On an Approach to Implementing Exact Real

Arithmetic in Curry

Christoph Beierle, Udo Lelitko

Dept. of Computer Science, FernUniversitét in Hagen, Germany

WFLP 2013
22nd International Workshop on Functional and (Constraint) Logic Programming
27th Workshop on Logic Programming

Kiel, Germany
September 11-13, 2013

@ Motivation and Background

Computable Functions

Type-2 Machines

Type-2 Machines for Functions on R
@ An Abstract View on the Data Type Real
® Auxiliary Types and Functions

O Representing Real Numbers as Cauchy Sequences

@ Conclusions and further work

WFLP 2013 2/31

@ Motivation and Background

WFLP 2013 3/31

Computable Functions

» Functions on IN (or on finite words)

» well-established concepts of effectively computable
functions

» different concepts, all equivalent
(eg. Turing machines)

WFLP 2013 4/31

Computable Functions

» Functions on IN (or on finite words)

» well-established concepts of effectively computable
functions

» different concepts, all equivalent
(eg. Turing machines)

» Functions on R (or on infinite words)

» different approaches to computable analysis
» approaches not equivalent
» differences in content and in technical details
» here: exact real arithmetic based on
Type-2 Theory of Effectivity [Weihrauch 2000]

WFLP 2013 4/31

Computable Functions

(Type-1) Computability Theory
» (partial) functions over finite words:

f: ¥ —-Y"

» computable function given by Turing machine
» computability on other sets M
(e.g., rational numbers, graphs, ...)

» use words as names or codes of elements of M
» interpret words computed by Turing machine as elements
of M

WFLP 2013 5/31

Computable Functions

» real numbers can not be represented by finite words
n=3.14159...

WFLP 2013 6/31

Computable Functions

» real numbers can not be represented by finite words
n=3.14159...

» Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]

» extends Type-1 computability
» infinite words are used as names for real numbers
» (partial) functions over infinite words:

f:¥¥—>3x®

» computable function given by machine transforming infinite
sequences to infinte sequences

WFLP 2013 6/31

Type-2 Machine

Turing machine M with

» k one-way, read-only input tapes
» finitely many (two-way) work tapes
» a single one-way, write-only output tape

WFLP 2013 7/31

Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:

fm(yt, - ¥k) = Yo €L’
iff M halts on input y4, ..., yx with y, on the output tape

WFLP 2013 8/31

Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:
(Y1, Yk) =Yo € X"

iff M halts on input y4, ..., yx with y, on the output tape
Case 2:
f[\/](y1,. ..,yk) =Y € Yy

iff M computes forever on input y4, ..., yx and writes yy on
the output tape

WFLP 2013 8/31

Type-2 Machine

function fy; computed by M
> Vi,..., Yk € XU X? on input tapes

Case 1:
(Y1, Yk) =Yo € X"

iff M halts on input y4, ..., yx with y, on the output tape
Case 2:
f[\/](y1,. ..,yk) =Y € Y

iff M computes forever on input y4, ..., yx and writes yy on
the output tape

Note: fim(y1,...,yk) is undefined if M computes forever, but writes
only finitely many symbols on the output tape

WFLP 2013 8/31

Type-2 Machine

Definition (computable function)

fcYix...xYs—> Y

is computable iff it is computed by a Type-2 machine M.

WFLP 2013 9/31

Type-2 Machine

Definition (computable function)

fcYix...xYs—> Y

is computable iff it is computed by a Type-2 machine M.

infinite computations can not be finished in reality —
but

» finite computations

» on finite initial parts of inputs

» producing finite initial parts of outputs
can be realized

» up to any arbitrary precision

WFLP 2013 9/31

Type-2 Machines for R: Which names?

WFLP 2013 oy

Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

WFLP 2013 V]

Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either

0. or 1.

WFLP 2013 V]

Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either
0. or 1.

= may be wrong depending on next input symbol

WFLP 2013 10/31

Type-2 Machines for R: Which names?

Example (addition in decimal representation)

Inputs: y; = 0.6666666666 . ..
y> = 0.3333333333...

After reading finitely many input symbols, M must write either
0. or 1.

= may be wrong depending on next input symbol

= there is no Type-2 machine computing addition on R and
using decimal representation

WFLP 2013 10/31

Type-2 Machines for R: Which names?

Better names for elements of R

» x e R

WFLP 2013 .

Type-2 Machines for R: Which names?

Better names for elements of R

» x e R

» quickly converging Cauchy sequence of rational numbers

fo, 1, I, ...
with
limri=x
[—00
and
Ine — x| <27k

WFLP 2013 11/31

Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)

Input5: y=rn,n,nrnrs,...
Y= 101y

WFLP 2013 12/ 31

Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs: y =ro,r1,02,13,...
Sttt ace
Addition
o —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...

WFLP 2013 12/31

Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs: y =ro,r1,02,13,...
Sttt ace
Addition
o —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...

Multiplication

. — / / 7
Output: X =1r X, r . X 6 XMoo ...

