Lifting Curry’s Monomorphism Restriction

Wolfgang Lux

University of Minster
wlux@uni-muenster.de

Abstract. The multi-paradigm declarative language Curry [Han03] com-
bines features from modern functional, logic, and functional-logic pro-
gramming languages. Curry’s syntax is similar to that of the functional
language Haskell [Pey03] and, also like Haskell, Curry’s type system is
based on the Hindley-Milner typing discipline [Hin69], which allows auto-
matic type inference without declaring types explicitly. However, Curry’s
type system suffers from a monomorphism restriction that requires the
types of all local variables to be monomorphic, whereas in the Hindley-
Milner type system, the types of let-bound variables can be generalized
polymorphically.

Curry’s monomorphism restriction is a consequence of the presence of
unbound logical variables whose type cannot be generalized. Yet, re-
stricting all let-bound variables to monomorphic types unnecessarily re-
jects some perfectly sound programs and also is an obstacle to compiling
Haskell programs with a Curry compiler. This paper shows how Curry’s
monomorphism restriction can be lifted for a broad class of definitions
by means of a purely syntactic analysis. This analysis is related to the
value restriction employed by ML-like languages in order to ensure type
soundness of programs in the presence of mutable variables [WF94].

References

[Han03] Michael Hanus (ed.). Curry: An integrated functional logic language. (version
0.8).
http://wuw.informatik.uni-kiel.de/"mh/curry/report.html, 2003.

[Hin69] Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29-60, 1969.

[Pey03] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries The Revised
Report. Cambridge University Press, 2003.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38-94, 1994.



