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Computable Functions

» Functions on IN (or on finite words)

» well-established concepts of effectively computable
functions

» different concepts, all equivalent
(eg. Turing machines)
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Computable Functions

» Functions on IN (or on finite words)

» well-established concepts of effectively computable
functions

» different concepts, all equivalent
(eg. Turing machines)

» Functions on R (or on infinite words)

» different approaches to computable analysis
» approaches not equivalent
» differences in content and in technical details
» here: exact real arithmetic based on
Type-2 Theory of Effectivity [Weihrauch 2000]
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Computable Functions

(Type-1) Computability Theory
» (partial) functions over finite words:

f: ¥ —-Y"

» computable function given by Turing machine
» computability on other sets M
(e.g., rational numbers, graphs, ...)

» use words as names or codes of elements of M
» interpret words computed by Turing machine as elements
of M
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Computable Functions

» real numbers can not be represented by finite words
n=3.14159...
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Computable Functions

» real numbers can not be represented by finite words
n=3.14159...

» Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]

» extends Type-1 computability
» infinite words are used as names for real numbers
» (partial) functions over infinite words:

f:¥¥—>3x®

» computable function given by machine transforming infinite
sequences to infinte sequences
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Type-2 Machine

Turing machine M with

» k one-way, read-only input tapes
» finitely many (two-way) work tapes
» a single one-way, write-only output tape
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Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:

fm(yt, - ¥k) = Yo €L’
iff M halts on input y4, ..., yx with y, on the output tape
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Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:
(Y1, Yk) =Yo € X"

iff M halts on input y4, ..., yx with y, on the output tape
Case 2:
f[\/](y1,. ..,yk) =Y € Yy

iff M computes forever on input y4, ..., yx and writes yy on
the output tape

WFLP 2013 8/31



Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:
(Y1, Yk) =Yo € X"

iff M halts on input y4, ..., yx with y, on the output tape
Case 2:
f[\/](y1,. ..,yk) =Y € Y

iff M computes forever on input y4, ..., yx and writes yy on
the output tape

Note: fim(y1,...,yk) is undefined if M computes forever, but writes
only finitely many symbols on the output tape
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Type-2 Machine

Definition (computable function)

fcYix...xYs—> Y

is computable iff it is computed by a Type-2 machine M.
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Type-2 Machine

Definition (computable function)

fcYix...xYs—> Y

is computable iff it is computed by a Type-2 machine M.

infinite computations can not be finished in reality —
but

» finite computations

» on finite initial parts of inputs

» producing finite initial parts of outputs
can be realized

» up to any arbitrary precision
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Type-2 Machines for R: Which names?
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Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...
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Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either

0. or 1.
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Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either
0. or 1.

= may be wrong depending on next input symbol
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Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either
0. or 1.

= may be wrong depending on next input symbol

= there is no Type-2 machine computing addition on R and
using decimal representation
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Type-2 Machines for R: Which names?

Better names for elements of R

» x e R
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Type-2 Machines for R: Which names?

Better names for elements of R

» x e R

» quickly converging Cauchy sequence of rational numbers

fo, 1, I, ...
with
limri=x
[—00
and
Ine — x| <27k
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Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)

Input5: y=rn,n,nrnrs,...
Y= 101y
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Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs:  y =ro,r1,02,13,...
Sttt ace
Addition
o —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...
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Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs:  y =ro,r1,02,13,...
Sttt ace
Addition
o —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...

Multiplication

. — / / 7
Output: X =1r X, r . X 6 XMoo ...
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Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs:  y =ro,r1,02,13,...
Sttt ace
Addition
. —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...

