.

6.2 Axiomatization of Defined Operations

As discussed for the list index operator nth (Section 4.3), it might be necessary
to use some information about user-defined operations during verification. Thus,
their semantics must be known to the verifier. For this purpose, user-defined
operations are translated into SMT formulas which axiomatize their intended
semantics. Each rule defining a Curry operation is translated into an SMT for-
mula stating an equality7 between a function call and the right-hand side. For

7 The semantics of non-deterministic operations is axiomatized by disjunctions.

13

instance, consider the operation to compute the length of a list in its FlatCurry
representation:

length(zs) = case zs of { [] → 0

; (x:xs) → 1 + length(xs) }

This definition is transformed into an SMT formula by using a match binder:

(assert

(forall ((x1 (List TVar)))

(= (length x1)

(match x1 ((nil 0)

((insert x2 x3) (+ 1 (length x3))))))))

Our tool generates these axiomatizations by collecting all user-defined operations
occurring in non-fail conditions, loading the FlatCurry code of these operations,
and then translating this code into SMT formulas. If polymorphic operations
occur in contexts with different type instances, their axiomatizations are dupli-
cated for each type instance.

6.3 Evaluation

In the following we evaluate our approach by discussing some examples and
applying it to various libraries.

Compared to a previous tool to verify non-failing Curry programs [16] which
also used an SMT solver to verify non-fail conditions, our tool is fully automatic.
The tool in [16] requires that the programmer annotates all partially defined
operations with non-fail conditions. These are translated into proof obligations
to be checked by an SMT solver. In contrast, our tool can be used without
explicit non-fail conditions and, thanks to our hybrid approach, an SMT solver
is required only in the cases where an unsatisfiable call type is inferred, e.g., when
arithmetic conditions are involved. All non-fail conditions provided in [16] for
the libraries shown below are automatically derived by our tool, except for the
prelude operation “!!”, which is identical to nth shown in Sect. 4.3, where our
tool infers a less precise non-fail condition. If we explicitly define the same non-
fail condition as in [16], our tool verifies it. This also demonstrates the intended
use of our tool. Since it reports all inferred non-trivial non-fail conditions and
call types, the user can examine them and decide to either accept them, provide
other non-fail conditions, or modify the program code to handle possible failures
(by using search handlers, like oneValue) so that trivial non-fail conditions suffice.

Table 1 contains the results of checking various Curry libraries and the mod-
ule Examples containing most of the examples discussed in this paper. Non-
fail conditions were not explicitly provided (except for external operations, see
Sect. 4.3). The “operations” column contains the number of public (exported)
user-defined operations and the number of all operations (defined or generated)
in the module. Similarly, the following three columns show the information for
public and all operations:

– call types: This column shows the numbers of inferred non-trivial call types.
Thus, this is the number of operations which might fail but the set of argu-

14

Table 1. Inference of non-fail conditions for some standard libraries

Module operations
call
types

non-fail
conditions

failing
checked
calls

itera-
tions

verify
time

pub/all pub/all pub/all pub/all all/SMT

Prelude 214/1263 20/69 2/9 9/51 66/14 5 6474
Data.Char 9/9 0/0 0/0 0/0 0/0 1 64
Data.Either 7/11 2/2 0/0 0/0 0/0 1 4
Data.List 49/87 8/16 0/0 1/1 18/2 3 2287
Data.Maybe 8/9 0/0 0/0 0/0 0/0 1 3
Numeric 5/7 0/0 0/0 0/0 0/0 1 15
System.IO 23/51 0/0 0/0 0/0 0/0 1 26
Text.Show 4/4 0/0 0/0 0/0 0/0 1 2
Examples 11/15 1/3 4/4 0/0 17/13 3 382

ments to avoid a failing computation can be described by a non-empty call
type (so that an SMT solver is not required to check it).

– non-fail conditions: These are the numbers of operations where a non-trivial
but satisfiable non-fail conditions is inferred (so that an SMT solver is in-
voked to check their correct usage).

– failing : These are the numbers of operations where an unsatisfiable non-fail
condition is inferred. Thus, there is no precise information about the argu-
ments required to ensure a non-failing evaluation (e.g., failed or operations
involving unification).

