
Composable Memory Transactions

in Concurrent Haskell

Frank Huch and Frank Kupke

University of Kiel, Institute of Computer Science
Olshausenstr. 40, 24098 Kiel, Germany
{fhu,frk}@informatik.uni-kiel.de

Abstract. Composable memory transactions are a new communication
abstraction for Concurrent Haskell, which provides the programmer with
a composable communication concept. Unfortunately, composable mem-
ory transactions are implemented as external functions for ghc version
6.4 and not available for other implementation of Concurrent Haskell.
We present an implementation of memory transactions within Concur-
rent Haskell. The presented library can be executed within older ghc
versions as well as with the popular Hugs system. Benchmarks show,
that our library performes well. Furthermore, our (high-level) implemen-
tation can be extended and maintained more easily than the low-level
implementation provided by ghc 6.4.

1 Introduction

Harris, Marlow, Peyton Jones and Herlihy proposed a new communication ab-
straction for Concurrent Haskell [10, 9], called software transactional memory

(STM) [6]. The approach is based on the transaction concept known from data-
bases and allows programmers to specify transaction sequences which are exe-
cuted atomically. In comparison to lock-based approaches, this concept provides:

– freedom from deadlock and priority inversion
– automatic roll-back on exceptions or timeouts
– freedom from the tension between lock granularity and concurrency

The approach is efficiently implemented as external C primitives in the newest
release (6.4) of the Glasgow Haskell Compiler (ghc) [5]. The implementation
relies on the fair implementation of Concurrent Haskell within ghc and is not
portable to other implementation of Concurrent Haskell, as in Hugs [8].

We present an implementation of STMs within Concurrent Haskell, which
is executable on every platform providing Concurrent Haskell, including Hugs
(which also implements Concurrent Haskell within Haskell [2]). Although our
(final) implementation is up to 6 times slower than the external implementation
provided in ghc, it will be sufficiently fast in many applications (which usually
do not perform transactions all the time as our benchmark programs do) and ap-
pears to be a good platform for experiments with possible extensions of STMs. A



high-level implementation has also the opportunity of being more maintainable.
Finally, our completely different implementation could also inspire the devel-
opers of the external implementation for more elegant or even more efficient
code.

The paper is organized as follows: Section 2 introduces STMs and Section 3
defines our basic STM monad definition. Our first implementation is defined in
Section 4, which is then redefined to our second approach in Section 5. More
implementation details are presented in Section 6, before we discuss benchmarks
in Section 7 and conclude in Section 8.

2 Software Transactional Memory

Transactions provided by ghc 6.4 and described in [6] provide a monad STM as an
abstract data type for transactions. The execution of a transaction is guaranteed
to be “atomically” with respect to other concurrently executed threads. STMs
provide optimistic synchronization, which means transactions are interleaved
with other transactions. A transaction is committed only if no other transaction
has modified the memory its execution depended on. Otherwise, the transaction
is restarted.

For communication inside the STM monad it provides transactional variables,
in terms of the abstract data type TVar. The interface is defined as follows:

data STM a -- abstract

instance Monad STM

-- Running STM computations

atomically :: STM a -> IO a

retry :: STM a

orElse :: STM a -> STM a -> STM a

-- Transactional variables

data TVar a -- abstract

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

Transactions are started within the IO monad by means of atomically1. When
a transaction is finished, it is validated that the transaction was executed on
a consistent system state, i.e. no other finished transition may have modified
relevant parts of the system state in the meantime. In this case, the modifica-
tions of the transaction are committed. Otherwise, they are discarded and the
transaction is re-executed. Accordingly, inconsistent transactions can also be de-
tected by programmers and aborted manually by calling retry. The provided
implementation of retry avoids busy waiting and suspends the thread perform-
ing retry until a re-execution again makes sense. On top of retry, as a kind of

1 In [6] this function was called atomic.

2



alternative composition, it is possible to combine transaction as: stm1 ‘orElse‘

stm2. If stm1 performs a retry action, then this is caught and stm2 is executed.
If stm1 succeeds, then stm2 is not executed at all.

Data modifiable by transactions is stored in TVars, which can only be manip-
ulated within the STM monad. Beside modifications of TVars, no other side effects
like input/output are allowed with the STM monad, which makes it possible to
re-execute transitions.

