
Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Simplifying the Development of Rules
Using Domain Specific Languages in DROOLS

Ludwig Ostermayer, Geng Sun, Dietmar Seipel

University of Würzburg, Dept. of Computer Science

INAP 2013 – Kiel, 12.09.2013



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

1 Introduction

2 DROOLS

DROOLS Rule Language
DSLs in DROOLS

3 DSL Design
DSL Templates
Annotations

4 The Tool
DSL Editor
DSL Rule Editor
Attribute Editor

5 PROLOG–Based Analysis
Templates
Rules



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Introduction

the business rules approach provides a methodology for
system development creating applications as white boxes
business logic is visible, because it is separated into
business rules
Business Rule Management Systems (BRMS) have been
developed
in BRMS you can define, deploy, execute, monitor, and
maintain decision logic
DROOLS is a BRMS

a Domain Specific Language (DSL) is a programming
language of limited expressiveness for a particular problem
domain
the DSL Rule Generator (DSLR) is a tool improving the
development process in DROOLS



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

BRMS Project

Project with Trinodis GmbH:

development of business rules applications
usage of PROLOG technology and related technology
several case studies in real business scenarios
analysis of business rules
business analyst–friendly annotation of business rules



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Introducing DROOLS

DROOLS – the Business Logic Integration Platform
JAVA–based
developed by the JBOSS community

DROOLS consists of several modules:
Expert (Inference Engine)
Guvnor (Business Rules Manager)
Fusion (Event Processing/Temporal Reasoning)
Planner (Automated Planning)



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Production Rule System DROOLS EXPERT



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

DROOLS Rule Language

formerly: rules were written in XML

XML format is not supported any more
now: rules are written basically in the DROOLS Rule
Languange
simple text files with the extension .drl
rules are packed by namespaces – referred to as package
global variables can be defined and used within rules via
the globals statement
complex logic can be outsourced and used within rules via
the functions statement



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

A Rule in the DROOLS Rule Language

package LoanApproval

rule "microfinance"
when

application: Application(
loan_amount < 10000,
duration_year < 5 )

customer: Customer(
credit_report == "good" )

then
application.approval();
application.setInterest_rate(0.028);

end



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

DSLs in DROOLS

rules in a DSL are developed in DROOLS in two steps
first step:

designing DSL expressions with the mapping information to
the DROOLS Rule Language
save to a file with extension .dsl

second step:
use the expressions of the DSL to write rules
save into a file with the extension .dslr

DROOLS transforms the rules of the .dslr-file internally into
the DROOLS Rule Language
usage of the mapping information contained in the .dsl-file



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Fragment of a .dsl-File

[when] The customer with
monthly_income is greater than {value1}
and credit_report is {value2}
=
customer: Customer(

monthly_income > {value1},
credit_report == {value2} )

[when] indicates the expression as condition
[then] is used for an action block
the single equality sign ”=” separates the expressions in
DSL format from the corresponding DRL format



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

A Rule written in the DSL

rule "microfinance"
when

The loan with
loan_amount is smaller than 5000

and duration_year is no more than 3
The customer with

monthly_income is greater than 2000
and credit_report is "good"

then
The loan will be approved
Set the interest_rate of the loan to 0.025

end



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

DROOLS DSL Editor

a very ”basic” DSL editor
lacks user friendliness and functionality
no content assist
no package explorer for JAVA classes, attributes or
methods
no component to simply create rules in a DSL

lacks reusability



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

DSLR Generator

a few guided steps to create rules in a readable format and
with correct syntax
development a DSL with the aid of generic templates
graphical editors help during the construction of syntactical
correct rules
a brief example illustrating the usage



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

A Template for a DSL Expression

The #instance with
#field is smaller than {value} =

#instance: #class(#field < {value})

generic templates for expressions containing the mapping
information between DSL and DRL

keywords and parameters in a template can be replaced
templates are designed in JAVA

but transformed to XML to improve readability



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Fragment of a Template in XML Format

<template>
<class>#class</class>
<instance>#instance</instance>
...
<condition>

<domain>Common</domain>
<dsl>

<expression>
The #instance with #field is smaller
than {value}

</expression>
<code>

#instance:#class(#field < {value})
</code>

</dsl>
</condition>



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Annotations

form of syntactic meta-data added to JAVA source code
used to accomplish multilingual DSLs
classes, attributes and methods can be annotated
keywords are replaced by annotation values