WFLP 2013 12/ 31

Type-2 Machines for IR: Computing functions

Example (addition using Cauchy sequences as names)
Inputs: y =ro,r1,02,13,...
Sttt ace
Addition
. —_ / / / 74
Output: x=r,+r, L+, L+0,+1, ...

Multiplication

. —_ / 4 /
Output: x = M X T Dy X Mg T o X T s o

v

componentwise on input sequences

look ahead: k elements dropped from resulting sequence
depends on function to be computed and on arguments
look ahead always finite

v

v

v

WFLP 2013 12/31

Type-2 Machines for IR: Computing functions

functions on R not computable in TTE:

< < <

X
X
X

VoA

WFLP 2013 13 /31

Type-2 Machines for IR: Computing functions

v

finite initial part of name ry, 11, ro, ... for x € R represents
set of possible values

» increasing precision corresponds to use larger input part

v

lower and upper bound of denoted set of values converge
to x

v

functions using initial parts of names are multi-valued

eq: Rx IR = Bool
le: RxRR =3 Bool

WFLP 2013 14/31

Goal of this work

» implement exact real arithmetic based on Type-2-Theory of
Effectivity

» use declarative approach close to underlying theory

» use modular approach allowing for different
representations (names) of x € R

» use Curry

» functional concept
» lazy evaluation
» non-determinism

>...

WFLP 2013 15/31

@ An Abstract View on the Data Type Real

WFLP 2013 16/31

Abstract View on the Data Type Real

realqg :: Rat —> Real

WFLP 2013 17/31

Abstract View on the Data Type Real

realqg :: Rat —> Real

add :: Real —> Real —> Real
sub ;. Real —> Real — Real
neg ;. Real —> Real

mul :: Real —> Real —> Real
power ;. Real —> Nat — Real
nthroot :: Nat —> Real —> Real

WFLP 2013 17/31

Abstract View on the Data Type Real

realqg :: Rat —> Real

add :: Real —> Real —> Real

sub ;. Real —> Real — Real

neg ;. Real —> Real

mul :: Real —> Real —> Real

power :: Real —> Nat —> Real

nthroot :: Nat —> Real —> Real

le :: Real —> Real —> Fuzzybool
leq :: Real —> Real —> Fuzzybool
isPositive :: Real —> Fuzzybool

isZero :: Real —> Fuzzybool

WFLP 2013 17/31

® Auxiliary Types and Functions

WFLP 2013 18/31

Auxiliary Types and Functions: Rational Numbers

data Rat = Rat Int Int

num :: Rat —> Int
denom :: Rat —> Int
norm :: Rat —> Rat
ratn ;0 Int —> Rat
ratf 0 Int —> Int —> Rat

add :: Rat —> Rat —> Rat
sub :: Rat —> Rat —> Rat
mul :: Rat —> Rat —> Rat
neg :: Rat —> Rat

eq :: Rat —> Rat —> Bool
le :: Rat —> Rat —> Bool
leq :: Rat —> Rat —> Bool

WFLP 2013 19/31

Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

eq x y = Fuzzy f
» f: Rat —-> Bool

» nondeterministic function
» depending on precision: £ r may yield true, false, or both

WFLP 2013 20/31

Auxiliary Types and Functions: Fuzzybool

Fuzzybool - result type of e.g. comparing two reals for equality

eq x y = Fuzzy f

» f: Rat -> Bool
» nondeterministic function
» depending on precision: £ r may yield true, false, or both

data Fuzzybool = Fuzzy (Rat —> Bool)

defuzzy :: Fuzzybool —> Rat —> Bool
defuzzy (Fuzzy f) r = f r

WFLP 2013 20/31

Auxiliary Types and Functions: Fuzzybool

andf :: Fuzzybool —> Fuzzybool —> Fuzzybool
andf a b = Fuzzy (\r —> (defuzzy r a) && (defuzzy r b))

orf :: Fuzzybool —> Fuzzybool —> Fuzzybool
orf a b = Fuzzy (\r —> (defuzzy r a) || (defuzzy r b))

notf :: Fuzzybool —> Fuzzybool
notf a = Fuzzy (\r —> not (defuzzy r a))

WFLP 2013 21/31

Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat

WFLP 2013 22/31

Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat

» isZero yields true if 0 is in the interval
> isZero yields false if some x not equal to O is in the interval
isZero :: Interval — Bool
isZero arg | q.leq (lower arg) (ratn 0) & q.leq (ratn
0) (upper arg) = True
isZero arg | q.le (lower arg) (ratn 0) || g.le (ratn 0)
(upper arg) = False

WFLP 2013 22/31

Auxiliary Types and Functions: Intervals

data Interval = Interval Rat Rat
lower :: Interval —> Rat
upper :: Interval —> Rat

» isZero yields true if 0 is in the interval
> isZero yields false if some x not equal to O is in the interval
isZero :: Interval — Bool
isZero arg | q.leq (lower arg) (ratn 0) & q.leq (ratn
0) (upper arg) = True
isZero arg | q.le (lower arg) (ratn 0) || g.le (ratn 0)
(upper arg) = False