Multiplication

. —_ / 4 /
Output: x = M X T Dy X Mg T o X T s o

v

componentwise on input sequences

look ahead: k elements dropped from resulting sequence
depends on function to be computed and on arguments
look ahead always finite

v

v

v
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Type-2 Machines for IR: Computing functions

functions on R not computable in TTE:

< < <

X
X
X

VoA
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Type-2 Machines for IR: Computing functions

v

finite initial part of name ry, 11, ro, ... for x € R represents
set of possible values

» increasing precision corresponds to use larger input part

v

lower and upper bound of denoted set of values converge
to x

v

functions using initial parts of names are multi-valued

eq: Rx IR = Bool
le: RxRR =3 Bool
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Goal of this work

» implement exact real arithmetic based on Type-2-Theory of
Effectivity

» use declarative approach close to underlying theory

» use modular approach allowing for different
representations (names) of x € R

» use Curry

» functional concept
» lazy evaluation
» non-determinism

>...
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@ An Abstract View on the Data Type Real
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Abstract View on the Data Type Real

realqg :: Rat —> Real
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Abstract View on the Data Type Real

realqg :: Rat —> Real

add :: Real —> Real —> Real
sub ;. Real —> Real — Real
neg ;. Real —> Real

mul :: Real —> Real —> Real
power ;. Real —> Nat — Real
nthroot :: Nat —> Real —> Real
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Abstract View on the Data Type Real

realqg :: Rat —> Real

add :: Real —> Real —> Real

sub ;. Real —> Real — Real

neg ;. Real —> Real

mul :: Real —> Real —> Real

power :: Real —> Nat —> Real

nthroot :: Nat —> Real —> Real

le :: Real —> Real —> Fuzzybool
leq :: Real —> Real —> Fuzzybool
isPositive :: Real —> Fuzzybool

isZero :: Real —> Fuzzybool
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® Auxiliary Types and Functions
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Auxiliary Types and Functions: Rational Numbers

data Rat = Rat Int Int

num :: Rat —> Int
denom :: Rat —> Int
norm :: Rat —> Rat
ratn ;0 Int —> Rat
ratf 0 Int —> Int —> Rat

add :: Rat —> Rat —> Rat
sub :: Rat —> Rat —> Rat
mul :: Rat —> Rat —> Rat
neg :: Rat —> Rat

eq :: Rat —> Rat —> Bool
le :: Rat —> Rat —> Bool
leq :: Rat —> Rat —> Bool
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Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

eq x y = Fuzzy f
» f: Rat —-> Bool

» nondeterministic function
» depending on precision: £ r may yield true, false, or both
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Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

eq x y = Fuzzy f

» f: Rat -> Bool
» nondeterministic function
» depending on precision: £ r may yield true, false, or both

data Fuzzybool = Fuzzy (Rat —> Bool)

defuzzy :: Fuzzybool —> Rat —> Bool
defuzzy (Fuzzy f) r = f r
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Auxiliary Types and Functions: Fuzzybool

andf :: Fuzzybool —> Fuzzybool —> Fuzzybool
andf a b = Fuzzy (\r —> (defuzzy r a) && (defuzzy r b))

orf :: Fuzzybool —> Fuzzybool —> Fuzzybool
orf a b = Fuzzy (\r —> (defuzzy r a) || (defuzzy r b))

notf :: Fuzzybool —> Fuzzybool
notf a = Fuzzy (\r —> not (defuzzy r a))
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Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat
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Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat

» isZero yields true if 0 is in the interval
> isZero yields false if some x not equal to O is in the interval
isZero :: Interval — Bool
isZero arg | q.leq (lower arg) (ratn 0) & q.leq (ratn
0) (upper arg) = True
isZero arg | q.le (lower arg) (ratn 0) || g.le (ratn 0)
(upper arg) = False
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Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat

» isZero yields true if 0 is in the interval
> isZero yields false if some x not equal to O is in the interval
isZero :: Interval — Bool
isZero arg | q.leq (lower arg) (ratn 0) & q.leq (ratn
0) (upper arg) = True
isZero arg | q.le (lower arg) (ratn 0) || g.le (ratn 0)
(upper arg) = False

