Building Divide and Conquer From a Farm

Oleg Lobachev

Philipps (5853 Universitit

Marburg

Bad Honnef
May 2, 2011

Oleg Lobachev Building Divide and Conquer From a Farm



Introduction Overview Skeletons

Parallel Computer Algebra

@ symbolic computation
@ in a parallel functional language

@ with algorithmic skeletons

Oleg Lobachev Building Divide and Conquer From a Farm



Introduction Overview Skeletons

... a Skeleton-Based Approach

algorithmic skeletons = parallel algorithm abstractions
in FP: higher-order functions
skeletons as algorithm classification

e.g., map-like, iteration, divide and conquer

here: skeletons in same language as instantiation

= focus on a special divide and conquer

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

Type of a Divide and Conquer Skeleton

type DC a b (a — Bool)

— (a — b)
— (a — [al)
— ([b] — b)
— a — b
farm :: (a — b) — [a] — [b]

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

Stream Processing Functions

@ function on lists

@ produces the result for initial list elements without waiting for
further list elements

@ works for infinite lists AKA streams

@ map (+1) is stream @ length is not stream
processing processing

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

@ farm = parallel map with
task balancing

@ @ process divide or combine
tasks and send results
back to transform

@ @ at some point: solve

locally in workers

@ need an umbrella type

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

Umbrella type

@ RD a = future for type a

data DCTask a b = InitialToDivide Depth a
| ToDivide Depth (RD a)
| Divided Depth [RD al
| Combined Depth (RD b)
| ToCombine Depth [RD bl

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

Depth control |

depth 2 workers

depth 1 workers

depth 0 worker —{
master ﬂ depth 2 workers

time

Oleg Lobachev Building Divide and Conquer From a Farm



Skeleton Types Streams Idea DCTask Depth control

Depth control Il

depth for parallel divide
depth for parallel combine

depth for initial sequential divide

maybe: depth for finalising sequential combine

Other tuning parameters:
@ arity of the DC tree

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Divide

1 B

Oleg Lobachev Building Divide and Conquer From a Farm




Use Case Divide

Strassen Multiplication: Divide

+ R

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Combine

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Combine

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Combine

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Strassen Multiplication: Combine

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

A Software Engineering Moment

@ assume divide, combine, etc. as given

@ sequential:

strassenSeq x y = dcSeq isTrivial solve divide combine (x, y)

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

A Software Engineering Moment

@ assume divide, combine, etc. as given
@ sequential:
strassenSeq x y = dcSeq isTrivial solve divide combine (x, y)

@ parallel:

strassenPar x y = dcFarm 7 3 3 1 isTrivial solve divide combine (x, y)

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

@ trace: activity profile of a parallel program
@ visualised as a diagaram
@ horizontally: time, vertically: processor cores F

@ horizontal bars: processes

e red is blocked, - yellow is runnable, e green is running

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case

Trace visualisation

.0 .0 4.0

Oleg Lobachev Building Divide and Conquer From a Farm



Use Case Divide Combine SE Part Trace Performance

Performance

A Speedup o degrading speedup
with larger depth
@ worker disbalance
° @ sequential
divide/combine is
2 better?!
@ is communication
1 overhead to blame?
@ try another use case?
0

Oleg Lobachev Building Divide and Conquer From a Farm



Conclusions
Conclusions and Future Work

@ skeletons = parallel h.o.f., drop-in replacements
@ here: transformed DC to a map

@ instantiated with Strassen multiplication

Oleg Lobachev Building Divide and Conquer From a Farm



Conclusions
Conclusions and Future Work

@ skeletons = parallel h.o.f., drop-in replacements
@ here: transformed DC to a map

@ instantiated with Strassen multiplication

@ investigate concurrency problem with futures in initial steps
@ worse performance at larger depth

@ other, better instantiations?

Oleg Lobachev Building Divide and Conquer From a Farm



Strassen Multiplication

e input A, B w. dimensions 2/ x 2/, aim for: C = AB
Mi = (A11 + A22)(B11 + Bop)
My = (A21 + A22)Bi1
Ms = A1 1(Bi2 — Ba2)
My = A2 2(Br1 — B11) (1)
Ms = (A11 + A12)Bop2
Ms = (A2,1 — A1,1)(B11 + B12)
M7 = (A2 — A22)(B21 + B22),
e all multiplications in (1) with recursive calls
C1= M+ My— Ms + M,
Cip= M3+ Ms
CG1= M+ M,
CGo =My — My + Mz + M.

