
Declaring Numbers

Bernd Braßel1,2, Sebastian Fischer1,2 and Frank Huch1,2

Institute of Computer Science, University of Kiel
Olshausenstr. 40, 24098 Kiel, Germany

Abstract

Most implementations of functional and functional logic languages treat numbers and the basic numeric
operations as external entities. The main reason for this is efficiency. However, this basic design decision has
many unfortunate consequences for all programs using numbers. We present an approach to model numbers
in a declarative way and argue that the loss in efficiency is compensated by the newly gained possibilities.
Functional logic languages benefit the most from this proposal because all the numeric operations become
fully narrowable. This enables the solving of simple equations on numbers in an efficient way without having
to resort to external constraint solvers.
The presented approach can either be used as a library for purely declarative numbers or it can be employed
as a basic data type of functional (logic) languages. Indeed, we have integrated the presented data structures
as the only numbers available in our compiler for the functional logic language Curry.

Keywords: Implementation techniques, functional logic languages, numbers.

1 Introduction

Implementations of functional and functional logic languages usually provide num-
bers as an external data type and reuse the default implementation of the underlying
language (e.g. C) for the implementation of operation like (+), (-), (<=), (==).
This provides a very efficient implementation of complex arithmetic computations
within the high-level language.

However, in the context of functional logic languages, this approach results in
a major drawback: numbers cannot be guessed by means of narrowing. Semantic
extensions, like residuation [4,5], allow the user to use some restricted logical features
in combination with numbers. The idea is that all (externally defined) functions on
numbers suspend on unbound free variables. These residuating functions have to
be combined with a generator which specifies all possible values of a free variable.
As an example, we consider Pythagorean triples (a, b, c) with a2 + b2 = c2. This

1 This work has been partially supported by the German Research Council (DFG) under grant Ha 2457/5-2.
2 Email: {bbr,sebf,fhu}@informatik.uni-kiel.de

Electronic Notes in Theoretical Computer Science 216 (2008) 111–124

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.037

mailto:bbr@informatik.uni-kiel.de
mailto:sebf@informatik.uni-kiel.de
mailto:fhu@informatik.uni-kiel.de
http://www.elsevier.com/locate/entcs

problem can be implemented in PAKCS by means of the test and generate pattern
[1]:

pyt | a*a+b*b=:=c*c &
c =:= member [1..] & b =:= member [1..c] & a =:= member [1..c]

= (a,b,c)
where a,b,c free

member (y:ys) = y ? member ys

First, the search tests whether a combination of a, b and c is a Pythagorean triple.
Since PAKCS cannot guess natural numbers this test is suspended by means of
residuation for external functions (+) and (*). Now the programmer has to add
good generator functions which efficiently enumerate the search space.

If, like in PAKCS, a depth first search strategy is used, it is especially important
to restrict the search space for a and b to a finite domain. In practical applications,
finding good generator functions is often much more complicated than in this simple
example.

Moreover, residuation sacrifices completeness and detailed knowledge of internals
is required to understand why the following very similar definition produces a run-
time error.

pyt’ | a*a + b*b =:= c*c = generate a b c where a,b,c free
generate a b c
| c =:= member [1..] & b =:= member [1..c] & a =:= member [1..c]
= (a,b,c)

On the other hand, the most beautiful standard examples for the expressive power
of narrowing are defined for Peano numbers:

data Peano = O | S Peano

add O m = m
add (S n) m = S (add m n)

mult O _ = O
mult (S n) m = add m (mult m n)

Not only can these functions be used for their intended purpose, but also to define
new operations by inverting them. For instance, the subtraction function can be
defined by means of add:

sub n m | add r m =:= n = r
where r free

Note, that we obtain a partial function, since we did not define a Peano represen-
tation of negative numbers. By means of narrowing, a solution for the constraint
add r m =:= n generates a binding for r. This binding is the result of sub.

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124112

For a solution of the Pythagorean triples, it is much easier to use Peano numbers
instead of predefined integers. We can easily define a solution to this problem as
follows:

pyt | (a ‘mult‘ a) ‘add‘ (b ‘mult‘ b) =:= (c ‘mult‘ c) = (a,b,c)
where a,b,c free

It is not necessary to define any generator functions at all. In combination with
breadth first search, all solutions are generated.

