Towards a Verification Framework for Haskell by
Combining Graph Transformation Units and SAT
Solving

Marcus Ermler

University of Bremen, Department for Mathematics and Computer Science

WFLP 2013, September 11, 2013

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

Motivation

Aim: Application of graph transformation for the verification of
Haskell programs via structural induction.
Questions:

1. Is graph transformation a useful approach in this context?

2. How to tackle the nondeterminism of function equation
application in automatic verification?

Answers:

1. graph transformation has been successfully applied to term
rewriting (term graph rewriting/CLEAN/SPARKLE)

2. heuristics, exhaustive search, parallelization, SAT solving

= We use graph transformation units and SAT solving to verify
Haskell programs.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 2

Considering a small subset of Haskell

m predefined data types like Int, Char, String, Lists

m functions defined by functions equations without guards or
local definitions

m higher order functions

m in preparation: lambda abstractions, control structures,
self-defined data types

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 3

Translating Haskell programs into Trees

m edge labeled directed graphs without multiple edges and with
a finite set of typed node. For a finite set X of labels and a
set 7 of types: G = (V,E,t) where V ={1,...,n} = [n],
ECVxYXxV,andt:V = T.

m rectangles for function names; outermost function name is the
root; circles for constants and variables (leafs)

m outgoing edges are labeled with argument positions

Example: length ([] ++ ys) is expressed via

or

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 4

Graph transformational rules

m rule r = (L — R): left-hand side L and right-hand side R

m translation of Haskell function equations / = r into rules:
tree(l) — tree(r)

m for technical reasons: only edge addition and deletion, node
addition and deletion is realized via a simple trick
= in drawings: node labels instead of labeled loops

Example: The function equation [1 ++ ys = ys (denoted by

ms translated into
2
—
=2E) — @

or

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 5

Rule application and derivations

m injective graph morphisms for matching of subgraphs
(structure-, label-, and type-preserving morphisms)

m application of a rule: find a match of g(L) in a graph G,
delete the edges of g(L), and add the edges of g(R)

Example: mapping g = {1 +— 2,2+ 3,3 — 4} for (++);1

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 6

Graph transformation units

m graph transformation units: gtu = (I, P, C, T) where | and T
are graph class expressions, R is a set of rules, and C is a
control condition

m graph class expressions: for example, the class of all
undirected graphs, also single graphs allowed

m control conditions: guide the rule application, restrict the
nondeterminism of units; we use regular expressions

m Semantics of gtu = (I, P, C, T): all derivations from initial to

terminal graphs that are allowed by the control condition
= such derivations are called successful

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 7

From graphs to SAT

m graphs in derivation steps are represented via variables for their
edges: E(n,m) = {edge(v,a,v', k)| (v,a,v') € [n] x £ x [n],
k € [m]} where n is the graph size and m the maximum
derivation step

m single graph in the kth derivation step expressed via edges
that are in the graph and edges that are not in the graph

graph(G, k) = /\ edge(v,a, v/, k) A

(v,a,v")EEG

/\ —edge(v,a, V', k).
(v.av)e(nx E x)~ Eg

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 8

From graph rewriting to SAT

m rule application is expressed via five formulas: morph, rem,
add, keep, and apply

m The matching of a rule r in a graph Gi_; with respect to a
mapping g is expressed via:

morph(r, g, k) = morph(r, g, k) <> A edge(g(v),a, g(v’'),k — 1),
(v,a,v')EEL

m further formulas for derivation steps, single derivations, and all
derivations up to a certain bound

m morph, rem, add, keep, and apply can be converted in at most
quadratic time to CNF, all other formulas are already in CNF

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 9

Proving properties via graph transformation (1)

Hypothesis is given as list property: p(xs) = (1(xs)=r(xs))

Definition

Let p(xs) = (1(xs)=r(xs)) be a list property with induction
variable xs and let P be a set of graph transformational rules
representing Haskell function equations. Then the base case unit
and the inductive step unit are defined as follows.

m base(p([1)) = (tree(1([1)), P, P*, tree(r ([1)))
m step(p(x:xs)) = (tree(1(x:x8)), Pstep, Cstep, tree(r(x:xs)))
where
hyp1 = (tree(1(xs)) — tree(r(xs))),
hypa = (tree(r(xs)) — tree(1(xs))),
Pstep = P U {hyp1, hypo}, and
Cstep = P*; (hypl ‘ hyp2) ; P*.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 10

Proving properties via graph transformation (2)

Theorem

Let p(zs) be a property, base(p([])) be a base case unit, and
step(p(z:zs)) be an inductive step unit. If there is a successful
derivation in base(p([])) as well as in step(p(z:zs)), then the
property holds.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 11

Example: a length property

Hypothesis: 1length (xs ++ ys) = length xs + length ys
for all lists xs and ys.

