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GPUs

I Graphics Processing Units (GPUs) are high-performance
many-core processors capable of very high computation
and data throughput.

I GPUs can be seen as SIMD machines: they consist of many
processing elements that run all a same function but on
distinct data items.

I GPUs are used in a wide array of applications, including
gaming, bioinformatics, chemistry, finance, etc.

I CUDA a software platform used to program GPUs. It
extends C by allowing the definition of functions, called
kernels, that are executed in parallel.
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GPU architecture
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Datalog

I Datalog is a language based on first order logic that has
been used as a data model for relational databases.

I A Datalog program consist of facts about a subject of
interest and rules to deduce new facts.

I Facts and rules are specified using atomic formulas, which
consist of predicate symbols with arguments, e.g.:

FACTS

father(harry, john).

father(john, david).

RULE

grandfather(Z, X) :- father(Y, X), father(Z, Y).
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Evaluation of Datalog programs

I Datalog programs can be evaluated through a top-down
approach or a bottom-up approach.

I Bottom-up applies the rules to the given facts, deriving
new facts, and repeating this process with the new facts
until no more facts are derivable.

I The query is considered only at the end, when the facts
matching the query are selected.

I Benefits of this approach include the fact that rules can be
evaluated in any order and in a highly parallel manner.
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Evaluation based on relational algebra operators

I Datalog rules can be evaluated using the typical relational
algebra operators select, join and projection.
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Our Datalog engine for GPUs
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Parsing

I We translate facts and rules to numbers, keeping their
corresponding strings in a hashed dictionary.

I Each unique string is assigned a unique id, equal strings
are assigned the same id.

I The dictionary is used at the very end when the final
results are to be displayed.

I The idea is to capitalise on the GPU capacity to process
numbers and to have a constant processing time for each
tuple.
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Preprocessing

I For each rule, we specify what operations to perform and
with which arguments should they be performed.

I To do so, we create small arrays for each operation, e.g.:
fact1(A,X,Y,Z), fact2(Z,X,B,C,Y).

-> [1, 1, 2, 4, 3, 0]

I These arrays are loaded in the shared memory of the GPU.

I The idea is to allow each thread to work with the correct
arguments without having to calculate them.
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Memory management

I We minimize transfers between GPU memory and host
memory by maintaining facts and rule results in GPU
memory for as long as possible.

I To do so, we maintain a list with information about each
fact and rule result resident in GPU memory.

I Similar to Least Recently Used (LRU) page replacement
algorithm.
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Selection

I The size of the result in a selection is not known
beforehand.

I Our selection uses three different kernel executions.
I The first kernel marks all the rows that satisfy the selection

arguments with a value one.
I The second kernel performs a prefix sum on the marks to

determine the size of the results buffer and the location
where each GPU thread must write the results.

I The last kernel writes the results.

Input numbers 1 1 0 0 1 0 ...

Prefix sum 1 2 2 2 3 3 ...
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Join

I We use a modified version of the Indexed Nested Loop
Join:

I A CSS-Tree (Cache Sensitive Search Tree) is created with
one of the columns to join.

I CSS-Trees can be constructed in parallel and their tree
traversal is performed via address arithmetic.

I Using the tree, a preliminary join is made to obtain an
array similar to that of the selection.

I A second join writes the results.
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Other operations

I Projection simply involves taking all the elements of each
required column and storing them in a new memory
location.

I Multijoin is similar to the join. The difference is that,
when performing the first join, we compare any additional
columns involved.

I Selfjoin is similar to the selection. The difference is that
instead of checking constant values, it checks the values of
the columns affected.
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Optimisations

I Duplicate Elimination. When a rule iteration is
finished, its result is sorted and the duplicates removed.

I Optimising projections. Executing a projection at the
end of each join, allows us to discard unnecessary columns
earlier in the computation.

I Fusing operations. Operations are applied together to a
data set in a single read of the data set, as opposed to one
operation per read of the data set.
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Experimental Evaluation

I Hardware. Host platform: Intel Core 2 Quad CPU Q9400
2.66GHz (4 cores in total), Kingston RAM DDR2 6GB 800
MHz. GPU platform: Fermi GeForce GTX 580 - 512 cores
- 1536 MB GDDR5 memory.

I Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0
Production Release, gcc 4.5, g++ 4.5. YAP 6.3.3
Development Version, Datalog 2.4, XSB 3.4.0.

I We compared our engine against XSB, YAP and MITRE
Datalog.

I We are at this stage interested in the performance benefit
of using GPUs for the evaluation of Datalog queries, as
opposed to using a CPU only.
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Join over four big tables

join(X,Z) :- table1(X), table2(X,4,Y), table3(Y,Z,Z),

table4(Y,Z).

join(X,Z)?

I Four tables, all with the same number of rows filled with
random numbers, are joined together.

I It was used to test all the different operations of our engine.

I Our engine is roughly 200 times faster than YAP.

I Joins were the most costly operations with the Multijoin
alone taking more than 70% of the total execution time.

Carlos A. Mart́ınez Angeles Cinvestav-IPN A Datalog Engine for GPUs 17/25



Join over four big tables results
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Transitive closure of a graph

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Y)?

I The edges of a graph are represented by a table with two
columns filled with random numbers.

I The idea is to find all the nodes that can be reached if we
start from a particular node.

I Our engine is 40 times faster than YAP.

I At first duplicate elimination was the most costly
operation, but as the rows to process in each iteration
decreased, the join became the most costly operation.
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Transitive closure of a graph results
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Same-Generation program

sg(X,Y) :- flat(X,Y).

sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).

sg(a,Y)?

I Three tables are created with the following equations:

up = {(a, bi)|iε[1, n]} ∪ {(bi, cj)|i, jε[1, n]}. (1)

flat = {(ci, dj)|i, jε[1, n]}. (2)

down = {(di, ej)|i, jε[1, n]} ∪ {(ei, f)|iε[1, n]}. (3)

I Very little gain in performance and our engine fails for
n > 90 due to lack of memory.
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Same-Generation program results.

I Duplicate elimination takes more than 80% of the total
time and is the cause of the memory problem.

I The reason is that the rule creates too many tuples, but
most are duplicates.
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Related Work

I He et. al created GDB, a relational processing system for
both CPUs and GPUs. GDB has primitive operations and
the RA operators are built upon them.

I We modified the INLJ of GDB for our joins. We added
multijoin and fused joins and projections.

I Diamos et. al developed relational operators for GPUs
which partition and process data in blocks using
algorithmic skeletons.

I Their join algorithm was compared to that of GDB,
showing 1.69 performance improvement.
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Conclusions

I Our engine performed very well but can be further
improved by:

I Extended syntax to accept built-in predicates and negation.

I Optimisations based on tabling or magic sets methods.

I Mixed processing of rules both on the GPU and on the
host multicore.

I Improved join operations to eliminate duplicates before
writing final results.
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Thank you
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