Furthermore, if the result c of the Pythagorean equation is already known (e.g.,
c = 20) and you are only interested in computing a and b, then it is even possible
to compute this information with depth first search. The given equation already
restricts the search space to a finite domain.

pyt | c =:= intToPeano 20 &
(a ‘mult‘ a) ‘add‘ (b ‘mult‘ b) =:= (c ‘mult‘ c) = (a,b,c)

where a,b,c free

We obtain the solutions: (a, b) ∈ {(0, 20), (12, 16), (16, 12), (20, 0)}.
Unfortunately, using Peano numbers is not appropriate for practical applications,

as a simple computation using Peano numbers in PAKCS shows: computing the
square of 1000 already takes 7 seconds. As a consequence, the developers of Curry [7]
proposed the external type Int in combination with residuating, external functions
for numbers.

In this paper we present an alternative approach which is as flexible as Peano
numbers but is, in practical applications, almost as efficient as externally defined
numbers: a binary encoding of natural numbers. In a second step we extend these
natural numbers with an algebraic sign and add zero to represent arbitrary integers.

We do not intend to provide means of solving complex numeric equations (“num-
ber crunching”) by narrowing. The purpose of the presented approach is to improve
the integration of numbers into the language. Using our representation of numbers,
the programmer does no longer have to worry about floundering goals when applying
functional logic programming techniques like those presented in [1].

2 Numbers and Numeric Operations

2.1 Natural Numbers

Our representation of natural numbers is defined only for numbers greater than
zero. We consider zero and negative numbers in Subsection 2.2.

data Nat = IHi | O Nat | I Nat

Natural numbers are represented in binary notation with the least significant bit
first. The most significant bit is always one and, therefore, denoted IHi. The main
reason to define natural numbers without zero is the unique representation. When
zero is present as a terminal constructor of type Nat any number is representable
in infinitely many ways with leading zeros. This is a serious obstacle for functional

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 113

logic languages since the search space to derive numbers is always infinite in that
case. The values of type Nat can be related to natural numbers as follows:

IHi =̂ 1

O (nat(n)) =̂ 2n

I (nat(n)) =̂ 2n + 1

It is straightforward to define the successor function on this data type.

succ :: Nat -> Nat
succ IHi = O IHi 1 + 1 = 2 · 1
succ (O n) = I n 2n + 1 = 2n + 1
succ (I n) = O (succ n) (2n + 1) + 1 = 2 · (n + 1)

After each rule in the definition of succ we give an equational reasoning for its
correctness. This is one part of the proof that our functions implement the intended
semantics. In general, the proof consists in combining three considerations:

• completeness of pattern matching: This is in most cases directly observable in
the given definitions.

• correctness of defined rules: This is demonstrated by equations added to each
rule. To check the equations, it is important to remember that all occurring
variables stand for positive natural numbers.

• termination: Because of laziness, our functions are normally also defined on in-
finite numbers. Therefore, we distinguish two categories of termination. In this
section these categories only apply to deterministic expressions. Considerations
with respect to narrowing will follow in Section 3.

(i) nf-termination: We call an expression nf-terminating iff it evaluates to a normal
form in finitely many steps. We call a function f “nf-terminating for arguments
of categories C1 . . . Cn” iff the application of f to arguments of that categories
is a nf-terminating expression. For instance, we will show below that succ
nf-terminates if its argument is nf-terminating. All of the defined functions nf-
terminate for nf-terminating arguments because they inductively descend on at
least one of these arguments.

(ii) hnf-termination: We call an expression hnf-terminating iff it evaluates to a head
normal form of arbitrary depth in finitely many steps. repeat True 3 is an ex-
ample for an hnf-terminating expression that is not terminating. Analogous to
nf-termination we will also say that a function hnf-terminates for certain cate-
gories of arguments. E.g., succ hnf-terminates if its argument hnf-terminates.

The function succ nf-terminates for nf-terminating input since it descends on its
only argument. Moreover, each rule directly produces a head normal form, yielding
that succ hnf-terminates for hnf-terminating input.

