On an Approach to Implementing Exact Real Arithmetic in Curry

Christoph Beierle, Udo Lelitko

Dept. of Computer Science, FernUniversität in Hagen, Germany

WFLP 2013

22nd International Workshop on Functional and (Constraint) Logic Programming 27th Workshop on Logic Programming

Kiel, Germany

September 11-13, 2013

Outline

- Motivation and Background
 Computable Functions
 Type-2 Machines
 Type-2 Machines for Functions on ℝ
- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- 4 Representing Real Numbers as Cauchy Sequences
- **5** Conclusions and further work

Outline

Motivation and Background

Computable Functions Type-2 Machines Type-2 Machines for Functions on $\mathbb R$

- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- Representing Real Numbers as Cauchy Sequences
- 5 Conclusions and further work

WFLP 2013 3 / 31

- Functions on IN (or on finite words)
 - well-established concepts of effectively computable functions
 - different concepts, all equivalent (eg. Turing machines)

WFLP 2013 4 / 31

- Functions on IN (or on finite words)
 - well-established concepts of effectively computable functions
 - different concepts, all equivalent (eg. Turing machines)
- ► Functions on ℝ (or on infinite words)
 - different approaches to computable analysis
 - approaches not equivalent
 - differences in content and in technical details
 - here: exact real arithmetic based on Type-2 Theory of Effectivity [Weihrauch 2000]

WFLP 2013 4 / 31

(Type-1) Computability Theory

(partial) functions over finite words:

$$f: \Sigma^* \to \Sigma^*$$

- computable function given by Turing machine
- computability on other sets M (e.g., rational numbers, graphs, ...)
 - use words as names or codes of elements of M
 - interpret words computed by Turing machine as elements of M

WFLP 2013 5 / 31

real numbers can not be represented by finite words $\pi = 3.14159...$

WFLP 2013 6 / 31

real numbers can not be represented by finite words

$$\pi = 3.14159...$$

- Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]
 - extends Type-1 computability
 - infinite words are used as names for real numbers
 - (partial) functions over infinite words:

$$f: \Sigma^{\omega} \to \Sigma^{\omega}$$

 computable function given by machine transforming infinite sequences to infinite sequences

WFLP 2013 6 / 31

Turing machine M with

- k one-way, read-only input tapes
- finitely many (two-way) work tapes
- a single one-way, write-only output tape

WFLP 2013 7 / 31

function f_M computed by M

▶ $y_1, ..., y_k \in \Sigma^* \cup \Sigma^\omega$ on input tapes

Case 1:

$$f_M(y_1,\ldots,y_k)=y_0\in \Sigma^*$$

iff M halts on input y_1, \ldots, y_k with y_0 on the output tape

WFLP 2013 8 / 31

function f_M computed by M

▶ $y_1, ..., y_k \in \Sigma^* \cup \Sigma^\omega$ on input tapes

Case 1:

$$f_M(y_1,\ldots,y_k)=y_0\in \Sigma^*$$

iff M halts on input y_1, \ldots, y_k with y_0 on the output tape

Case 2:

$$f_M(y_1,\ldots,y_k)=y_0\in \Sigma^{\omega}$$

iff M computes forever on input y_1, \ldots, y_k and writes y_0 on the output tape

WFLP 2013 8 / 31

function f_M computed by M

▶ $y_1, ..., y_k \in \Sigma^* \cup \Sigma^\omega$ on input tapes

Case 1:

$$f_M(y_1,\ldots,y_k)=y_0\in \Sigma^*$$

iff M halts on input y_1, \ldots, y_k with y_0 on the output tape

Case 2:

$$f_M(y_1,\ldots,y_k)=y_0\in \Sigma^{\omega}$$

iff M computes forever on input y_1, \ldots, y_k and writes y_0 on the output tape

Note: $f_M(y_1,...,y_k)$ is undefined if M computes forever, but writes only finitely many symbols on the output tape

WFLP 2013 8 / 31

Definition (computable function)

$$f:\subseteq Y_1\times\ldots\times Y_k\to Y_0$$

is computable iff it is computed by a Type-2 machine *M*.