Thus, all operations not counted in these columns have trivial non-fail conditions,
i.e., they do not fail when applied to any argument. The column checked calls
contains the number of function calls in right-hand sides of program rules where
the called operation has a non-trivial call type so that it needs to be checked.
The first number is the total number of such calls (in all iterations) and the
second number is the number of such calls where an external SMT solver is used
to check the satisfaction of the non-fail condition (according to rule Funcnf in
Fig. 2), i.e., without the SMT-component of our hybrid approach, these calls are
classified as failing. The difference between these numbers is the number of calls
where the consideration of call types is sufficient for the verification, thanks to
our hybrid approach.

To show how many iterations are required to infer this information (this is
only relevant for the inference of call types), their number is shown in the next
to last column. The last column shows the verification time in milliseconds.8

This evaluation indicates that even quite complex modules, like the prelude,
have only a few operations with non-trivial non-fail conditions or call types
that need to be checked. The low numbers in the column non-fail conditions
indicate that the standard libraries contain only a few operations with non-

8 We measured the verification time on a Linux machine running Ubuntu 22.04 with
an Intel Core i7-1165G7 (2.80GHz) processor with eight cores.

15

trivial arithmetic conditions. This might be different in application programs
using more arithmetic operations. The higher numbers in the column call types
indicate an advantage of our hybrid approach. In a purely SMT-based approach,
all these operations need to be checked by SMT scripts, as in [16], and it is not
obvious how to infer these conditions for polymorphic operations on recursive
data structures, as relevant in the Data.List module.

A manual inspection of the functions appearing in the failing column shows
that the reason is not a weakness of our method: precise non-fail conditions
for these functions are demanding. For instance, non-fail conditions of prelude
operations involving unification have to consider the unifiability of arguments.
The single failing operation of the module Data.List is the matrix operation
transpose: since the input matrix is represented by a list of lists, all input lists
must have the same length to avoid a failure when transposing the matrix.
Although such a non-fail condition can be expressed by some Curry code using
auxiliary operations, the automatic inference of such a complex condition fails
so that it is approximated by the unsatisfiable non-fail condition.

7 Related Work

We have shown in the introduction that operations which are not totally defined
on their statically declared input type domain are useful, because programming
a “totalized” version yields less comprehensible code. Our practical evaluation of
various system libraries in the previous section indicated that partial operations
are the exception. However, a single occurrence and wrong use can crash an
entire application. Although this could be avoided by exception handlers, these
handlers are often used to catch environment (input/output) errors rather than
controlling partial operations, like division operators. Therefore, the exclusion
of such run-time failures is a practically relevant but also challenging issue.

Contracts, as introduced in the context of imperative and object-oriented
programming languages [24], are a method to specify intended invocations of
operations. Our non-fail conditions can also be considered as contracts on input
arguments to ensure the non-failing evaluation of operations. Contracts can be
tested at run time to obtain better error messages. However, they can also be
checked at compile time. For instance, the Eiffel compiler ensures by appropriate
type declarations and static analysis that pointer dereferencing failures (“null
pointer exceptions”) cannot occur in a program accepted by the compiler [25].
In the following, we review approaches for functional and logic programming
related to our work.

In logic programming, there is no common definition of “non-failing” due to
different interpretations of non-determinism. We are interested to exclude any
failure in a top-level computation, i.e., also in branches of some non-deterministic
computation. Other approaches, like [12,13], consider a predicate in a logic pro-
gram as non-failing if at least one answer is produced. Similarly to our approach,
non-failure properties are approximated, but the concrete methods are different
due to the different meaning of a non-failed computation.

16

Another notion of failing programs in a dynamically typed programming
language is based on success types, e.g., as used in Erlang [21]. Success types
over-approximate possible uses of an operation: if a success type is empty, it
indicates that an operation never evaluates to a value. Success types can show
definite failures, whereas we are interested in definite non-failures.

Strongly typed programming languages are a reasonable basis to check run-
time failures at compile time, since the type system already ensures that some
failures cannot occur (“well-typed programs do not go wrong” [26]). As discussed
above, failures due to definitions with partial patterns are not covered by a
standard type system. Therefore, Mitchell and Runciman developed a checker for
Haskell to verify the absence of pattern-match errors due to incomplete patterns
[27,28]. Their checker extracts and solves specific constraints from pattern-based
definitions. In contrast to our approach, only pattern failures are considered
there. As a result, programs where the completeness depends on complete case
distinctions on numbers cannot be handled by these tools.