3 repeat x = x:repeat x

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124114

The function succ is used to easily build add on natural numbers.

add :: Nat -> Nat -> Nat
IHi ‘add‘ m = succ m 1 + m = m + 1
O n ‘add‘ IHi = I n 2n + 1 = 2n + 1
O n ‘add‘ O m = O (n ‘add‘ m) 2n + 2m = 2 · (n + m)
O n ‘add‘ I m = I (n ‘add‘ m) 2n + (2m + 1) = 2 · (n + m) + 1
I n ‘add‘ IHi = O (succ n) (2n + 1) + 1 = 2 · (n + 1)
I n ‘add‘ O m = I (n ‘add‘ m) (2n + 1) + 2m = 2 · (n + m) + 1
I n ‘add‘ I m = O (succ n ‘add‘ y) (2n + 1) + (2m + 1) = 2 · (n + 1 + m)

For implementations making use of symmetric pattern matching, the first equation
should be spelled out to match the second and fifth equation plus a case for IHi
and IHi. The languages considered here all perform a left-to-right matching for this
example and, hence, the given definition is sufficient.

Function add nf-terminates for nf-terminating input as it inductively descends
both arguments. Hnf-termination is also given for hnf-terminating arguments, as
each rule directly produces an hnf or calls the hnf-terminating function succ.

mult :: Nat -> Nat -> Nat
IHi ‘mult‘ m = m 1 · m = m

O n ‘mult‘ m = O (n ‘mult‘ m) (2n) · m = 2 · (n · m)
I n ‘mult‘ m = O (n ‘mult‘ m) ‘add‘ m (2n + 1) · m = 2 · (n · m) + m

This definition is clearly asymmetric. However, the following consideration shows
that the result symmetrically relies on both arguments.

mult nf-terminates iff both arguments nf-terminate as it descends the first ar-
gument and finally yields the second argument as a result. Hnf-termination is also
given for hnf-terminating arguments, since either one of those arguments is returned
(first rule) or a constructor is produced directly (second rule) and because add di-
rectly produces an hnf for the call O e1 ‘add‘ e2 if e2 is hnf-terminating, regardless
of e1 (third rule).

Next is comparing two numbers. Traditionally, comparing in a functional logic
language maps to the ordering type.

data Ordering = LT | EQ | GT

Respectively, the constructors denote the results “less than”, “equal” and “greater
than”. We also use the tests corresponding to this data definition, i.e., isEQ, isLT,
isGT :: Ordering -> Bool. It is convenient to simply map two arguments on
this type and formulate the relations (<=),(<),(>=),(>) in terms of a comparison
function like compNat or compare which is defined later. compNat compares two
natural numbers as follows. We denote by ◦ any of the relations <,=, >.

compNat :: Nat -> Nat -> Ordering
compNat IHi IHi = EQ 1 = 1
compNat IHi (O _) = LT 1 < 2n

compNat IHi (I _) = LT 1 < 2n + 1
compNat (O _) IHi = GT 2n > 1

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 115

compNat (O n) (O m) = compNat n m 2n ◦ 2m ⇔ n ◦ m

compNat (O n) (I m)
| isEQ cmpnm = LT n = m ⇒ 2n < 2m + 1
| otherwise = cmpnm (n > m ⇒ 2n > 2m + 1)∧
where cmpnm = compNat n m (n < m ⇒ 2n < 2m + 1)

compNat (I _) IHi = GT 2n + 1 > 1
compNat (I n) (O m)
| isEQ cmpnm = GT n = m ⇒ 2n + 1 > 2m

| otherwise = cmpnm (n > m ⇒ 2n + 1 > 2m)∧
where cmpnm = compNat n m (n < m ⇒ 2n + 1 < 2m)
compNat (I n) (I m) = compNat n m (2n + 1) ◦ (2m + 1) ⇔ n ◦ m

Because the result type Ordering is a simple enumeration type hnf-termination
and nf-termination coincide and we simply speak of termination. Since compNat
simultaneously descends on both arguments, it terminates whenever at least one of
its arguments is nf-terminating and the other is at least hnf-terminating. Note that
the comparison only takes as many steps as the size of the smaller argument. This
is a nice property helping on efficiency.

Now we define (<=),(<),(>=),(>) as follows:

n < m = isLT (compare n m)
n > m = isGT (compare n m)
n <= m = not (n > m)
n >= m = not (n < m)

For Curry, note that by defining the relations on base of compare, we obtain a
narrowable definition of the comparing operations instead of a rigid one. We think
that having numbers as external base type is one of the main reasons why these
operations where defined rigidly in Curry in the first place.

We can do better, however, than defining

n == m = isEQ (compare n m)
n /= m = not (n == m)

by sticking to the usual definition of (==) which directly compares the constructors.
For non-equal values this implementation can even yield a result without evaluating
any of its arguments completely.