@EnExpression(value = "amount of loan")
@GerExpression(value = "Kredithoehe")
private double loan_amount;



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Components

5 components for the creation of rules, each has a graphical
user interface

Basic DSL Editor – designing simple expressions
Complex Condition Editor – composing conditions
DSL Rule Editor – designing rules
Value Editor – assigning values
Attribute Editor – editing meta-data of rules



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Basic DSL Editor



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Complex Condition Editor



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

DSL Rule Editor



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Value Editor



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Attribute Editor



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

A Simple Rule created with DSLR Generator

rule "microfinance"
when

The loan with
amount of loan is smaller than 5000

and the duration in years is no more than 3
The customer with

monthly income in dollar is greater than 2000
and the credit report is "good"

then
The loan will be approved
Set the rate of interest of the loan to 0.075

end



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

PROLOG–Based Analysis

Templates
duplicates
keywords
. . .

Rules
analysis of the rules created with templates
analysis and visualization of the interaction of rules
anomalies:

duplicates
contradictions
ambiguities



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Analysis of Templates

<template>
<class>#class</class>
<instance>#instance</instance>
...
<condition>

<domain>Common</domain>
<dsl>

<expression>
The #instance with #field is smaller
than {value}

</expression>
<code>

#instance:#class(#field < {value})
</code>

</dsl>
</condition>



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Anomalies in Templates

analysis and update with the XML query, transformation
and update language FNQUERY

dsl anomaly(+DSL 1, +DSL 2, -Anomaly):
checks <dsl> elements for anomalies

dsl_anomaly(Dsl_1, Dsl_2, Anomaly) :-
member(Tag, [expression, code]),
X := Dsl_1/Tag,
Y := Dsl_2/Tag,
equivalent(X, Y),
Anomaly = duplicate(Tag, X, Y).



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Analysis of Rules

package LoanApproval

rule "microfinance"
when

application: Application(
loan_amount < 10000,
duration_year < 5 )

customer: Customer(
credit_report == "good" )

then
application.approval();
application.setInterest_rate(0.028);

end



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Transformation to Logical Rules

set the status to approved and the interest rate to 0.028

application(
Cid, Loan, Duration, A, B, 0.028, approved) :-

application(Cid, Loan, Duration, A, B, _, _),
Loan < 5000,
Duration < 3,
customer(Cid, _, Credit_Report, Income),
Income > 2000,
Credit_Report = good.

Transformed rules are analyzed, but usually cannot be
executed.



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Rule Anomalies

If there is
a condition referencing a fact with identifier Id, e.g.,
application, and
an instruction modifyObject(Id) in the action block,

then DROOLS fires all appropriate rules again, which results in
a loop. This can be avoided by the no-loop attribute.

drools anomaly(+Prolog, -Anomaly)

reports the anomalies on backtracking.

Further anomalies:
duplicates,
contradictions,
in connection with prioritization.



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Visualization: Proof Trees

red circles: derived atoms
blue boxes: rule nodes are labeled by numbers
orange circles: basic predicates from the configuration



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Conclusions

What we have presented:
a tool, DSLR Generator, for handling DSLs
graphical user interfaces supporting the rule development
reusable and generic DSL templates
maintenance of the meta–data for the rules
analysis of templates

Future work:
extension of the PROLOG–based anomaly analysis,
especially for rules
a library of DSL templates for various problem domains



Introduction DROOLS DSL Design The Tool PROLOG–Based Analysis Conclusions

Thank You for Your Attention

Questions?

http://www1.informatik.uni-wuerzburg.de/en/staff/ostermayer ludwig/
ludwig.ostermayer@uni-wuerzburg.de


	Introduction
	

	Drools
	
	Drools Rule Language
	Dsls in Drools

	Dsl Design
	
	Dsl Templates
	Annotations

	The Tool
	Dsl Editor
	
	Dsl Rule Editor
	
	Attribute Editor

	Prolog–Based Analysis
	
	Templates
	Rules

	Conclusions