Finally, the STM monad provides exception handling, similar to the exception
handling ghc provides for the IO monad. For details see [6].

As a simple example, we present an implementation of the well-known din-
ing philosophers using STMs. The sticks are represented by boolean TVars. True
means the stick is laying on the table, i.e. it is available.

import STM

type Stick = TVar ()

takeStick :: Stick -> STM ()

takeStick s = do b <- readTVar s

if b then writeTVar s False

else retry

putStick :: Stick -> STM ()

putStick s = writeTVar s True

phil :: Int -> Stick -> Stick -> IO ()

phil n l r = do atomically $ do takeStick l

takeStick r

putStrLn (show n++". Phil is eating.")

atomically $ do putStick l

putStick r

phil n l r

startPhils :: Int -> IO ()

startPhils n = do sync <- newEmptyMVar

ioSticks <- atomically $ do

sticks <- mapM (const (newTVar True)) [1..n]

return sticks

mapM_ (\(l,r,i)->forkIO (phil eatings sync i l r))

(zip3 ioSticks (tail ioSticks) [1..n-1])

phil n (last ioSticks) (head ioSticks)

When trying to take a non-available stick, takeStick performs retry. The
philosopher suspends until its neighbor puts the stick back onto the table. In the
definition of putStick we do not perform a similar check since the behavior of
one philosopher thread guarantees that the stick is not laying on the table (the
TVar contains False) when performing putStick. However, this would be pos-
sible, too, and we used such a version for benchmarking as well. By combining
the two actions for taking the sticks as one atomic STM transaction, the program

3



is deadlock free. Putting the sticks back on the table in one atomic action is not
necessary, but is shorter than writing atomically twice.

The code for starting n philosophers is just presented for completeness and
not discussed any further.

3 Implementing STMs in Concurrent Haskell

We present two different implementations of STMs within Concurrent Haskell.
Both can be used in any Concurrent Haskell implementation, like older ghc
versions and Hugs. In comparison to the STM implementation available in ghc
6.4, our implementations have a (worst-case) slow down between 4 to 30.

In both approaches we define the STM monad as an extension of the IO monad
with a state used for collecting information about the execution of a transaction.
The STM monad is defined similarly to other IO monad extension, e.g. the GUI

monad defined in TclHaskell [3] or other libraries for graphical user interfaces:

data STM a = STM (STMState -> IO (STMResult a))

instance Monad STM where

(STM tr1) >>= k = STM (\state -> do

stmRes <- tr1 state

case stmRes of

Success newState a ->

let (STM tr2) = k a in

tr2 newState

Retry newState -> return (Retry newState)

Invalid -> return Invalid

)

return x = STM (\state -> return (Success state x))

data STMResult a = Retry STMState

| Invalid

| Success STMState a

The data type STMResult covers the relevant results of an STM action. The type
STMState is the state carried through the STM monad. Its concrete realization
will be discussed further in each implementation.

4 Collecting modifications in TVars

Our first approach for implementing STMs is closely related to the implementation
presented in [6] where a thread-local transaction log is used to collect and share
all TVar accesses within a thread. The transaction log holds references to all
used TVars and is responsible for the necessary verify and commit actions.

The original STM implementation [6] uses thread-local TLogs referencing the
global TVars. Therefore, each TLog is a list pointing to each TVar used in its
thread. Unfortunately, in general, TVars have different types. This prohibits using

4



the same data structure in our implementation because of Haskell’s strict type
system. We use the opposite referencing structure instead: each TVar contains a
log which simply stores a list of its new local values of all threads/atomic blocks
it was modified by. This list maps transaction identifiers (ID, discussed in more
detail in Section 6.2) to locally modified values.

The TVar value itself is stored as an IORef so that it can later be compared
with the TVar value itself (IORef (IORef a)) by pointer comparison. Whenever
a value is written to a TVar in a thread, we create a new IORef so that the
comparison with the old value IORef will indicate the modification. Finally, the
TVar contains a wait queue for retries (discussed in Section 4.1):

data TVar a = TVar (IORef (IORef a)) -- the TVar content

(MVar [(ID,IORef a)] -- thread local TVar copies

(MVar [MVar ()]) -- wait queue on retry

If a readTVar or writeTVar action is performed, the corresponding thread up-
dates its local version of the TVar value. To guarantee atomic modifications of
the TVar copies, these are embedded into an MVar. The local TVar value is ac-
cessed by a transaction identifier. Here we first used ThreadIds to emulate the
thread-local TLog structure used in [6]. ThreadIDs can be used to identify each
transaction as each thread can execute only one atomic transaction at a time.
Since ThreadIds are not available in Hugs each STM action obtains a fresh stmId