We now turn to the last operator solely defined on natural numbers. This is
the function pred which computes the predecessor of a given natural number. Of
course, this operator can only be defined partially. This partiality will then lead to
the extension of our numbers to integers in the next section.

pred (O IHi) = IHi 2 − 1 = 1
pred (O n@(O _)) = I (pred n) 2 · 2n − 1 = 2 · (2n − 1) + 1
pred (O (I n)) = I (O n) 2 · (2n + 1) − 1 = 2 · 2n + 1
pred (I n) = O n 2 · n + 1 − 1 = 2 · n

pred nf-terminates on nf-terminating input because it descends on its argument.
For hnf-terminating input it hnf-terminates as each rule produces a constructor

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124116

immediately. pred fails if its argument is IHi.
The function pred is a good example to illustrate that our categorization cap-

tures subtle differences. Should we, for instance, use the alternative definition

pred’ x | succ y =:= x = y where y free

hnf-termination for hnf-terminating input would not be given. The reason is that
(=:=) demands the full evaluation of x to normal form.

pred is important for two reasons. For one it can be used to define the useful
(n+1) patterns in an unproblematic way. These patterns can either simply be taken
as syntactic sugar for a function pattern [2] (succ n) or be translated to a simple
case distinction:

f (n+1) = e ⇒ f (I n’) = let n=O n’ in e

f n’@(O _) = let n=pred n’ in e

Note, that in the context of positive natural numbers, this pattern has a slightly
different semantics than in Haskell: the smallest value which n can be bound to is
1, not 0.

Secondly, pred is used in the definition of subtraction. Subtraction naturally
leads to the domain of integers.

2.2 Integers

We define integers as signed natural numbers.

data Int = Pos Nat | Zero | Neg Nat

We first define the basic operations (+1), (−1) and (·2) from which we will build
the more complex operations. In the equations we employ the usual signed notation
for integers, i.e., −n for the negative number with absolute value n.

inc, dec, mult2 :: Int -> Int
inc Zero = Pos IHi 0 + 1 = 1
inc (Pos n) = Pos (succ n) n + 1 = n + 1
inc (Neg IHi) = Zero −1 + 1 = 0
inc (Neg (O n)) = Neg (pred (O n)) −2n + 1 = −(2n − 1)
inc (Neg (I n)) = Neg (O n) −(2n + 1) + 1 = −2n

dec Zero = Neg IHi 0 − 1 = −1
dec (Neg n) = Neg (succ n) −n − 1 = −(n + 1)
dec (Pos IHi) = Zero 1 − 1 = 0
dec (Pos (O n)) = Pos (pred (O n)) 2n − 1 = 2n − 1
dec (Pos (I n)) = Pos (O n) 2n + 1 − 1 = 2n

mult2 Zero = Zero 0 · 2 = 0
mult2 (Pos n) = Pos (O n) n · 2 = 2n

mult2 (Neg n) = Neg (O n) −n · 2 = −(2n)

All three functions inc, dec and mult2 perform a simple pattern matching before di-
rectly returning a head normal form. They therefore inherit hnf- and nf-termination

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 117

from their arguments and the functions pred and succ, respectively.
Employing the three basic operations we can define subtraction on natural num-

bers in a concise way. Subtraction maps two natural numbers to an integer.

sub :: Nat -> Nat -> Int
IHi ‘sub‘ m = inc (Neg m) 1 − m = (−m) + 1
O n ‘sub‘ IHi = Pos (pred (O n)) 2n − 1 = 2n − 1
O n ‘sub‘ O m = mult2 (n ‘sub‘ m) 2n − 2m = 2 · (n − m)
O n ‘sub‘ I m = dec (mult2 (n ‘sub‘ m)) 2n − (2m + 1) = 2 · (n − m) − 1
I n ‘sub‘ IHi = Pos (O n) 2n + 1 − 1 = 2n

I n ‘sub‘ O m = inc (mult2 (n ‘sub‘ m)) 2n + 1 − 2m = 2 · (n − m) + 1
I n ‘sub‘ I m = mult2 (n ‘sub‘ m) 2n + 1 − (2m + 1) = 2(n − m)

If both arguments nf-terminate then sub also nf-terminates as sub descends on
both arguments and calls only functions which also nf-terminate for this category
of arguments. Moreover, if the first argument nf-terminates and the second at least
hnf-terminates then sub hnf-terminates because it descends on the first argument,
finally calling the hnf-terminating function inc (first rule) and it calls only hnf-
terminating functions on the right hand sides of the remaining rules.

