Essential Ingredients for a WCET Annotation Language*

Raimund Kirner, Albrecht Kadlec, Adrian Prantl, Markus Schordan, Jens Knoop
Vienna University of Technology, Austria

Abstract

The situation for Worst Case Execution Time
(WCET) analysis is very heterogeneous: Within the
real-time community, it is a well known fact that
manual annotations are needed to assist non-perfect
analyses. Various tools exist providing different levels
of sophistication. However, as the WCET Tool Chal-
lenge [1] has shown, few tools share the same target
hardware, analysis method or annotation language.

For a fair comparison, a common annotation lan-
guage is required, together with an accepted set of
benchmarks in order to evaluate the various tools and
methods. Still, as a direct consequence of the first
WCET tool challenge, a set of accepted benchmarks
has already being collected, without unified annota-
tion support.

To enable annotations within these benchmarks,
the WCET Annotation Language Challenge [2] has
formulated the need for a common annotation lan-
guage. This language has the purpose of spec-
ifying the problem-inherent information in a tool-
and methodology- independent way, supporting, e.g.,
static analysis equally well as measurement based
methods, thus allowing the comparison or the com-
bination of their results. It also has the difficult task
to enable annotations at the source level, which is
the natural specification level, as well as supporting
the annotation of binary or object code, if the source
code is not available, such as for operating systems
or libraries.

Within this paper we present a list of essential in-
gredients for a common WCET annotation language.
These selected ingredients comprise a number of fea-
tures available in different WCET analysis tools and
add several new concepts we consider important. The
annotation concepts are described in an abstract for-
mat that can be instantiation at different representa-
tion levels.

The essential ingredients of the WCET annota-
tion language are:

e We distinguish analyzable information and user-
supplied annotations.

e The novel concept of overrules adds a potent what-
if querying mechanism.

e Layers are provided to reflect the affiliation of an-
notations with specific platform layers.

e Symbolic grouping is provided to aid in main-
tainance.

e The addressable units within a program that may
need to be annotated are identified.

e The annotations are categorized into

— Source code related high-level annotations
e.g.: loop and recursion bounds, variable limits,

— Object- or binary- level annotations
e.g.: code vs. data distinction,

— Control-flow refinement annotations
e.g.: reachability and predicate evaluation in-
formation, and

— Hardware specific annotations
e.g.: memory map information, clock speeds,
absolute time bounds.

We hope that comparing the different tools will be
easier, using a common set of benchmarks that have
the necessary annotations already included. This
work may also encourage more researchers to support
annotations on the source level.

References

(1] Jan Gustafson. The WCET tool challenge 2006. In Pre-
liminary Proc. 2nd Int. IEEE Symposium on Leveraging
Applications of Formal Methods, Verification and Valida-
tion, pages 248 — 249, Paphos, Cyprus, November 2006.

[2] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus
Schordan, and Ingomar Wenzel. WCET analysis: The an-
notation language challenge. In Proc. 7th International
Workshop on Worst-Case Ezxecution Time Analysis, Pisa,
Italy, July 2007.

*This work has been partially supported by the Austrian Science Fund (Fonds zur Forderung der wissenschaftlichen
Forschung) under contract P18925-N13 and the ARTIST2 Network of Excellence, http://www.artist-embedded.org/.