An approach to handle more complex non-fail conditions is described in [20].
Their HMC algorithm is based on generating (arithmetic) constraints which
have to be satisfied by a safe functional program, i.e., a program which does not
fail, e.g., due to an incorrect array index access. These constraints are trans-
lated into an imperative program such that the constraints are satisfiable iff the
translated program is safe. Similarly to our approach, HMC supports a fully
automatic verification of functional programs but it is not applicable to logic-
oriented subcomputations. Furthermore, it is not clear whether HMC scales for
larger programs.

Another approach to ensure the absence of failures is to make the type sys-
tem more expressive in order to encode non-failing conditions on the type level.
For instance, dependently typed programming languages, such as Coq [9], Agda
[30], or Idris [10], require that operations are total functions, i.e., they must be
terminating and non-failing. These languages have termination checkers but non-
fail conditions need to be explicitly encoded in the types. Therefore, each use
of an operation with a non-trivial non-fail condition must be accompanied with
an explicit proof for the satisfaction of the non-fail condition w.r.t. the actual
arguments. Although these proofs are checked by the type checker, programming
in a dependently typed language is more challenging since the programmer has
to construct such non-failure proofs.

Refinement or liquid types [32], as used in LiquidHaskell [36,37], are another
approach to encode non-failing conditions or more general contracts on the type
level. Refinement types extend standard types by a predicate that restricts the
set of allowed values. In contrast to our approach, where non-fail conditions can
contain arbitrary user-defined operations, refinement types use a specific set of
primitive functions and predicates (arithmetic operators and comparisons, length
operation, etc). This allows the inference of refinement types based on generating
and solving constraints w.r.t. these functions [32] provided that the expected
refinement types can be described with the given entities. The latter restriction is
relaxed in [35], where dependent types are inferred by generating constraints and

17

solving and refining them by finding interpolants. These approaches could infer
in many cases precise type refinements to verify specific properties of programs,
e.g., safe array access or sorted result lists. However, if such properties cannot be
inferred, the program is not valid. In contrast, our approach always infers non-
fail conditions. Since we do not require a type language with fixed entities but
possibly generate non-fail conditions with arbitrary user-defined predicates, the
inferred non-fail conditions of some operations might not be precise enough, e.g.,
unsatisfiable in the worst case. However, this does not mean that we cannot use
such operations. Instead, we can wrap their application with appropriate search
handlers in order to control possible failures at run time. Moreover, our hybrid
approach allows to verify operations defined on algebraic data types without an
external (SMT) solver, as discussed in the risers example in Sect. 5.

As already mentioned, potentially failing operations can be encapsulated
with search handlers, which is relevant to the application of logic programming
techniques. This aspect is also the motivation for the non-failure checking tool
proposed in [16]. As already discussed in Sect. 6.3, the advantage of our new
approach is the automatic inference of non-failing conditions which supports an
easier application to larger programs. Although this aspect is covered in [18],
our hybrid approach extends non-failure checking to a larger class of programs,
in particular, operations with arithmetic constraints.

8 Conclusions

In this paper we proposed a new technique and a fully automatic tool to check
declarative programs for the absence of failing computations, involving arith-
metic conditions as well as conditions on algebraic data types. In contrast to
other approaches, our approach does not require the explicit specification of
non-fail conditions but is able to infer them—even for larger programs in a rea-
sonable amount of time. Since we developed our approach for Curry, it is also
applicable to purely functional and logic programs. We do not intend to abandon
all potentially failing operations because partially defined operations and fail-
ing evaluations are reasonable in logic-oriented subcomputations provided that
they are encapsulated in order to control possible failures. This distinguishes
non-fail conditions from traditional preconditions, since preconditions have to
be satisfied before invoking the operation.

The inference of non-fail conditions is based on a fixpoint iteration and might
yield, in the worst case, unsatisfiable non-fail conditions. However, our practical
evaluation showed that even larger programs contain only a few operations with
non-trivial non-fail conditions which are inferred after a small number of itera-
tions. When a non-trivial non-fail condition is inferred for some operation, the
programmer can either modify the definition of this operation (e.g., by adding
results for missing cases) or control the invocation of this operation by checking
its outcome with some search handler.

Acknowledgments. The author is grateful to the anonymous reviewers for their

helpful comments to improve the paper.