WFLP 2013 9 / 31

Definition (computable function)

$$f:\subseteq Y_1\times\ldots\times Y_k\to Y_0$$

is computable iff it is computed by a Type-2 machine M.

infinite computations can not be finished in reality – but

- finite computations
- on finite initial parts of inputs
- producing finite initial parts of outputs

can be realized

up to any arbitrary precision

WFLP 2013 9 / 31

Example (addition in decimal representation)

```
Inputs: y_1 = 0.6666666666...
y_2 = 0.3333333333...
```

Example (addition in decimal representation)

```
Inputs: y_1 = 0.6666666666...
y_2 = 0.3333333333...
```

After reading finitely many input symbols, M must write either

0. or 1.

Example (addition in decimal representation)

```
Inputs: y_1 = 0.6666666666...
y_2 = 0.33333333333...
```

After reading finitely many input symbols, M must write either

0. or 1.

⇒ may be wrong depending on next input symbol

Example (addition in decimal representation)

```
Inputs: y_1 = 0.6666666666...
y_2 = 0.3333333333...
```

After reading finitely many input symbols, *M* must write either

0. or 1.

⇒ may be wrong depending on next input symbol

 \Rightarrow there is no Type-2 machine computing addition on $\mathbb R$ and using decimal representation

Type-2 Machines for ℝ: Which names?

Better names for elements of \mathbb{R}

 $x \in \mathbb{R}$

Better names for elements of \mathbb{R}

- $x \in \mathbb{R}$
- quickly converging Cauchy sequence of rational numbers

$$r_0, r_1, r_2, \dots$$

with

$$\lim_{i\to\infty} r_i = x$$

and

$$|r_k - x| \leqslant 2^{-k}$$

Type-2 Machines for \mathbb{R} : Computing functions

Example (addition using Cauchy sequences as names)

Inputs:
$$y = r_0, r_1, r_2, r_3, ...$$

 $y' = r'_0, r'_1, r'_2, r'_3, ...$

Type-2 Machines for R: Computing functions

Example (addition using Cauchy sequences as names)

Inputs:
$$y = r_0, r_1, r_2, r_3, ...$$

 $y' = r'_0, r'_1, r'_2, r'_3, ...$

Addition

Output:
$$X = r_1 + r'_1, r_2 + r'_2, r_3 + r'_3, r_4 + r'_4, \dots$$

Type-2 Machines for R: Computing functions

Example (addition using Cauchy sequences as names)

Inputs:
$$y = r_0, r_1, r_2, r_3, ...$$

$$y' = r'_0, r'_1, r'_2, r'_3, \dots$$

Addition

Output:
$$X = r_1 + r'_1, r_2 + r'_2, r_3 + r'_3, r_4 + r'_4, \dots$$

Multiplication

Output:
$$X = r_k \times r'_k, r_{k+1} \times r'_{k+1}, r_{k+2} \times r'_{k+2}, \dots$$

Type-2 Machines for R: Computing functions

Example (addition using Cauchy sequences as names)

Inputs:
$$y = r_0, r_1, r_2, r_3, ...$$

 $y' = r'_0, r'_1, r'_2, r'_3, ...$

Addition

Output:
$$X = r_1 + r'_1, r_2 + r'_2, r_3 + r'_3, r_4 + r'_4, \dots$$

Multiplication

Output:
$$X = r_k \times r'_k, r_{k+1} \times r'_{k+1}, r_{k+2} \times r'_{k+2}, \dots$$

- componentwise on input sequences
- ▶ look ahead: k elements dropped from resulting sequence
- depends on function to be computed and on arguments

look ahead always finite

Type-2 Machines for \mathbb{R} : Computing functions

functions on \mathbb{R} not computable in TTE:

$$x = y$$

$$x \leq y$$

$$x \ge y$$

Type-2 Machines for \mathbb{R} : Computing functions

- ▶ finite initial part of name r_0 , r_1 , r_2 , ... for $x \in \mathbb{R}$ represents set of possible values
- increasing precision corresponds to use larger input part
- lower and upper bound of denoted set of values converge to x
- functions using initial parts of names are multi-valued

 $eq : \mathbb{R} \times \mathbb{R} \rightrightarrows Bool$ $le : \mathbb{R} \times \mathbb{R} \rightrightarrows Bool$

Goal of this work

- implement exact real arithmetic based on Type-2-Theory of Effectivity
- use declarative approach close to underlying theory
- ▶ use modular approach allowing for different representations (names) of $x \in \mathbb{R}$
- use Curry
 - functional concept
 - lazy evaluation
 - non-determinism