when started instead. Details how we provided identifiers are discussed in Sec-
tion 6.2. The stmId is part of the STMState passed through our STM monad.
Writing a TVar can now easily be defined as follows:

writeTVar (TVar _ tLog _) v = STM $ \stmState -> do

tLogs <- takeMVar tLog

putMVar tLog ((stmId stmState,v):tLogs)

readTVar (TVar tVarRef tLog _) = STM $ \stmState -> do

tLogs <- takeMVar tLog

case lookup (stmId stmState) tLogs of

Just v -> return v

Nothing -> do tVarVal <- (readIORef tVarRef)

readIORef tVarVal

This implementation simply maskes old values within the log list. In the real
implementation these values are replaced, to keep log lists short.

Now, we have to find an implementation for checking the validity of a trans-
action and committing all modifications performed within a transaction. Again,
the type system does not allow holding a list of all read (for checking valid-
ity) and written (for committing) TVars. As a solution, we collect respective
IO functions and eventually execute them at the end of the atomic block. For
validating, this is an action of type IO Bool and for committing of type IO ().
Furthermore, we need a function for discarding the logs within the TVars.

So far, we have introduced most of the information to be kept in the STMState,
which is defined as the following record:

5



data STMState = STMState {isValid :: IO Bool,

commit :: IO (),

discard :: IO (),

wait :: IO (),

retryMVar :: MVar (),

stmId :: ID}

The components wait and retryMVar are needed for suspending in retry and
are discussed in Section 4.1.

Validation, commit and discard actions within the state are extended in
each readTVar or writeTVar action. The function readTVar extends the already
stored validation by a comparison of its own value with the local new value stored
in its log:

readTVar (TVar tVarRef tLog _) = STM $ \stmState -> do

... -- read the value of the TVar bound in variable val

oldVal <- readIORef tVarRef

let newState = stmState{isValid = do

b <- isValid stmState

if b then do

tVarVal <- readIORef tVarRef

return (tVarVal == oldVal)

else return False}

return (Success newState val)

In a writeTVar action the commit function is build up to copy the local TVar
value into the real TVar thus committing a successful atomic action.

writeTVar tVar@(TVar tVarRef tLog _) = STM $ \stmState -> do

...

let newState = stmState{

commit = do commitAct (stmId stmState) tVar

notify waitQ

commit stmState,

discard = do tLogs <- takeMVar tLog

let (pres, _:posts) = break ((stmId==) . fst) tLogs

putMVar tLog (pres ++ posts)

discard stmState}

return (Success newState ())

commitAct :: ID -> TVar a -> IO ()

commitAct stmId (TVar tVarRef tLog _) = do

tLogs <- readMVar tLog

tVarVal <- readIORef tVarRef

let Just newRef = lookup stmId tLogs

readIORef newRef

newTVarVal <- newIORef v

writeIORef tVarRef newTVarVal

The action commit does not only copy new values within the TVars. It also
notifies other transactions suspended within a retry action. This and the im-
plementation of notify are discussed in more detail in Section 4.1.

6



The function atomically starts and validates transactions. Non-valid trans-
actions are discarded (the corresponding TVar copies are deleted) and restarted.
Valid transitions are committed, i.e. the original TVar value is overwritten by the
value stored for the actual stmId. The IO functions for discarding and commit-
ting values are constructed in the readTVar and writeTVar actions and stored
in the STMState as shown above. The whole process of validating, committing
and discarding may not be interupted by any other concurrent thread which
is guaranteed by calling the functions takeGlobalLock and freeGlobalLock.
Their implementation is discussed in Section 6.1.

atomically :: STM a -> IO a

atomically stmAction = do

actionId <- getGlobalId

stmResult <- startSTM stmAction actionId

case stmResult of

Invalid -> atomically stmAction

Success newSTMState res -> do takeGlobalLock

valid <- isValid newSTMState

if valid then do

commit newSTMState

discard newSTMState

freeGlobalLock

return res

else do

discard newSTMState

freeGlobalLock

atomically stmAction

So far, a distinction between Invalid and Retry actions is not necessary and we
only consider the STMResult Invalid. The discussion of orElse in Section 6.3
will distinguish these two cases.