()



Code, dcFarmBody, transform |

type Depth = Int
type Arity = Int
data DCTask a b = InitialToDivide Depth a
| ToDivide Depth (RD a)

| Divided Depth [RD al

| Combined Depth (RD b)

| ToCombine Depth [RD b]

-- NFData-Instanz
instance (NFData a, NFData b) = NFData (DCTask a b) where

rnf (InitialToDivide d v) = rnf d ‘seq‘ rnf v
rnf (ToDivide d rd) = rnf d ‘seq‘ rnf rd
rnf (Divided d rds) = rnf d ‘seq‘ rnf rds
rnf (Combined d rd) = rnf d ‘seq‘ rnf rd
rnf (ToCombine d rds) = rnf d ‘seq‘ rnf rds

-- Trans-Instanz
instance (Trans a, Trans b) = Trans (DCTask a b)

Oleg Lobachev Building Divide and Conquer From a Farm



Code, dcFarmBody, transform Il

catchNewToCombineTask :: Int — [DCTask a b]
— Maybe (DCTask a b, [DCTask a bl)
catchNewToCombineTask k tasks =
case splitAt k tasks of
(tle(te(Combined 1 _):ts), resttl)
— if (all (isCombined 1) ts)
then Just (ToCombine 1
(map fromCombined tl), resttl)
else Nothing
- — Nothing
where isCombined x (Combined y _) = x — y
isCombined _ _ = False

-- the farm works lazily on the input list, thus creating a
-- angepasst f r Postfork-Parameter

dcFarmBody :: (Trans a, Trans b)
= Arity
— Depth -- ~ parallel depth

Oleg Lobachev Building Divide and Conquer From a Farm



Code, dcFarmBody, transform Ill

— Depth -- ~ postfork parameter
— (Arity — [DCTask a bl — [DCTask a bl)
-- 7 task pool transform
— (DCTask a b — DCTask a b) -- ~ working function
— [DCTask a b] — [DCTask a b] -- ~ input to result
dcFarmBody k d postfork ttf f initTasks = localRes
where -- paralleler Arbeitsanteil
remoteRes = farm f (initTasks ++ newRemoteTasks)

newRemoteTasks = ttf k putInPool

-- Selektion ob Tasks parallel/sequentiell
-- bearbeitet werden sollen
(putInPool, staylLocal) =o ..

-- lokaler, sequentieller Arbeitsanteil

-—- TODO: ohne RD machen

localRes = staylLocal ++ map f newLocalTasks

-- Verarbeitung von "stayLocal" schon erfolgt...
newLocalTasks = ttf k localRes

Oleg Lobachev Building Divide and Conquer From a Farm



Code, dcFarmBody, transform IV

partitionMy :: (a — Bool) — [al — ([al, [al)
partitionMy p (x:xs) | p x = (x:ys, zs)
| otherwise = (ys, x:zs)
where (ys,zs) = partitionMy p xs
partitionMy _ [1 = ([1,[1)
{- transform - ’taskpool transform function’ -}
transform :: Arity

— [DCTask a b] — [DCTask a b]
-- 7 task pool in and out

transform k ((Combined 0 x):r) = [] -- done!
transform k ((Divided 4’ xs):r) =

let ys = zipWith ToDivide (repeat d’) xs

in ys ++ transform k r -- do the trick: flatten!
transform k [] = [] -- done! Postfork-Tiefe erreicht!
transform k xs = case catchNewToCombineTask k xs of

Just (newToCombineTask, restTasks)

— newToCombineTask : transform k restTasks

Oleg Lobachev Building Divide and Conquer From a Farm



Code, DC Interface, WF |

dcFarm_ppfork :: forall a b. (Trans a, Trans b)
= Arity -- ° Arity des Divide-Baumes
— Depth -- ~ Tiefe bis zu der parallel gearbeitet wird
— Depth -- "o .. allein der Master divide durchf hrt
— Depth -- "o .. nur noch im Master combined werden
— (a — Bool) -- 7 is trivial?
— (a — [al) -- ~ divide
— (a — b) -- ~ solve
— ([bl — b) -- ~ combine
— a — b -- 7 input and result

dcFarm_ppfork k d pref postf isTr divide solve combine x
= fetch $§ fromCombined $ last $
dcFarmBody k d postf transform (wf d) initT
where initT = map (InitialToDivide splDepth) initRaw
(initRaw, splDepth)
= tryNtimes (concatMap divide)
(all (not o isTr)) [x] pref
-- Workerfunktion
-- wf :: Depth — DCTask a b — DCTask a b

Oleg Lobachev Building Divide and Conquer From a Farm



Code, DC Interface, WF I

-- Fall f r initialen Task (ohne RD)

wf d (InitialToDivide d’ y)
| isTr y = rnfAndModify ((Combined d’)

orelease) (solve y)

rnfAndModify ((Combined d’)

orelease) (dcSeq isTr divide
solve combine y)

| otherwise -- divide case

rnfAndModify (Divided (d’+1)

oreleaseAll) (divide y)

-- normaler Fall

wf d (ToDivide d’ x)
rnfAndModify ((Combined d4°)

| 4’ >d =

| isTr y =
orelease) (solve y)

| d>>d = rnfAndModify ((Combined d’)
orelease) (dcSeq isTr divide

solve combine y)
| otherwise = rnfAndModify (Divided (d°’+1)
oreleaseAll) (divide y)

where y = fetch x

Oleg Lobachev Building Divide and Conquer From a Farm



Code, DC Interface, WF Il

-- Combine Fall
wf d (ToCombine d’ ys) = Combined (d°’-1)
$ (release o combine
o fetchAll) ys

-- helper:
rnfAndModify :: NFData a = (a — b) — a — b
rnfAndModify f x = rnf x ‘seq‘ f x

-- RD interface:

release :: a — RD a

fetch :: RD a — a
releaseAll :: [a]l] — [RD al
fetchAll :: [RD al] — [al

Oleg Lobachev Building Divide and Conquer From a Farm



	Appendix