•

Outline

- Motivation and Background
 Computable Functions
 Type-2 Machines
 Type-2 Machines for Functions on R
- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- 4 Representing Real Numbers as Cauchy Sequences
- 5 Conclusions and further work

Abstract View on the Data Type Real

realq :: Rat -> Real

Abstract View on the Data Type Real

```
realq :: Rat -> Real

add :: Real -> Real -> Real
sub :: Real -> Real -> Real
neg :: Real -> Real
mul :: Real -> Real -> Real
power :: Real -> Nat -> Real
nthroot :: Nat -> Real
```

Abstract View on the Data Type Real

```
realq :: Rat -> Real
add
        :: Real -> Real -> Real
sub
        :: Real -> Real -> Real
neg
        :: Real -> Real
mul :: Real -> Real -> Real
power :: Real -> Nat -> Real
nthroot :: Nat -> Real -> Real
le
           :: Real -> Real -> Fuzzybool
           :: Real -> Real -> Fuzzybool
lea
isPositive :: Real -> Fuzzybool
isZero
           :: Real -> Fuzzybool
```

Outline

- Motivation and Background
 Computable Functions
 Type-2 Machines
 Type-2 Machines for Functions on R
- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- Representing Real Numbers as Cauchy Sequences
- **5** Conclusions and further work

Auxiliary Types and Functions: Rational Numbers

data Rat = Rat Int Int

```
:: Rat -> Int
num
denom :: Rat -> Int
norm :: Rat -> Rat
ratn :: Int -> Rat
ratf :: Int -> Int -> Rat
add :: Rat -> Rat -> Rat
sub :: Rat -> Rat -> Rat
mul :: Rat -> Rat -> Rat
neg :: Rat -> Rat
    :: Rat -> Rat -> Bool
eq
le
    :: Rat -> Rat -> Bool
    :: Rat -> Rat -> Bool
lea
```

Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

```
eq x y = Fuzzy f
```

- ▶ f: Rat -> Bool
- nondeterministic function
- depending on precision: f r may yield true, false, or both

Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

```
eq x y = Fuzzy f
```

- ▶ f: Rat -> Bool
- nondeterministic function
- depending on precision: f r may yield true, false, or both

```
data Fuzzybool = Fuzzy (Rat -> Bool)

defuzzy :: Fuzzybool -> Rat -> Bool
defuzzy (Fuzzy f) r = f r
```

Auxiliary Types and Functions: Fuzzybool

```
andf :: Fuzzybool -> Fuzzybool -> Fuzzybool
andf a b = Fuzzy (\r -> (defuzzy r a) && (defuzzy r b))

orf :: Fuzzybool -> Fuzzybool
orf a b = Fuzzy (\r -> (defuzzy r a) || (defuzzy r b))

notf :: Fuzzybool -> Fuzzybool
notf a = Fuzzy (\r -> not (defuzzy r a))
```

WFLP 2013 21 / 31

Auxiliary Types and Functions: Intervals

```
data Interval = Interval Rat Rat
lower :: Interval -> Rat
upper :: Interval -> Rat
```

WFLP 2013 22 / 31

Auxiliary Types and Functions: Intervals

```
data Interval = Interval Rat Rat
lower :: Interval -> Rat
upper :: Interval -> Rat
```

- ▶ isZero yields *true* if 0 is in the interval
- ▶ isZero yields false if some x not equal to 0 is in the interval

WFLP 2013 22 / 31

Auxiliary Types and Functions: Intervals

```
data Interval = Interval Rat Rat
lower :: Interval -> Rat
upper :: Interval -> Rat
```

- ▶ isZero yields *true* if 0 is in the interval
- ▶ isZero yields false if some x not equal to 0 is in the interval

- ▶ isPositive yields *true* if interval contains a positive number
- ▶ isPositive yields false if interval contains a non-positive number

```
isPositive :: Interval -> Bool
isPositive arg | q.le (ratn 0) (upper arg) = True
isPositive arg | q.leq (lower arg) (ratn 0) = False
```

WFLP 2013 22 / 31

Outline

- Motivation and Background
 Computable Functions
 Type-2 Machines
 Type-2 Machines for Functions on R
- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- 4 Representing Real Numbers as Cauchy Sequences
- **5** Conclusions and further work