4.1 Retry

In STMs it is also possible that the programmer marks a branch of the execution
as invalid, by executing the retry action. For instance, a dining philosopher
calls retry when trying to take a non-available stick. Of course, if he already
sucessfully took his first stick, then he should put back his first stick, again.
Naturally, this is implemented within an atomic action as shown before.

When implementing retry it does not make sense to directly restart the
transaction, because the computation would execute exactly the same transac-
tion again and deterministically reach the same retry action again. Its deter-
ministic behavior only depends on the values of the TVars it read during its
execution. Hence, retry should suspend until any of the TVars read during its
execution is modified by another thread.

In Concurrent Haskell a thread can only suspend on no more than one MVar.
Hence, we introduce a retryMVar :: MVar () in the STMState, on which it
suspends in retry. Again, we guarantee the atomic execution of validation,
commit and restore by a global lock:

7



retry :: STM a

retry = STM (\stmState -> do

takeGlobalLock

valid <- isValid stmState

discard stmState

freeGlobalLock

if valid then do wait stmState

takeMVar (retryMVar stmState)

return Invalid

else return Invalid)

After validating a transaction stored modifications are discarded. Then, in case
of a valid transaction the thread should suspend. However, beforehand, it has to
register itself for being awoken again in each read TVar. This is implemented by
means of an accumulated wait action extending wait queues in all read TVars

in a similar way as presented for isValid, commit, and discard:

readTVar (TVar tVarRef tLog waitQ) = STM $ \stmState -> do

... -- val is bound here

let newState = stmState{wait = do

wait stmState

queue <- takeMVar waitQ

putMVar waitQ (retryMVar stmState:queue)}

return (Success newState val)

After executing all the wait actions retry suspends on its retryMVar and after
being awoken returns Invalid which initiates restarting the transaction in the
enclosing atomically.

For awaking suspended transactions, each committed writeTVar action sets
all registered retryMVars. The call to this notification was already integrated in
the definition of the commit action in writeTVar. For completeness, we present
the missing definition of notify:

notify :: MVar [MVar ()] -> IO ()

notify waitQ = do

queue <- takeMVar waitQ

mapM_ tryPutMVar queue

putMVar waitQ []

5 The Collecting Approach

Profiling programs using the presented STM implementation shows that

– much time is spent for modifying TVars and
– validation, commit and notification are very fast.

Since collecting actions performs very well, it would be nice to extend this idea
for the modifications while reading and writing as well. Inspecting transactions
from a more abstract point of view we observe that

8



– reading is in most cases performed on original TVars and

– writing is delayed to copying in commit.

Hence, why don’t we collect the writeTVar actions themselves in the commit

actions instead of an action which copies a value within the TVar? Then, the only
problematic case would be reading a TVar written beforehand. A modification
of a TVar is only available after performing the commit.

On one hand, in practice, programmers will try to avoid reading an already
written TVar, since the value written to the TVar is already known within the
transaction. On the other hand, composing transactions may create such cases,
in which two composed transactions modify and read the same TVar more than
once. We assume, that this case may occur in practice (and has to be handled
correctly by our implementation), but that it is not the regular case for every
TVar in every transaction. We assume, the loss of efficiency for this special case
will not matter compared to the gained speedup of using collected actions instead
of modifying data structures within the TVar representations.

But how can we correctly access the value of an already modified TVar. The
problem is, that we may not modify TVars to obtain the actual value, but the
only place where this value is stored is the accumulated commit action. A solution
is motivated by the search for deadlocks in Concurrent Haskell programs in [1].
Modifications of communication abstraction can be reversed. Hence, in parallel
to accumulating the commit action, we accumulate a restore action. With these
two actions, we can solve the problem with reading already written TVars. After
setting a global lock and checking validity of the actual transaction, we can
commit all TVar modifications, read the actual value, and revert the modified
TVars. Fortunately, the overhead for this expensive operation will in some cases
be balanced by the fact that the earlier validation restarts the transaction earlier.