» isPositive yields true if interval contains a positive number
» isPositive yields false if interval contains a non-positive number

isPositive :: Interval —> Bool
isPositive arg | q.le (ratn 0) (upper arg) = True
isPositive arg | q.leq (lower arg) (ratn 0) = False
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O Representing Real Numbers as Cauchy Sequences
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Real Numbers as Cauchy Sequences

data Real :: Cauchy (Int —> Rat)

realg :: Rat —> Real
realg a = (Cauchy (\. —> a))
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Real Numbers as Cauchy Sequences

data Real :: Cauchy (Int —> Rat)

realg :: Rat —> Real
realg a = (Cauchy (\. —> a))

add :: Real —> Real —> Real
add a b = Cauchy(\k —> let m=k+1 in g.add (get a m) (get b m))

sub :: Real —> Real —> Real
sub a b = add a (neg b)

neg :: Real —> Real
neg a = Cauchy(\k —> g.neg (get a m))

get :: Real —> Int — Rat
get (Cauchy x) k = x k

Similar for multiplication and other functions; determine look-ahead
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Real Numbers as Cauchy Sequences

eq :: Real —> Real —> Fuzzybool
eq x y = isZero (sub y x)

le :: Real —> Real —> Fuzzybool
le x y = isPositive (sub y x)

leq :: Real —> Real —> Fuzzybool
leqg x y = (f.notf . isPositive) (sub x y)

isZero and isPositive reduced to corresponding functions on intervals:

isPositive :: Real —> Fuzzybool
isPositive x = f.fuzzy(\r — i.isPositive(tolnterval r x))
isZero :: Real —> Fuzzybool

isPositive x = f.fuzzy(\r —> i.isZero(tolnterval r x))

function yielding interval realizing any given precision with respect to
the given x of type Real.
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Real Numbers as Cauchy Sequences

Given p of type Rat and x of type Real:

tolnterval determines an interval containing X € R represented by x and
approximating X with precision p.

tolnterval :: Rat —> Real —> Interval
tolnterval p x = let y = approx p x in
interval (q.sub y p) (g.add y p)

approx :: Rat —> Real —> Rat

approx p x = get x (prec p)

prec :: Rat —> Int

prec x | g.le (ratn 0) x = minexp q.leq x (ratf 1 2)

approx p x approximates X with precision p
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Example: Square Root

Xo = 2
Xk+1 = ) (Xn + Z)
has the limit
Jim x = V2.

sqrt2 :: Real
sqrt2 = Cauchy (\k —> sqrt2sub (ratf 0 1) (ratf 2 1)
(g.power (ratf 1 2) k))

sqrt2sub :: Rat —> Rat —> Rat —> Rat
sqrt2sub x1 x2 e =
let u =qg.max x1 x2
| = g.min x1 x2
in if g.leq (gq.sub u |) e then x2
else sqrt2sub x2 (q.mul (ratf 1 2) (g.add x2
(g.dvd (ratf 2 1) x2))) e
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Example: Decimal Representation

dec :: Real —> Int —> String

dec x k

returns value of X as a string containing k decimal places
(no rounding)

real> dec sqrt2 10

Result: ”1,4142135623”

More Solutions? [Y(es) n(o) a(ll)]
Result: ”1,4142135624”

More Solutions? [Y(es) n(o) a(ll)]
No more Solutions
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Example: Decision Functions

sign function on R

1 if x>0
sign(x) =40 ifx=0
-1 ifx<0

not exactly computable
= multi-function
= nondeterministic function in Curry

With additional precision parameter p:

sgn :: Rat —> Real —> Int

sgn p x | defuzzy p (r.isPositive x) == True = 1

sgn p x | defuzzy p (r.isZero x) == True = 0

sgn p x | defuzzy p (notf (r.isPositive x)) == True = -1

WFLP 2013 29/31



@ Conclusions and further work
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Conclusions and further work

» Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]
» computation on infinite objects
» multi-functions
» exact real arithmetic in Curry based on TTE
» high-level declarative approach using features of Curry
» functional concept
» lazy evaluation
» non-determinism
» implemented system
» rich set of functions (including exp, log, In, sin, cos, ...)
» alternative representations (Cauchy sequences, Cauchy
sequences with rounding, intervals)

applications
efficiency
complexity issue

vV v v VY
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