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 12

Base case unit

Base case: length ([] ++ ys) = length [] + length ys

base
initial: tree(length ([] ++ ys))
rules: tree([1 ++ xs) — tree(xs) [(++)1]
tree(0) — tree(length [1) [lengthi]
tree(x) — tree(0 + x) [identityaqqd]
cond.: ((++)1 | length’ | identityaqa)”

terminal: tree(length [] + length ys)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 13

A sample derivation for proving the base case

Ipase = tree(length ([]1 ++ ys))

1 idegtadd

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 14

Inductive step unit

Inductive step: length (x:xs ++ ys) = length (x:xs) +
length ys, x::a

initial: tree(length (x:xs ++ ys))

rules: tree(x:xs ++ ys) — tree(x: (xs++ys)) [(++)2]
tree(length (x:xs)) [lengthy

5 tree(1 + length xs) + lengthl)]

tree(x + (y + z)) — tree((x + y) + z) [ass0Caqq]
hypothesis

cond.: ((++)2 | lengthy | length)y | assocaqq)” ; hypothesis

*

. ((4++)2 | lengthy | length) | assocaqd)
terminal: tree(length x:xs + length ys)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 15

Hypothesis

Hypothesis: 1length (xs ++ ys) = length xs + length ys
for all lists xs and ys.

= the hypothesis-rule:

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 16

A sample derivation for the inductive step

Istep -

hypothesis
—

®

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 17

Experiments

Lemmatal:

1. length (xs ++ ys) = length xs + length ys
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs
xs ++ [] = xs

[1 ++ (xs ++ [1)

B N

X8

Lemma ‘ Strategy ‘ Base case | Inductive step

1. induction 8 sec 90 sec
2 induction 0.3 sec 17 sec
3. induction 1 sec 1 sec
4 direct proof 0 sec

ltested under Ubuntu 10.04 LTS on an AMD 2.0 GHz with 4GB RAM where

lemma 4 is proven by a direct proof via lemma 3.
Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 18

Summary

m graph transformational approach for structural induction
proofs

m experiments nurture the hope that our approach can be
employed for verification proofs

Outlook:

m more Haskell features step-by-step or via preprocessing
described in Giesl et al., Automated termination proofs for
Haskell by term rewriting, 2011

m automatic translation of functional programs into rules and
units (in preparation)

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 19

Questions?

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

20

Previous work

m translation of graph transformational derivation process into
propositional formulas (presented on ICGT 2010)

m introducing SATaGraT (SAT solver assists Graph
Transformation Engine) on AGTIVE 2011

m using SAT solving to find a successful derivation
m applied on NP-complete graph problems

m bottleneck: conversion into conjunctive normal form

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 21

Simple graph transformation unit

Very simple example:

m |/ = tree(length ([] ++ x:xs))
. P={(++)}

m C=(++)1

u

T = tree(length (x:xs))

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 22

From graph rewriting to SAT (1)

The application of a rule r to a graph Gi_1 with respect to a
mapping g is expressed via

m matching:
morph(r, g, k) = morph(r, g, k) <> A edge(g(v),a, g(v’'),k — 1),
(v,a,v/)EE;
m edge deletion:
rem(r, g, k) = rem(r, g, k) A —edge(g(v), a,g(v'), k),
(v,a,v/)EE —ER
m edge addition:
add(r,g, k) = add(r,g,k) <> A\ edge(g(v),a g(v'), k),
(v,a,v/)EER
m kept edges:

keep(r g, k) = keep(r, g, k) ¢> ((A, (edselviay k=)
v,a,v/)Zg(E UER

+ edge(v, a, v’,k)))
where g(EL u ER) = {(g(v)vavg(vl)) | (Vvav V/)v €EEU ER}

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 23

From graph rewriting to SAT (2)

m whole application of a rule r to Gi_1 with respect to graph
morphism g is described by

apply(r, g, k) = apply(r, g, k) < (morph(n g, k) Arem(r,g,k) A add(r, g, k)
Nkeep(r, g, k))

Gk_1 :> Gy if and only if it there is a satisfying assignment to
graph(Gk 1,k — 1) Aapply(r, g, k) A graph(Gy, k).

m further formulas for derivation steps, single derivations, and all
derivations up to a certain bound

m morph, rem, add, keep, and apply can be converted in at most
quadratic time to CNF, all other formulas are already in CNF

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving 24

