A SAT-Based Graph Rewriting and Verification
Tool Implemented in Haskell

Marcus Ermler

University of Bremen, Department for Mathematics and Computer Science

WFLP 2013, September 12, 2013

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 1

Motivation

Main motivation: Tool support in graph rewriting

Aim: A tool for graph rewriting and verification

Questions:

1. How to tackle the nondeterminism of graph rewriting,
especially in case of NP-complete graph problems?

2. What could be a useful programming language in this context?

Answers:
1. heuristics, exhaustive search, parallelization, SAT solving
= chip design, term rewriting, UML/OCL models
2. Java, C++, Python, Haskell
= formulas, graphs, and rules are near to their mathematical
description

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 2

Tool history

m translation of graph transformational derivation process into
propositional formulas (presented on ICGT 2010)

m first implementation in the author’s diploma thesis (2010)

m introducing SATaGraT (SAT solver assists Graph
Transformation Engine) on AGTIVE 2011

m today: three processing steps, verification of WFLP2013a,
first steps to translations into CSP and SMT, more examples

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 3

SATaGraT - main components

m Graph rewriting: Modules for graphs, graph morphisms, rules,
control conditions, and graph transformation units

m Propositional formulas: Three different translations

— ICGT 2010
— AGTIVE 2011
- WFLP 2013

plus first steps for translations into CSP and SMT

m Solvers: SAT solvers MiniSat, Limboole, and Funsat; CSP
solver Sugar; SMT solver Yices

m Verification: existentially quantified graph properties and all
quantified properties over terms

m Examples: Hamiltonian path problem, job-shop scheduling, ...

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 4

Graphs

m edge labeled directed graphs without multiple edges and with
a finite node set over a set ¥ of labels: G = (V, E) where
V={1,...,n}=[nand ECV xEXxV

m injective graph morphisms g: G — H for matching of
subgraphs (structure- and label-preserving)
= these morphisms are injective mappings between the node
sets of G and H: gy: Vg — Vy

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

Graphs

m edge labeled directed graphs without multiple edges and with
a finite node set over a set ¥ of labels: G = (V, E) where
V={1,...,n}=[nand ECV xEXxV

m injective graph morphisms g: G — H for matching of
subgraphs (structure- and label-preserving)
= these morphisms are injective mappings between the node
sets of G and H: gy: Vg — Vy

member < member & 16}

b oo

Graphs

m edge labeled directed graphs without multiple edges and with
a finite node set over a set ¥ of labels: G = (V, E) where
V={1,...,n}=[nand ECV xEXxV

m injective graph morphisms g: G — H for matching of
subgraphs (structure- and label-preserving)
= these morphisms are injective mappings between the node
sets of G and H: gy: Vg — Vy

member < member @ 16}

0

Graphs

m edge labeled directed graphs without multiple edges and with
a finite node set over a set ¥ of labels: G = (V, E) where
V={1,...,n}=[nand ECV xEXxV

m injective graph morphisms g: G — H for matching of
subgraphs (structure- and label-preserving)
= these morphisms are injective mappings between the node
sets of G and H: gy: Vg — Vy

member I member & 16}

Graphs

m edge labeled directed graphs without multiple edges and with
a finite node set over a set ¥ of labels: G = (V, E) where
V={1,...,n}=[nand ECV xEXxV

m injective graph morphisms g: G — H for matching of
subgraphs (structure- and label-preserving)
= these morphisms are injective mappings between the node
sets of G and H: gy: Vg — Vy

member I member & 16}

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

Rule application

m r = (L — R) where V; = Vg (no node addition or deletion)

m rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

m rule application: G=H
r7g

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 6

Rule application

m r = (L — R) where V; = Vg (no node addition or deletion)

m rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

m rule application: G=H
r7g

member member

remEdge = &—@ — & @

< member Y member

0 0 0 0
O—2 30—

Rule application

m r = (L — R) where V; = Vg (no node addition or deletion)

m rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

m rule application: G=H
r7g

member member

remEdge = g)—@ — & @

< member Y member

0 0 0 0
O—2 30—

Rule application

r = (L — R) where V| = Vg (no node addition or deletion)

rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

rule application: G=H
r7g

Rule application

r = (L — R) where V| = Vg (no node addition or deletion)

rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

rule application: G=H
r7g

member member

Rule application

m r = (L — R) where V; = Vg (no node addition or deletion)

m rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

m rule application: G=H
r7g

member member

— & @

ember < member Y member

. N0 0 0
remEdge,{1—4,2—3} a 9 9 9

Rule application

m r = (L — R) where V; = Vg (no node addition or deletion)

m rule application to a graph G: find a match g(L) in G. If g(L)
is found, delete the edges of g(L) and add the edges of g(R).