Employing add,sub,mult on natural numbers, we can simply define their coun-
terparts on integers.

(+), (-), (*) :: Int -> Int -> Int
Pos n + Pos m = Pos (n ‘add‘ m) n + m = n + m

Neg n + Neg m = Neg (n ‘add‘ m) −n + (−m) = −(n + m)
Pos n + Neg m = n ‘sub‘ m n + (−m) = n − m

Neg n + Pos m = m ‘sub‘ n −n + m = m − n

Zero + n = n 0 + n = n

n@(Pos _) + Zero = n n + 0 = n

n@(Neg _) + Zero = n n + 0 = n

n - Neg m = n + Pos m n − (−m) = n + m

n - Pos m = n + Neg m n − m = n + (−m)
n - Zero = n n − 0 = n

Pos n * Pos m = Pos (n ‘mult‘ m) n · m = n · m
Pos n * Neg m = Neg (n ‘mult‘ m) n · (−m) = −(n · m)
Neg n * Neg m = Pos (n ‘mult‘ m) −n · (−m) = n · m
Neg n * Pos m = Neg (n ‘mult‘ m) −n · m = −(n · m)
Zero * _ = Zero 0 ∗ n = 0
Pos _ * Zero = Zero n ∗ 0 = 0
Neg _ * Zero = Zero n ∗ 0 = 0

All termination properties are inherited from the operations on natural numbers.

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124118

Likewise we can build compare on integers on the comparison of natural num-
bers.

compare :: Int -> Int -> Ordering
compare Zero Zero = EQ 0 = 0
compare Zero (Pos _) = LT 0 < n

compare Zero (Neg _) = GT 0 > −n

compare (Pos _) Zero = GT n > 0
compare (Pos n) (Pos m) = compNat n m n ◦ m ⇔ n ◦ m

compare (Pos _) (Neg _) = GT n > −n

compare (Neg _) Zero = LT −n < 0
compare (Neg _) (Pos _) = LT −n < m

compare (Neg n) (Neg m) = compNat m n −n ◦ −m ⇔ m ◦ n

Again all termination properties are inherited.

2.3 Division and Modulo

Last we want to introduce division and modulo operations in the following sense.

n = m ∗ d + r ∧ r < m ⇔ div(n, m) = d ∧ mod(n, m) = r

We only add these definitions for completeness but we are not yet satisfied with
the implementation. Therefore we omit completeness, termination and narrowing
results for the division and modulo operation.

Analogous to the previous sections we first define simple basic operations to
build on. First the partially defined shift operation corresponds to what is known
as a “logical right shift”.

shift :: Nat -> Nat
shift (O n) = n
shift (I n) = n

Obviously, shift nf- (hnf-)terminates whenever its argument nf- (hnf-) terminates.
Next, we define the special case of modulo 2.

mod2 :: Nat -> Int
mod2 IHi = Pos IHi 1 = 2 · 0 + 1 ∧ 1 < 2
mod2 (O _) = Zero 2n = 2n + 0 ∧ 0 < 2
mod2 (I _) = Pos IHi 2n + 1 = 2n + 1 ∧ 1 < 2

mod2 nf-terminates if its argument hnf-terminates.
We can now specify the general operation which computes div and mod for given

natural numbers.

divmod :: Nat -> Nat -> (Int,Int)
divmod x y
| y==IHi = (Pos x,Zero) x = x · 1 + 0 ∧ 0 < 1
| otherwise =

case compNat x y of
EQ -> (Pos IHi,Zero) x = y ⇒ x = 1 · y + 0 ∧ 0 < y

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 119

LT -> (Zero, Pos x) x < y ⇒ x = 0 · y + x ∧ x < y

GT -> case divmod (shift x) y of
(Zero,_) -> (Pos IHi,x ‘sub‘ y)
(Pos d,Zero) -> (Pos (O d),mod2 x)
(Pos d,Pos m) ->
case divmod (carryover x m) y of
(Zero,m’) -> (Pos (O d),m’)
(Pos d’,m’) -> (Pos (O d ‘add‘ d’),m’)

where
carryover (O _) n = O n
carryover (I _) n = I n

3 Narrowing

With respect to narrowing we are interested in the kind of equations we are able to
solve. For that purpose we make some conjectures enabling us to deduce solvability
properties from the termination properties which were given with the operation
definitions. The general discussion of these conjectures is beyond the scope of this
paper.