18

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. Journal of Symbolic Computation 40(1),
795–829 (2005). https://doi.org/10.1016/j.jsc.2004.01.001

2. Antoy, S.: Constructor-based conditional narrowing. In: Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001). pp. 199–206. ACM Press (2001). https://doi.org/
10.1145/773184.773205

3. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. Journal of the
ACM 47(4), 776–822 (2000). https://doi.org/10.1145/347476.347484

4. Antoy, S., Hanus, M.: Functional logic design patterns. In: Proc. of the 6th Inter-
national Symposium on Functional and Logic Programming (FLOPS 2002). pp.
67–87. Springer LNCS 2441 (2002). https://doi.org/10.1007/3-540-45788-7_4

5. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09). pp. 73–82. ACM Press (2009).
https://doi.org/10.1145/1599410.1599420

6. Antoy, S., Hanus, M.: Functional logic programming. Communications of the ACM
53(4), 74–85 (2010). https://doi.org/10.1145/1721654.1721675

7. Antoy, S., Hanus, M.: Contracts and specifications for functional logic program-
ming. In: Proc. of the 14th International Symposium on Practical Aspects of
Declarative Languages (PADL 2012). pp. 33–47. Springer LNCS 7149 (2012).
https://doi.org/10.1007/978-3-642-27694-1_4

8. Antoy, S., Hanus, M., Jost, A., Libby, S.: ICurry. In: Declarative Programming and
Knowledge Management - Conference on Declarative Programming (DECLARE
2019). pp. 286–307. Springer LNCS 12057 (2020). https://doi.org/10.1007/

978-3-030-46714-2_18
9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development

- Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/

978-3-662-07964-5
10. Brady, E.: Idris, a general-purpose dependently typed programming language:

Design and implementation. Journal of Functional Programming 23(5), 552–593
(2013). https://doi.org/10.1017/S095679681300018X

11. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic
computations. Journal of Functional and Logic Programming 2004(6) (2004)

12. Bueno, F., López-Garćıa, P., Hermenegildo, M.: Multivariant non-failure analysis
via standard abstract interpretation. In: 7th International Symposium on Func-
tional and Logic Programming (FLOPS 2004). pp. 100–116. Springer LNCS 2998
(2004). https://doi.org/10.1007/978-3-540-24754-8_9

13. Debray, S., López-Garćıa, P., Hermenegildo, M.: Non-failure analysis for logic pro-
grams. In: 14th International Conference on Logic Programming (ICLP’97). pp.
48–62. MIT Press (1997)

14. González-Moreno, J., Hortalá-González, M., López-Fraguas, F., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming 40, 47–87 (1999). https://doi.org/10.1016/

S0743-1066(98)10029-8
15. Hanus, M.: Functional logic programming: From theory to Curry. In: Programming

Logics - Essays in Memory of Harald Ganzinger. pp. 123–168. Springer LNCS 7797
(2013). https://doi.org/10.1007/978-3-642-37651-1_6

19

https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1145/773184.773205
https://doi.org/10.1145/773184.773205
https://doi.org/10.1145/773184.773205
https://doi.org/10.1145/773184.773205
https://doi.org/10.1145/347476.347484
https://doi.org/10.1145/347476.347484
https://doi.org/10.1007/3-540-45788-7_4
https://doi.org/10.1007/3-540-45788-7_4
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1599410.1599420
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-642-27694-1_4
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1007/978-3-540-24754-8_9
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1016/S0743-1066(98)10029-8
https://doi.org/10.1007/978-3-642-37651-1_6
https://doi.org/10.1007/978-3-642-37651-1_6

16. Hanus, M.: Verifying fail-free declarative programs. In: Proceedings of the 20th In-
ternational Symposium on Principles and Practice of Declarative Programming
(PPDP 2018). pp. 12:1–12:13. ACM Press (2018). https://doi.org/10.1145/

3236950.3236957

17. Hanus, M.: From logic to functional logic programs. Theory and Prac-
tice of Logic Programming 22(4), 538–554 (2022). https://doi.org/10.1017/

S1471068422000187

18. Hanus, M.: Inferring non-failure conditions for declarative programs. In: Proc. of
the 17th International Symposium on Functional and Logic Programming (FLOPS
2024). pp. 167–187. Springer LNCS 14659 (2024). https://doi.org/10.1007/

978-981-97-2300-3_10

19. Hanus (ed.), M.: Curry: An integrated functional logic language (vers. 0.9.0). Avail-
able at http://www.curry-lang.org (2016)

20. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: verifying functional programs
using abstract interpreters. In: 23rd International Conference on Computer Aided
Verification (CAV 2011). pp. 470–485. Springer LNCS 6806 (2011). https://doi.
org/10.1007/978-3-642-22110-1_38

21. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proceedings of the 8th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP 2006). pp. 167–178. ACM Press
(2006). https://doi.org/10.1145/1140335.1140356

22. López-Fraguas, F., Sánchez-Hernández, J.: A proof theoretic approach to failure
in functional logic programming. Theory and Practice of Logic Programming 4(1),
41–74 (2004). https://doi.org/10.1017/S1471068403001728

23. Lux, W.: Implementing encapsulated search for a lazy functional logic language.
In: Proc. 4th Fuji International Symposium on Functional and Logic Program-
ming (FLOPS’99). pp. 100–113. Springer LNCS 1722 (1999). https://doi.org/
10.1007/10705424_7

24. Meyer, B.: Object-oriented Software Construction. Prentice Hall, second edn.
(1997)

25. Meyer, B.: Ending null pointer crashes. Communications of the ACM 60(5), 8–9
(2017). https://doi.org/10.1145/3057284

26. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17, 348–375 (1978)

27. Mitchell, N., Runciman, C.: A static checker for safe pattern matching in Haskell.
In: Trends in Functional Programming. vol. 6, pp. 15–30. Intellect (2007)

28. Mitchell, N., Runciman, C.: Not all patterns, but enough: an automatic verifier
for partial but sufficient pattern matching. In: Proc. of the 1st ACM SIGPLAN
Symposium on Haskell (Haskell 2008). pp. 49–60. ACM (2008). https://doi.org/
10.1145/1411286.1411293

29. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of the 14th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008). pp. 337–340. Springer LNCS 4963 (2008).
https://doi.org/10.1007/978-3-540-78800-3

30. Norell, U.: Dependently typed programming in Agda. In: Proceedings of the 6th In-
ternational School on Advanced Functional Programming (AFP’08). pp. 230–266.
Springer LNCS 5832 (2008). https://doi.org/10.1007/978-3-642-04652-0_5

31. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press (2003)

20

https://doi.org/10.1145/3236950.3236957
https://doi.org/10.1145/3236950.3236957
https://doi.org/10.1145/3236950.3236957
https://doi.org/10.1145/3236950.3236957
https://doi.org/10.1017/S1471068422000187
https://doi.org/10.1017/S1471068422000187
https://doi.org/10.1017/S1471068422000187
https://doi.org/10.1017/S1471068422000187
https://doi.org/10.1007/978-981-97-2300-3_10
https://doi.org/10.1007/978-981-97-2300-3_10
https://doi.org/10.1007/978-981-97-2300-3_10
https://doi.org/10.1007/978-981-97-2300-3_10
http://www.curry-lang.org
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.1017/S1471068403001728
https://doi.org/10.1017/S1471068403001728
https://doi.org/10.1007/10705424_7
https://doi.org/10.1007/10705424_7
https://doi.org/10.1007/10705424_7
https://doi.org/10.1007/10705424_7
https://doi.org/10.1145/3057284
https://doi.org/10.1145/3057284
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-540-78800-3
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5

32. Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implemen-
tation (PLDI’08). pp. 159–169. ACM Press (2008). https://doi.org/10.1145/
1375581.1375602

33. Sato, T., Tamaki, H.: Enumeration of success patterns in logic programs.
Theoretical Computer Science 34, 227–240 (1984). https://doi.org/10.1016/

0304-3975(84)90119-1

34. Stump, A.: Verified Functional Programming in Agda. ACM and Morgan & Clay-
pool (2016). https://doi.org/10.1145/2841316

35. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09). pp. 277–288. ACM Press (2009).
https://doi.org/10.1145/1599410.1599445

36. Vazou, N., Seidel, E., Jhala, R.: LiquidHaskell: Experience with refinement types in
the real world. In: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell.
pp. 39–51. ACM Press (2014). https://doi.org/10.1145/2633357.2633366

37. Vazou, N., Seidel, E., Jhala, R., Vytiniotis, D., Peyton Jones, S.: Refinement types
for Haskell. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming (ICFP). pp. 269–282. ACM Press (2014). https://
doi.org/10.1145/2628136.2628161

21

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1016/0304-3975(84)90119-1
https://doi.org/10.1016/0304-3975(84)90119-1
https://doi.org/10.1016/0304-3975(84)90119-1
https://doi.org/10.1016/0304-3975(84)90119-1
https://doi.org/10.1145/2841316
https://doi.org/10.1145/2841316
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161

	Hybrid Verification of Declarative Programs with Arithmetic Non-Fail Conditions