To identify the situation in which an already written TVar is read, we have
to collect all modified TVars within the STMState. Again, Haskell’s type system
does not allow such a data structure. As before, this problem can be solved by
using unique identifiers which in this case identify the different TVars:

data TVar a = TVar (IORef (IORef a)) -- the TVar content

ID -- TVar identifier

(MVar [MVar ()]) -- wait queue on retry

The identifiers of all modified TVars within a transaction are stored in the
STMState. The modified STMState is defined as follows:

data STMState = STMState {stmId :: IORef (),

modifiedTVars :: [IORef ()],

isValid :: IO Bool,

commit :: IO (),

notify :: IO (),

restore :: IO (),

wait :: IO (),

retryMVar :: MVar ()}

9



If such an already modified TVar is read, then we have to consider the “actual”
value of this TVar within our STM Monad. Otherwise, readTVar behaves as before.

readTVar (TVar tVarRef tId waitQ) = STM $ \stmState ->

if elem tId (modifiedTVars stmState) then do

takeGlobalLock

valid <- fIsValid

if valid then do commit stmState

tVarVal <- readMVar tVarRef

val <- readIORef tVarVal

restore stmState

freeGlobalLock

return (Success stmState val)

else do freeGlobalLock

return Invalid

else ...

For completeness, we also present the new writeTVar code. The modifications
of the commit and notify actions stay unchanged.

writeTVar (TVar tVarRef tId waitQ) v = STM $ \stmState -> do

tVarVal <- readMVar tVarRef

let newState =

stmState{modifiedTVars=n:modifiedTVars threadState,

commit = ...

notify = ...

restore = do takeMVar tVarRef

putMVar tVarRef tVarVal

restore stmState}

return (Success newState ())

Note that we have to guard the commit and restore actions within readTVar

described above by a validation check to ensure consistency.
Within the implementation details of [6] a potential problem arising from

inconsistency has been highlighted with the following example:

f :: Integer -> Bool

f x = if x==0 then True else f (x-1)

foo v = atomically $ do

x <- readTVar v

y <- readTVar v

if f (x-y) then ... else ...

An inconsistent view of v can lead to nontermination. The solution proposed
in [6] is to check for consistency whenever the scheduler is about to switch a
thread engaged in a transaction. Of course, with our high-level approach access
to the scheduler is not easily feasable. Fortunately, this problem is similar to the
problem of reading an already written Tvar. The solution is easy. We extend the
modifiedTVars of a transaction to a list of touchedTVars which is also built up
when reading a TVar. Then, an additional validity check can be started when

10



reading a TVar for the second time. For long transactions taking many schedule
switches this may perform better than the approach taken in [6].

The nice idea behind the collecting approach is accumulating the whole trans-
action within IO actions, which may then be performed when reaching the end
of the transaction. Benchmarks show that this implementation performs very
well, as we will discuss in Section 7.

6 More Implementation Details

So far, we presented the whole implementation of STMs in Concurrent Haskell.
However, some aspects of the implementation are not discussed yet.

6.1 Global Locks

In the presented implementations, we had to ensure that in some cases threads
do not interfere, e.g., for validating and committing transactions. In the pre-
sented code, we called functions takeGlobalLock and freeGlobalLock in the
corresponding cases. The simplest implementation of a global lock can be imple-
mented as a global MVar () constant by means of unsafePerformIO:

globalLock :: MVar ()

globalLock = unsafePerformIO (newMVar ())

takeGlobalLock :: IO ()

takeGlobalLock = takeMVar globalLock

freeGlobalLock :: IO ()

freeGlobalLock = putMVar globalLock ()

However, it is also possible to avoid this unsafePerformIO call. We add both
a lock and an unlock IO () action to the STMState and extend each TVar with
an additional MVar ().

data STMState = STMState{...

touchedTVars :: [ID],

lock :: IO (),

unLock :: IO ()}

data TVar a = TVar (MVar (IORef a)) -- global TVar itself

ID -- TVar identifier

(MVar ()) -- TVar lock

(MVar [MVar ()]) -- wait queue on retry

Then the lock action is simply a collection of takeMVar calls on the TVar’s MVar.
Likewise, the unlock action is performed by putMVar calls. In order to avoid
deadlocks we must take care of collecting exactly one lock and unlock action
for each TVar accessed. Therefore, we use only the first readTVar or writeTVar

11



call to add both lock and unlock calls for the accessed TVar. To identify this
case, we can use the list of touchedTVars discussed in the end of Section 5. The
writeTVar function works similarly.

readTVar (TVar tVarRef tId tVarLock waitQ) = STM $ \stmState -> do

if elem tId (touchedTVars stmState)

then ...

else do

...

let newState = stmState{wait = ...

touchedTVars = tId:touchedTVars stmState,

lock = do takeMVar tVarLock

lock stmState,

unLock = do putMVar tVarLock ()

unLock stmState}

return (Success newState val)

However, measurements show that this implementation is slower than using a
global lock. Usually, the time for which a global lock is set is very short and
hence, we use a global lock in our implementation.