First, we extend our categories of termination.

• We call an expression finitely branching if its evaluation will induce only a finite
number of non-failing non-deterministic branches.

• We add to the notion of nf-termination of an expression e the requirement that
each branch induced by the evaluation of e nf-terminates.

• We add to the notion of hnf-termination of an expression e the requirement that
the evaluation of e only introduces a finite number of non-deterministic branches
before producing an hnf in each non-failing branch.

Note that the search space of an hnf-terminating expression may still be infinite.
For example the expression nat with the following definition is hnf-terminating.

nat = O ? S nat

In the following we will denote the combination “nf-terminating and finitely branch-
ing” by simply saying “finite”. A simple example of an expression which is nf-
terminating but not finite is zeros with the definition

zeros = O ? zeros

Moreover, because free variables can only be bound to finite ground terms, we
classify them as nf-terminating, although not as “finitely branching”.
For convenience, Figure 1 displays the relations between the categories introduced.

Conjecture 3.1 (Terminating Search)
Let e be a finite expression. Then a depth first search will produce all values of e in
finite time and finally terminate.

For example, the unification (=:=) built-in for Curry is finite if one of its argu-

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124120

finite

nf-terminating

fintely branching

hnf-terminating

Fig. 1. The Categories and their Relations of Inclusion

ments is finite and the other one is hnf-terminating.
If the conjecture holds, information about hnf-termination and finiteness can

directly be used to determine the solvability of equations. For ease of reference we
have collected this kind of information about the numeric operations presented in
this paper in the following table.

Expression built with Argument requirement

for nf-terminating result

succ, inc, pred, dec, mult2 nf-terminating

add, (+) both nf-terminating

mult, (*) both nf-terminating

compNat, compare any nf-terminating, other hnf-terminating

(<), (<=), (>), (>=) any nf-terminating, other hnf-terminating

sub, (-) both nf-terminating

(=:=) any nf-terminating, other hnf-terminating

Conjecture 3.2 (Complete Search)
Let e be an nf-terminating or hnf-terminating expression. Then an or-fair strategy
like breadth first search will produce all values of e but may not terminate after
producing the last value.

(=:=) terminates (hnf and nf coincide for type Success) if one of its arguments
nf-terminates and the other one is hnf-terminating.

The following table lists the hnf-termination properties of the defined numeric

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 121

operations.

Expression built with Requirement to Argument

for hnf-terminating result

succ, inc, pred, dec, mult2 hnf-terminating

add, (+) both hnf-terminating

mult, (*) both hnf-terminating

compNat, compare any nf-terminating, other hnf-terminating

(<), (<=), (>), (>=) any nf-terminating, other hnf-terminating

sub, (-) first nf-terminating, other hnf-terminating

(=:=) any nf-terminating, other hnf-terminating

If both conjectures hold, we can now infer whether or not certain equations can
be solved and by which strategy. For example, we again consider the Pythagorean
triples. Breadth first search completely finds the values of the following expression,
where we assume a,b,c to be free variables:

a*a + b*b =:= c*c &> (a,b,c)

For a fixed c, e.g. beforehand bound by c =:= 20, all solutions are also computed
by depth first search, since this additional constraint makes the search space finite.

On the other hand, the following expression does not terminate after all solutions
are computed, since neither argument of (=:=) is finite:

x+x=:=x

4 Experiments

We have made some experiments to evaluate the efficiency of the arithmetic opera-
tions. Our benchmarks were run on an AMD AthlonTM XP 3000+ with 2 GHz. It
is no surprise that our implementation of integers is clearly outperformed by prim-
itive arithmetic operations. It is, however, efficient enough to justify its use in a
functional logic language – given the additional possibilities outlined in the previ-
ous sections. We think that high performance of arithmetic computations is not as
important as a seamless integration of arithmetics in the functional logic paradigm.