m rule application: G=H
r7g

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 6

Derivation

B d=Gy— Gy —---— G, is called a derivation
r,81 rn,82 I'n,8n

[] G0:P>Gn

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 7

Derivation

B d=Gy— Gy —---— G, is called a derivation
r,81 rn,82 I'n,8n

[] G0:P>Gn

< member & member

0 0 0 0
OB

Derivation

B d=Gy— Gy —---— G, is called a derivation

n.e g rngn
*
u GO — G,-,
P
< member & member < member & member

R R R | R U § (R A
O—2C—% . 2B @

remEdge

Derivation

B d=Gy— Gy —---— G, is called a derivation

rn,g81 r,82 rn,8n
*
u Go — G,-,
P
< member & member < member & member

R R R | R U § (R A
O—2C—% . 2B @

remEdge
< member Y member

2. 000 &

remEdge

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

Graph transformation units

m graph transformation units: gtu = (I, P, C, T) where | and T
are graph class expressions, R is a set of rules, and C is a
control condition

m graph class expressions: for example, the class of all
undirected graphs, also single graphs allowed

m control conditions: guide the rule application, restrict the
nondeterminism of units; we use regular expressions

m Semantics of gtu = (I, P, C, T): all derivations from initial to

terminal graphs that are allowed by the control condition
= such derivations are called successful

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 8

Graph rewriting for graph problems

VertexCover(k)
initial:
rules:

choose :

remEdges :

cond.:
terminal:

unlabeled& undirected& & — loops

=¥ — (M= member

member member

b—o — b

choose ; remEdges*
no_edges&(member | &) — loops

@

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

Derivation revisited

=
%
©)
=X

~= -

Derivation revisited

o) %) o) o) o) 0] & member
0 0 0 0 0 0 0 0
DR Gome OO

Derivation revisited

[} %} %} %) %} (%} & member
0 0 0 0 . 0 0 0 0
6 9‘@’@ choose 0 9 9 9

< member & member

0 0 Q0 0
cﬁe 0 @‘G,’a

Derivation revisited

(%) %] %) (%)
O \
@ 9‘@’@ choose 0 9‘9’9
< member & member & member & member

0 0 0 0 0 0 0 0
e DD e D@ @

Derivation revisited

g %) (%) (%)
0 0 0 0 () ()
D@ s O—O—0—@
< member @ member & member & member
0 0 0 0 0 0 0 0
e D) e D@3 @

< member & member

2, 000 @

remEdge

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 10

From graphs to SAT

m graphs in derivation steps are represented via variables for their
edges: E(n,m) = {edge(v,a,Vv', k) | (v,a,V') € [n] x £ x [n],
k € [m]} where n is the graph size and m the maximum
derivation step

Theorem

Let p be a formula over E(n,m) and f a satisfying assignment to
p. Then f(p) represents a sequence of graphs G, ..., Gy, such that
Gy contains (v, a,Vv') if and only if f(edge(v, a,Vv’, k)) = TRUE.

m single graph in the kth derivation step expressed via edges
that are in the graph and edges that are not in the graph

graph(G)(k) = /\ edge(v, a, v/, k)A /\ —edge(v, a,v', k).
(v,a,v/)EEG (v,a,v’)e([n] xZx[n])—Eg

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 11

From graph rewriting to SAT (1)

The application of a rule r to a graph Gi_1 with respect to a
mapping g is expressed via

m matching: morph(r,g, k) = A edge(g(v),a g(v'),k—1),
(v,a,v/)EE,
m edge deletion: rem(r,g, k) = A —edge(g(v), a, g(v'), k),
(v,a,v')EE —ER
m edge addition: add(r,g,k) = A edge(g(v),a,g(v'), k),
(v,a,v')EER

m kept edges:
keep(r, g, k) = A (edge(v,a,v’, k — 1) < edge(v, a, v/, k))
(v,a,v")Zg(ELUER)
where g(E; U Eg) = {(g(v),a,g(v')) | (v,a,v’), € E; U Eg}

= the assignment to variables of kept edges remains
unchanged from Gi_; to Gg

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 12

From graph rewriting to SAT (2)

m whole rule application:
apply(r, g, k) = morph(r, g, k) Arem(r, g, k) Aadd(r, g, k) Akeep(r, g, k)

Gi_1 = Gy if and only if there is a satisfying assignment to the
formula graph(Gg_1)(k — 1) A apply(r, g, k) A graph(Gy)(k).

m further formulas for derivation steps, single derivations, and all
derivations up to a certain bound

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 13

From graph rewriting to SAT (3)

< member & member

%] %]
' | l ' 0 0 0 0
9‘9’ choose 0 g‘e’a
<& member & member J member & member

e 0B b 2 D608

is yielded by a satisfying assignment to:

graph(Go)(0) A apply(choose, {1 — 4}, 1) A apply(choose, {1 — 2},2) A
apply(remEdge, {1 — 4,2 — 3},3) A apply(remEdge, {1 — 2,2 — 1},4) A
apply(remEdge, {1 — 2,2 +— 3},5) A apply(remEdge, {1 — 4,2 — 2},6).