6.2 Unique Identifiers

In both approaches we needed unique identifiers: for identifying different STMs
in the first approach and different TVars in the second approach.

Again, a simple implementation uses a global state of Integer values (defined
by unsafePerformIO) which can only be increased, when getting a new id.

type ID = Integer

globalCount :: MVar ID

globalCount = unsafePerformIO (newMVar [0..])

getGlobalId :: IO ID

getGlobalId = do

num <- takeMVar globalCount

putMVar globalCount (num+1)

return num

Again, it would be nice to have an implementation without unsafePerformIO.
The idea is to use IORefs instead of numbers, since it is possible to compare them.

type ID = IORef ()

getGlobalId :: IO ID

getGlobalId = newIORef ()

The garbage collector takes care of unused IORefs. There is no need for explicit
releasing of identifiers at the end of an atomic block. However, the convenience
of these runtime system provided identifiers has to be paid by a slight slow down.

12



An alternative unsafePerformIO free implementation of unique identifiers can
be obtained by using stable pointers of Haskell’s Foreign Function Interface [4,
11]. However, being able to avoid using unsafePerformIO is nice and shows the
elegance of the presented implementation.

6.3 OrElse

So far, we have not considered the implementation of orElse. The semantics
of combining two transaction as stm1 ‘orElse‘ stm2 is, that if stm1 performs
a retry action, then all modifications within stm1 are discarded and stm2 is
performed. Hence, validating the whole transaction means validating that stm1

is still valid (reaching retry) and stm2 is valid. However, accumulated com-
mit/restore actions within stm1 have to be discarded. We implement this be-
havior by extending commit, restore, and notify to lists (stacks) of IO actions,
the other parts of the STMState stay unchanged:

data STMState = STMState{...

commits :: [IO ()],

notifys :: [IO ()],

restores :: [IO ()],

...}

At this point it is important to distinguish the STMResults:Invalid and Retry,
as only in the latter orElse may execute the second transaction. In our second
implementation Invalid as an intermediate STMResult is possible, since reading
an already modified TVar performs an intermediate validation.

orElse :: STM a -> STM a -> STM a

orElse (STM stm1) (STM stm2) =

STM (\stmState -> do

stm1Res <- stm1 stmState{commits = return ():commits stmState,

notifys = return ():notifys stmState,

restores = return ():restores stmState}

case stm1Res of

Retry newState ->

stm2 newState{commits = tail (commits newState),

notifys = tail (notifys newState),

restores = tail (restores newState)}

_ -> return stm1Res)

Note, that orElse extends the list of commit/notify/restore actions when ex-
ecuting stm1 and pops them again when (in case of retry) stm2 is executed.
As a matter of course, executing these actions in the definition of atomically
(and readTVar as well) must consider the list structure. For instance, instead of
commit stmState we have to perform:

sequence_ (reverse (commits stmState))

Reverting the list is necessary, because earlier modifications are located deeper
in the list. And the chronological order is important if the same TVar is written
twice within a transaction.

13



6.4 Exceptions

Exception handling as proposed for STMs can be integrated into the presented
implementations easily and is not discussed any further in this paper.

7 Benchmarks

Benchmarking concurrent programs using STMs is very difficult as execution times
strongly depend on the actual scheduling and sometimes differ significantly from
each other. This is also true for ghc 6.4’s STM implementation itself. In addition
the deviation depends on the test programs used as benchmark. Finally, our
benchmarks perform mostly transactions. Therefore, small modifications (e.g.,
using a global state or IORefs for implementing IDs) can show unproportional im-
pact. In real applications this will usually not be the case (real programs should
also compute something). Hence, the execution time of transactions will be less
relevant and most application will work fine with any correct implementation.