WFLP 2013 23 / 31

```
data Real :: Cauchy (Int \rightarrow Rat)

realq :: Rat \rightarrow Real
realq a = (Cauchy (\_ \rightarrow a))
```

WFLP 2013 24 / 31

```
data Real :: Cauchy (Int -> Rat)
realg :: Rat -> Real
realg a = (Cauchy (\setminus -> a))
add :: Real -> Real -> Real
add a b = Cauchy(\k -> let m=k+1 in q.add (get a m) (get b m))
sub :: Real -> Real -> Real
sub a b = add a (neg b)
neg :: Real -> Real
neg \ a = Cauchy(\k -> q.neg (get a m))
get :: Real -> Int -> Rat
get (Cauchy x) k = x k
```

Similar for multiplication and other functions; determine look-ahead

WFLP 2013 24 / 31

```
eq :: Real -> Real -> Fuzzybool
eq x y = isZero (sub y x)
le :: Real -> Real -> Fuzzybool
le x y = isPositive (sub y x)
leq :: Real -> Real -> Fuzzybool
leq x y = (f.notf . isPositive) (sub x y)
```

isZero and isPositive reduced to corresponding functions on intervals:

```
isPositive :: Real -> Fuzzybool
isPositive x = f.fuzzy(\r -> i.isPositive(toInterval r x))
isZero :: Real -> Fuzzybool
isPositive x = f.fuzzy(\r -> i.isZero(toInterval r x))
```

function yielding interval realizing any given precision with respect to the given x of type Real.

WFLP 2013 25 / 31

Given p of type Rat and x of type Real:

tolnterval determines an interval containing $\tilde{x} \in \mathbb{R}$ represented by x and approximating \tilde{x} with precision p.

```
toInterval :: Rat -> Real -> Interval
toInterval p x = let y = approx p x in
    interval (q.sub y p) (q.add y p)
approx :: Rat -> Real -> Rat
approx p x = get x (prec p)
prec :: Rat -> Int
prec x | q.le (ratn 0) x = minexp q.leq x (ratf 1 2)
```

approx p x approximates \tilde{x} with precision p

WFLP 2013 26 / 31

Example: Square Root

$$x_0 = 2$$

$$x_{k+1} = \frac{1}{2} \left(x_n + \frac{2}{x_k} \right)$$

has the limit

$$\lim_{k\to\infty}x_k=\sqrt{2}.$$

WFLP 2013 27 / 31

Example: Decimal Representation

```
dec :: Real -> Int -> String
```

dec x k

returns value of \tilde{x} as a string containing k decimal places (no rounding)

```
real> dec sqrt2 10
Result: "1,4142135623"
More Solutions? [Y(es) n(o) a(II)]
Result: "1,4142135624"
More Solutions? [Y(es) n(o) a(II)]
No more Solutions
```

WFLP 2013 28 / 31

Example: Decision Functions

sign function on ${\mathbb R}$

$$sign(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

not exactly computable

- ⇒ multi-function
- ⇒ nondeterministic function in Curry

With additional precision parameter p:

```
sgn :: Rat -> Real -> Int
sgn p x | defuzzy p (r.isPositive x) == True = 1
sgn p x | defuzzy p (r.isZero x) == True = 0
sgn p x | defuzzy p (notf (r.isPositive x)) == True = -1
```

WFLP 2013 29 / 31

Outline

- Motivation and Background
 Computable Functions
 Type-2 Machines
 Type-2 Machines for Functions on R
- 2 An Abstract View on the Data Type Real
- 3 Auxiliary Types and Functions
- Representing Real Numbers as Cauchy Sequences
- 5 Conclusions and further work

WFLP 2013 30 / 31

Conclusions and further work

- Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]
 - computation on infinite objects
 - multi-functions
- exact real arithmetic in Curry based on TTE
- high-level declarative approach using features of Curry
 - functional concept
 - lazy evaluation
 - non-determinism
- implemented system
 - ► rich set of functions (including exp, log, ln, sin, cos, ...)
 - alternative representations (Cauchy sequences, Cauchy sequences with rounding, intervals)
- applications
- efficiency
- complexity issue

. . .

WFLP 2013 31 / 31