
Correct Refactorings

Volker Stolz and Erlend Kristiansen

Institutt for Informatikk,
Universitetet i Oslo, Norge

{stolz,erlenkr}@ifi.uio.no

Abstract

According to Fowler1, the term “refactoring” refers to “a change made
to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior.”

Especially in the setting of object-oriented programs, we can distin-
guish changes to the structure of the classes and methods (e.g. moving
methods up/down the inheritance tree), and changes within a method
(e.g. extracting a sequence of statements into a new method).

Software development tools and integrated development environments
like Eclipse implement various (so-called) refactorings, but often do not
enforce that the behaviour of the code does not change, even in obvious
cases—and we might say, for obvious reasons.

We present an example, and motivate a mitigation against changed
behaviour after a refactoring by introducing assertions during the refac-
toring that capture the intended semantics before the refactoring. We
discuss the phenomen in a larger software engineering context, and give
an outline how to validate our idea in practice.

1 Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison - Wesley, 1999.