However, we want to present some conclusions of our benchmarks. The test
suite we used was executed automatically over and over again. At the end the me-
dian execution time was calculated and compared. Thereby we found that the
statistical deviation between different runs discussed before was much higher
than any performance gain of the median execution time by an improved imple-
mentation. However, the deviation of the original implementation is significantly
smaller. Further research has to be made to analyse these effects.

Although, the effort for reverting modifications in the second approach and
possibly overwriting own modifications within the same transaction seems less
efficient than the first approach, our measurements refute this expectation. Even
in examples, which modify the same TVar within one transaction several times
(e.g. a version of the dining philosophers in which a philosopher picks up and
lays down his sticks several times within an atomic transaction before eating),
the first approach is slower.

We made benchmark tests of the different evolution steps of our implementa-
tion including the two versions aforementioned and some additional deviations
with several concurrent programs accessing heavily the shared resources TVars.
Both regular and optimized versions were benchmarked using the ghc system.
Optimization speeds up the results of our first approach five times, our second
approach and its deviations by a factor of three and even the built-in solution
shown in [6] benefits by doubling the performance.

More of an interest is the comparison between the ghc based built-in solution
and our different approaches in optimized form. The C-library solution in [6] is,
of course, the fastest followed by our second (collecting) group of approaches
showing a slowdown of four to eight times compared to ghcs implementation.
By far the least performing implementation is our first one using many TVar

accesses. It is from ten to 30 times slower than the built-in one.

14



8 Conclusion

We have presented two re-implementations of software transactional memory
within Concurrent Haskell. The first implementation is closer related to the
implementation with ghc 6.4. Analyzing the run-time behavior of this imple-
mentation yields to a more high-level implementation accumulating commit and
validation actions within the state inside the STM monad. Benchmarks show, that
in worst case this implementation is between four to eight times slower than the
implementation in ghc 6.4. However, in real applications this will usually not be
a problem, since these programs will also perform other computations.

On the other hand, our implementation also has some advantages: Our library
can be executed in any Concurrent Haskell implementation, including Hugs and
older ghc versions. It works independently of the underlying scheduling model.
It is an implementation in a high-level language, which can be maintained and
extended more easily. Hence, it should be a good platform for further research on
transaction based communication in Concurrent Haskell. The library is available
from the first author’s web page.

For future work, we want to investigate how software transactions could be
extended and how they could be used for distributed programming. A good
basis should be the implementation of Distributed Haskell [7], which extends
Concurrent Haskell to a distributed setting.

References

1. Jan Christiansen and Frank Huch. Searching for deadlocks while debugging con-
current haskell programs. In ICFP ’04: Proceedings of the ninth ACM SIGPLAN

international conference on Functional programming, pages 28–39, New York, NY,
USA, 2004. ACM Press.

2. Koen Claessen. A poor man’s concurrency monad. Journal of Functional Pro-

gramming, 9(3):313–323, 1999.
3. Chris Dornan. Tcl + Haskell = TclHaskell. In Glasgow FP

Group Workshop, Pitlochry, Scotland, September 1998. see also
http://www.dcs.gla.ac.uk/ nww/TkHaskell/TkHaskell.html.

4. Manuel Chakravarty (ed.). The haskell 98 foreign function interface 1.0: An ad-
dendum to the haskell 98 report. http://www.cse.unsw.edu.au/chak/haskell/ffi/.

5. The Glasgow Haskell compiler. http://www.haskell.org/ghc/.
6. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-

able memory transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 48–60, New
York, NY, USA, 2005. ACM Press.

7. Frank Huch and Ulrich Norbisrath. Distributed programming in Haskell with
ports. In Proceedings of the 12th International Workshop on the Implementation

of Functional Languages, volume 2011 of Lecture Notes in Computer Science, pages
107–121, 2000.

8. The Haskell interpreter Hugs. http://www.haskell.org/hugs/.
9. Simon Peyton Jones. Tackling the awkward squad: monadic input/output, con-

currency, exceptions, and foreign-language calls in haskell. In Engineering theories

15



of software construction, Marktoberdorf Summer School 2000, NATO ASI Series.
IOS Press, 2001.

10. Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In
Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 295–308, St. Petersburg Beach,
Florida, 21–24 1996.

11. Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller. Extending the haskell
foreign function interface with concurrency. In Proceedings of the ACM SIGPLAN

workshop on Haskell, pages 57–68, Snowbird, Utah, USA, September 2004.

16