We have compared a Haskell implementation of our operations with GHC’s na-
tive implementation of Integers 4 . In addition, we have compared a Curry imple-
mentation of our operations with the primitive arithmetic operations integrated in
PAKCS [6]. As we do not aim at comparing the Haskell with the Curry implemen-
tation, we use different input values to obtain significant results in both systems. To
measure only the time necessary for arithmetic operations, we employ the following

4 Note that the size of Int values is limited in Haskell.

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124122

GHC PAKCS

bench op 4000 bench op 300

op seconds slowdown seconds slowdown

(+) 9.74/0.45 21.6 3.35/1.03 3.25

(-) 9.39/1.15 8.17 7.03/1.01 6.96

(*) 62.1/0.52 119 12.8/1.02 12.5

div 12.9/2.24 5.77 19.4/1.02 19.0

mod 20.5/2.24 9.13 21.9/1.04 21.0

Table 1
Experimental Results

test function:

test _ x 1 1 = True
test op x 1 (m+1) = test op x x m
test op x (n+1) m = eval (op n m) && test op x n m

eval n = n==n

bench op x = test op x x x

We have called bench with the arithmetic operators (+), (-), (*), div and mod.
To measure the overhead imposed by this test function, we have called bench with
the tuple constructor (,) and subtracted the runtime for this computation from all
runtimes for the arithmetic operations.

We have employed the latest versions of GHC and PAKCS for our benchmarks.
For GHC we have instantiated the parameter x of bench with 4000 and for PAKCS
with 300 to obtain significant results – they are depicted in Table 1. The run times
of our arithmetic operations and the built-in functions – after subtracting overhead
– are shown in one column. The slowdown of our library is depicted next to the
run times.

The measured slowdown imposed by multiplication using GHC is significantly
larger than the slowdown for the other operations. We believe that it stems from
the larger results of the computation that have to be consumed by eval. It also
suggests that our definition of multiplication is far from optimal and we are open to
suggestions. In PAKCS – where the largest computed value is significantly smaller
– there is no such slowdown.

We can see that our arithmetic library is roughly up to 20 times slower than
primitive arithmetic operations. Also, our library compiled with GHC is faster
than the primitive arithmetic operations of PAKCS. As Curry programmers do not
complain about the arithmetic performance of PAKCS, we feel confident that they
would also not complain about a Haskell-based Curry system [3] that exclusively

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124 123

uses our narrowable arithmetic operations. Because of the additional support for
narrowing, it could even be an option for PAKCS to use our library instead of
a primitive implementation of integers. In addition, the time spent in arithmetic
computations is usually only a fraction of the run time of functional (logic) pro-
grams. Even in our benchmarks, which were designed to make mostly arithmetic
operations, the overhead measured with (,) as op was much larger than the time
used to compute the result of the arithmetic computations in most cases.

5 Conclusions

We propose a different implementation of arithmetic operations for functional logic
programming languages. Currently, declarative programming languages employ ex-
ternal functions to do arithmetics, which results in serious limitations in the context
of functional logic programming. Free variables cannot be guessed in arithmetic op-
erations and need to be generated explicitly.

We show that a binary encoding of integers as algebraic datatype eliminates
this need. We define all usual arithmetic operations on this datatype and show that
our implementation can be used to narrow unknown arguments to these operations.
Practical experiments show that our implementation produced significant overhead
compared with primitive operations. However, we feel that programmers willingly
accept this overhead given the new opportunities of narrowing.

Our implementations of the arithmetic operations are fairly straightforward. We
curiously expect suggestions to improve them in future work. Also, our conjectures
w.r.t. the termination analysis may lead to interesting future research.

References

[1] Antoy, S. and M. Hanus, Functional logic design patterns, in: Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002) (2002), pp. 67–87.

[2] Antoy, S. and M. Hanus, Declarative programming with function patterns, in: Proceedings of the
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’05) (2005),
pp. 6–22.

[3] Braßel, B. and F. Huch, Translating Curry to Haskell, in: Proc. of the ACM SIGPLAN 2005 Workshop
on Curry and Functional Logic Programming (WCFLP 2005) (2005), pp. 60–65.

[4] Hanus, M., On the completeness of residuation, in: Proc. Joint International Conference and Symposium
on Logic Programming (1992), pp. 192–206.

[5] Hanus, M., The integration of functions into logic programming: From theory to practice, Journal of
Logic Programming 19&20 (1994), pp. 583–628.

[6] Hanus, M. et al., PAKCS: The Portland Aachen Kiel Curry System (version 1.8.0), Available at URL
http://www.informatik.uni-kiel.de/~pakcs/ (2007).

[7] Hanus (ed.), M., Curry: An integrated functional logic language (vers. 0.8.2), Available at http://www.
informatik.uni-kiel.de/~curry (2006).

B. Braßel et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 111–124124

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry

	Introduction
	Numbers and Numeric Operations
	Natural Numbers
	Integers
	Division and Modulo

	Narrowing
	Experiments
	Conclusions
	References

