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Beginner’s Course in Computer Science: Orders

Week 2 Definition of the natural order in N:

x≤ y :⇐⇒

∃m ∈ N : m+ x = y .

Week 8 Definition of “prefix list” on lists over a set A:

xsE ys :⇐⇒

∃ms ∈ A? : ms appendTo xs = ys .

Week 14 Definition of divisibility on the integers:

x |y :⇐⇒

∃m ∈ N : m · x = y,

where · : N→ Z→ Z.

Week 42 All are

xv y :⇐⇒ ∃m ∈M : m⊗ x = y,

where M is a set that “acts” on a set A via ⊗.
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Monoid Acts
Definition
Let (M,∗,e) be a monoid (∗ is associative with neutral element e).
⊗ : M→ A→ A is called monoid act if and only if

e⊗−= id

∀x,y ∈M : ∀a ∈ A : x⊗ (y⊗a) = (x∗ y)⊗a

Examples
set A monoid act ⊗
carrier of a monoid M (M,∗,e) ∗
Z (N,+,0) + : N→ Z→ Z
Q where (Q,Σ,δ ) is a transition system (Σ?,++,ε) flip δ

?

For all x,y ∈ A:

xvA, M,⊗ y :⇐⇒ ∃m ∈M : m⊗ x = y .
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Orders Revisited

order vA, M,⊗
≤ vN, N,+
E vA?, A?, flip (++)

| vZ, N, ·|N

Question 1. How expressive is this abstraction?
Question 2. What are the properties of vA, M,⊗?
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Answer 1: Expressiveness is universal
Idea: Build a transition system from an order

Q

R

S T

Hasse diagramHasse diagram + reflexivityHasse diagram + reflexivity + transitivityHasse diagram + reflexivity + transitivity + directionsTransition system
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Answer 1: Formalism

Preconditions
Given: (pre)order (A,4)
Define:

Q := A

Σ := A

δ : Q→ Σ→ Q,

q ς 7→

{
ς : q4 ς

q : otherwise

Property I
For all x,y ∈ A:

x4 y ⇐⇒ δ x y = y

(for sets: X ⊆ Y ⇐⇒ X ∪Y = Y )

Property II
(Q,Σ,δ ) is a transition system and

vQ, Σ
?
, flip δ

? = 4
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Answer 2: Properties of vA, M,⊗

Always a preorder (reflexive and transitive)
Generally not antisymmetric:

Q R
1

1

0 0

Cycles are a problem – even the problem
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Answer 2: Characterisation of antisymmetry

Theorem
The following statements are equivalent:

1 vA,M,⊗ is antisymmetric.
2 The corresponding transition system has no non-trivial cycles.
3 Fix◦⊗ : (M,∗,e)→ (2A,∩,A) is monoid homomorphism.1

Surprisingly simple in applications
Sufficient conditions even more simple
Proof =̂ every antisymmetry proof

1For f : A→ A we have Fix( f ) = {a ∈ A | f a = a}
7
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Application: Implementation

vA,M,⊗ parametric  functional programming
∃m ∈M : m⊗a = b logic  logic programming

WFLP in Kiel  Curry
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Application: Suffix list

Consider the “has-suffix”-relation D:

xsD ys ⇐⇒ ∃ms : xs = ms++ ys (not in prev. form2)
⇐⇒ ∃m ∈ N : drop m xs = ys, (in prev. form)

where drop : N→ A?→ A?.

drop is an act
drop 0 xs = xs

drop m (drop n xs) = drop (m+n) xs.
drop has the “no-cycles-property” (on finite, deterministic arguments)

2Require x4 y ⇐⇒ ∃m : m⊗ x = y.
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Application: Suffix list in Curry

(D) :: [α ]→ [α ]→ Success
xsD ys = drop m xs=:= ys

where m free

data Nat = 0 | 1+ Nat
drop :: Nat→ [α ]→ [α ]
drop 0 xs = xs
drop (1+ n) [ ] = [ ]
drop (1+ n) ( : xs) = drop n xs

General version:
xvA, M,⊗ y ⇐⇒ ∃m ∈M : m⊗ x = y

relatedBy :: (µ → α → α)→ α → α → Success
relatedBy (⊗) x y = m⊗ x=:= y

where m free
(D) :: [α ]→ [α ]→ Success
(D) = relatedBy drop
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So...

theoretically
I algebraic structure ↔ relational concept
I allows application of additional tools
I reveals inner structure

practically
I modularity, declarative style
I fits into functional logical paradigm
I simple implementation
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Thank you for listening!

Enjoy your lunch.



Thank you for listening!
Enjoy your lunch.