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 14

SATaGraT - preprocessing

initial control terminal
graph rules condition C graph

graph transformation unit

(polynomial p(n))—)

| choose rule sequence

A

generate

L(C){p(n)) =

m L(C)(p(n)) denotes the language resulting from a control
condition C with the restriction to a word length of p(n)

m each ry---r, € L(C)(p(n)) describes a sequence of rule
applications from initial to terminal graphs.

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

15

sto :
choose rule P solution
sequence =

‘I'IEK[

A

rule sequence Minisat

derivation

UNSAT

generate formula

m generates a formula in CNF

m MiniSat is a powerful, competitive, and award-wining SAT
solver (http://www.satcompetition.org/)

m this process runs as long as no solution is found or alle
possible rule sequenes are processed

m a satisfying assignment states a successful derivation

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 16

SATaGraT - postprocessing (1)

derivation extraction

graph model,
rewrite script,
and rewrite rules

applied rules
and morphisms

GrGen.NET | | console

m derivation is extracted from the variable assignment
m GrGen.NET is used for visualization

m additional informations on console

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 17

SATaGraT - postprocessing (2

yComp Version 1

4
View Navigate Layout Help

D‘@EB 2¢ ¥hp A&emEm

ichoose; choose; choose; renEdges ; renEdges ; ges ; remEdges ;
lenEdges ; renEdges; rendges; rendges; renEdges; remEdges ; renEdges

Ee

[Find:
Next][Prev]

e

[llvars: 25103
Clauses: 5151941

{—{[rime: 45,21 sec
l6raph: ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, {(1,%,2), (1,
L4), (1,%,5), (1,%,6), (2,%,1), (2,%3), (2,%,7), (2,%,8), (2,,9),
(2,%,10), (3,%,2), (3,%,11), (3,%,12), (3,%,13), (4,%,1), (5,%,1),
(6,%,1), (7,%,2), (8,%,2), (9,%,2), (16,%,2), (11,%,3), (12,%,3),
(13+/3)}), Types = {F

Debug started -- available commands are: (n)ext match,
ﬁ (Dazy choice, show (v)ariables, print stack(t)race,

(d)etailed step,
(f)ull state and

(s)tep, step

IThe following rules and graph morphisms are applied:
1. choose {(1,1)}

I3 Root 2. choose {(1,3)}
0 son 3. choose {(1,2)}
Osun 4. remEdges {(1,1), (2,4)}
0 sz 5. remedges {(1,3), (2,13)}
O san - 6. remedges {(1,3), (2,11)}
O san 7. remedges {(1,2), (2,9)}

8. remEdges {(1,2), (2,8)}
D ssiv 9. remEdges {(1,1), (2,6)}
D sen H 10. remEdges {(1,1), (2,5)}
O s7n [||1. remdges {(1,3), (2,12)}
O sen Ll 12. remEdges {(1,2), (2,10)}
& < f13. renkdges {(1,2), (2,1)}
= —

New edge "$1D" of type "E" has been created from "$5" to "$0"

New edge "S1E" of type "E" has been created from "$6" to "$1*

New edge "S1F" of type "E" has been created from "$7" to "$1*

New edge 520" of type "E" has been created from "$8" to "$1".

New edge "$21" of type "E" has been created from "$9" to "$1*

New edge "$22" of type "E" has been created from "SA" to "$2"

New edge "$23" of type "E" has been created from "$B" to "$2"

New edge 524" of type "E" has been created from "SC* to "$2"

Executing Graph Rewrite Sequence... (CTRL+C for abort)

1>run

(u)p, step

(0)ut of loop,
(a)bort (plus Ctri+C for forced abort).

(r)un, toggle (b)reakpoints, toggle (c)hoicepoints, toggl|

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

18

Experiments: vertex cover problem

VI | |E| | k | VC? || SATaGraT 2011 | SATaGraT 2012
7 8 |2 no 5 5

9 |12 |2 no 30 32

11 | 14 | 4 | yes 96 34.5

13 | 20 | 3| yes 366 112

13 |18 |3 | no 357 456

15 | 24 | 3 | vyes > 3600 438

m SATaGraT 2011 is based on ICGT 2010 and AGTIVE 2011

m SATaGraT 2012 is based on formulas of WFLP 2013

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell

19

What about verification?

SATaGraT can be used to verify properties like

m Is the graph Eulerian?
m Is there a vertex cover of size k?

m Is there a feasible schedule with a makespan of at most / for a
job-shop instance?

m length (xs ++ ys) z length xs + length ys
?
mmap f xs ++ map £ ys = map f (xs ++ ys)
We can verify existentially quantified properties over graphs and

existentially or all quantified properties over terms.

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 20

Conclusion and Outlook

m SATaGraT is a SAT-based tool for graph rewriting and
verification

m verification of existentially quantified graph properties and all
quantified properties over terms

Qutlook:

m graphical user interface for input of graph transformation
units and the final visualization

m proving all quantified properties over graphs

m termination and non-termination proofs for graph and term
rewriting

A SAT-Based Graph Rewriting and Verification Tool Implemented in Haskell 21

