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Week 2 Definition of the natural order in N:
x<y = dmeN:m+x=y.
Week 8 Definition of “prefix list” on lists over a set A:
xs<dys <=  dms € A*:ms appendTo xs =ys.
Week 14 Definition of divisibility on the integers:
x|y <= dmeN:m-x=y,
where - :N—=Z — Z.
Week 42 All are
xCy = dmeM:m®x=y,

where M is a set that “acts” on a set A via ®.
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Monoid Acts
Definition

Let (M,*,e) be a monoid (* is associative with neutral element e).
®:M — A — A is called monoid act if and only if
0 e®@—=id

o Vx,yeM:VYacA: x®(y®a)=(x*xy)®a

Examples

set A monoid act ®

carrier of a monoid M (M, x,e) *

7 (N,+,0) +:NoZ-7Z

Q where (Q,X,§) is a transition system (X*,++,&) flip§

For all x,y € A:

XCamey:i<= dmeM mRx=y.
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Question 1. How expressive is this abstraction?

Question 2. What are the properties of T4y, 7
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Answer 1: Formalism

Preconditions

Given: (pre)order (A,<)
Define:

0.=A
Y=A
0:0—X— 0,

g =
ng{g 4<¢

q :otherwise

Property |
For all x,y € A:

XKy <= 0xy=y
(for sets: X CY <= XUY =Y)

Property Il
(Q,X,0) is a transition system and

Coxips = <




Answer 2: Properties of T4y o

Always a preorder (reflexive and transitive)
Generally not antisymmetric:

Cycles are a problem — even the problem



Answer 2: Characterisation of antisymmetry

Theorem

The following statements are equivalent:
O Came is antisymmetric.
@ The corresponding transition system has no non-trivial cycles.
© Fixo®: (M,*,e) — (24,Nn,A) is monoid homomorphism.*
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Answer 2: Characterisation of antisymmetry

Theorem

The following statements are equivalent:
O Came is antisymmetric.
@ The corresponding transition system has no non-trivial cycles.
© Fixo®: (M,*,e) — (24,Nn,A) is monoid homomorphism.*

@ Surprisingly simple in applications
o Sufficient conditions even more simple

@ Proof = every antisymmetry proof

YFor f:A — A we have Fix(f)={acA|fa=a}
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Came Pparametric ~ functional programming
dmeM:m®@a=>b logic ~ logic programming
WEFLP in Kiel ~» Curry



Application: Suffix list

Consider the “has-suffix"-relation >:

xs D ys <= dms :xs =ms+Hys (not in prev. form?)
< dm e N :dropmxs =ys, (in prev. form)

where drop : N — A* — A*.

drop is an act
@ drop O xs = xs
e drop m (drop n xs) = drop (m+n) xs.
drop has the “no-cycles-property” (on finite, deterministic arguments)

2Requite x <y <= Im:mQx=y.



Application: Suffix list in Curry

(>) o] = [a] — Success
xs > ys =drop m xs=:=ys
where m free

data Nar =0 | 1 + Nat
drop::Nat — [o] — [a]

drop 0 Xs = XS

drop (1+n)[] =]

drop (1+n) (_:xs) =dropnxs
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Application: Suffix list in Curry

data Nar =0 | 1 + Nat

(>) o] = [a] — Success drop ::Nat — [a] — []
xs B> ys = drop m xs =:=ys drop 0 XS = X5
where m free drop (1+n)][] =]

drop (14 n) (_:xs) =dropnxs

General version:

XCamey < ImeM: mx=y

relatedBy:: (L — a — o) — o0 — & — Success
relatedBy (R) xy=m@x=:=y
where m free
(>)::[o] = [a] — Success
(>>) = relatedBy drop
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So...

theoretically
> algebraic structure <> relational concept
> allows application of additional tools
> reveals inner structure
practically
» modularity, declarative style
» fits into functional logical paradigm
> simple implementation

11



Thank you for listening!



Thank you for listening!
Enjoy your lunch.