» isPositive yields true if interval contains a positive number
» isPositive yields false if interval contains a non-positive number

isPositive :: Interval —> Bool
isPositive arg | q.le (ratn 0) (upper arg) = True
isPositive arg | q.leq (lower arg) (ratn 0) = False

WFLP 2013 22/31

O Representing Real Numbers as Cauchy Sequences

WFLP 2013 23/31

Real Numbers as Cauchy Sequences

data Real :: Cauchy (Int —> Rat)

realg :: Rat —> Real
realg a = (Cauchy (\. —> a))

WFLP 2013 24 /31

Real Numbers as Cauchy Sequences

data Real :: Cauchy (Int —> Rat)

realg :: Rat —> Real
realg a = (Cauchy (\. —> a))

add :: Real —> Real —> Real
add a b = Cauchy(\k —> let m=k+1 in g.add (get a m) (get b m))

sub :: Real —> Real —> Real
sub a b = add a (neg b)

neg :: Real —> Real
neg a = Cauchy(\k —> g.neg (get a m))

get :: Real —> Int — Rat
get (Cauchy x) k = x k

Similar for multiplication and other functions; determine look-ahead

WFLP 2013 24 /31

Real Numbers as Cauchy Sequences

eq :: Real —> Real —> Fuzzybool
eq x y = isZero (sub y x)

le :: Real —> Real —> Fuzzybool
le x y = isPositive (sub y x)

leq :: Real —> Real —> Fuzzybool
leqg x y = (f.notf . isPositive) (sub x y)

isZero and isPositive reduced to corresponding functions on intervals:

isPositive :: Real —> Fuzzybool
isPositive x = f.fuzzy(\r — i.isPositive(tolnterval r x))
isZero :: Real —> Fuzzybool

isPositive x = f.fuzzy(\r —> i.isZero(tolnterval r x))

function yielding interval realizing any given precision with respect to
the given x of type Real.

WFLP 2013 25/31

Real Numbers as Cauchy Sequences

Given p of type Rat and x of type Real:

tolnterval determines an interval containing X € R represented by x and
approximating X with precision p.

tolnterval :: Rat —> Real —> Interval
tolnterval p x = let y = approx p x in
interval (q.sub y p) (g.add y p)

approx :: Rat —> Real —> Rat

approx p x = get x (prec p)

prec :: Rat —> Int

prec x | g.le (ratn 0) x = minexp q.leq x (ratf 1 2)

approx p x approximates X with precision p

WFLP 2013 26/31

Example: Square Root

Xo = 2
Xk+1 =) (Xn + Z)
has the limit
Jim x = V2.

sqrt2 :: Real
sqrt2 = Cauchy (\k —> sqrt2sub (ratf 0 1) (ratf 2 1)
(g.power (ratf 1 2) k))

sqrt2sub :: Rat —> Rat —> Rat —> Rat
sqrt2sub x1 x2 e =
let u =qg.max x1 x2
| = g.min x1 x2
in if g.leq (gq.sub u |) e then x2
else sqrt2sub x2 (q.mul (ratf 1 2) (g.add x2
(g.dvd (ratf 2 1) x2))) e

WFLP 2013 27 /31

Example: Decimal Representation

dec :: Real —> Int —> String

dec x k

returns value of X as a string containing k decimal places
(no rounding)

real> dec sqrt2 10

Result: ”1,4142135623”

More Solutions? [Y(es) n(o) a(ll)]
Result: ”1,4142135624”

More Solutions? [Y(es) n(o) a(ll)]
No more Solutions

WFLP 2013 28 /31

Example: Decision Functions

sign function on R

1 if x>0
sign(x) =40 ifx=0
-1 ifx<0

not exactly computable
= multi-function
= nondeterministic function in Curry

With additional precision parameter p:

sgn :: Rat —> Real —> Int

sgn p x | defuzzy p (r.isPositive x) == True = 1

sgn p x | defuzzy p (r.isZero x) == True = 0

sgn p x | defuzzy p (notf (r.isPositive x)) == True = -1

WFLP 2013 29/31

@ Conclusions and further work

WFLP 2013 30/31

Conclusions and further work

» Type-2 Theory of Effectivity (TTE) [Weihrauch 2000]
» computation on infinite objects
» multi-functions
» exact real arithmetic in Curry based on TTE
» high-level declarative approach using features of Curry
» functional concept
» lazy evaluation
» non-determinism
» implemented system
» rich set of functions (including exp, log, In, sin, cos, ...)
» alternative representations (Cauchy sequences, Cauchy
sequences with rounding, intervals)

applications
efficiency
complexity issue

vV v v VY

WFLP 2013 31/31

	Motivation and Background
	Computable Functions
	Type-2 Machines
	Type-2 Machines for Functions on R

	An Abstract View on the Data Type Real
	Auxiliary Types and Functions
	Representing Real Numbers as Cauchy Sequences
	Conclusions and further work

