
The Kiel Curry System KiCS ?

Bernd Braßel and Frank Huch
CAU Kiel, Germany

{bbr,fhu}@informatik.uni-kiel.de

Abstract. This paper presents the Kiel Curry System (KiCS) for the
lazy functional logic language Curry. Its main features beyond other
Curry implementations are: flexible search control by means of search
trees, referentially transparent encapsulation and sharing across non-
determinism.

1 Introduction

The lazy functional logic programming language Curry [5] combines the func-
tional and the logical programming paradigms as seamlessly as possible. How-
ever, existing implementations of Curry, like PAKCS [4], the Münster Curry
Compiler (MCC) [6] and the Sloth system [3], all contain seams which cannot
easily be fixed within these existing systems.

To obtain a really seamless implementation, we developed a completely new
implementation idea and translation scheme for Curry. The basic idea of the
implementation is handling non-determinism (and free variables) by means of
tree data structures for the internal representation of the search space. In all
existing systems this search space is directly traversed by means of a special
search strategy (usually depth-first search). This makes the integration of im-
portant features like user-defined search strategies, encapsulation and sharing
across non-determinism almost impossible for these systems.

Since the logical features of Curry are now treated like data structures, the
remaining part is more closely related to lazy functional programming (e.g. in
Haskell). As a consequence, we decided to use Haskell as target language in our
new compiler in contrast to Prolog, as in PAKCS and Sloth, or C in MCC. The
advantage of using a lazy functional target language is that most parts of the
source language can be left unchanged (expecially the deterministic ones) and
the efficient machinery behind the Haskell compiler, e.g. the Glasgow Haskell
Compiler (ghc), can be reused without large programming effort.

KiCS provides an interactive user interface in which arbitrary expressions
over the program can be evaluated and a compiler for generating a binary exe-
cutable for a main function of a program, similar to other existing systems. The
next sections present the new key features of the Curry implementation KiCS,
which allow seamless programming within Curry.

? This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2.

2 Representing Search

To represent search in Haskell, our compiler employs the concept proposed in [1].
There each non-deterministic computation yields a data structure representing
the actual search space in form of a tree. The definition of this representation
is independent of the search strategy employed and is captured by the following
algebraic data type:

data SearchTree a = Fail | Value a | Or [SearchTree a]

Thus, a non-deterministic computation yields either the successful computation
of a completely evaluated term v (i.e., a term without defined functions) repre-
sented by Value v, an unsuccessful computation (Fail), or a branching to several
subcomputations represented by Or [t1, . . . , tn] where t1, . . . , tn are search trees
representing the subcomputations.

The important point is that this structure is provided lazily, i.e., search trees
are only evaluated to head normal form. By means of pattern matching on the
search tree, a programmer can explore the structure and demand the evalua-
tion of subtrees. Hence, it is possible to define arbitrary search strategies on the
structure of search trees. Depth-first search can be defined as follows:

depthFirst :: SearchTree a -> [a]
depthFirst (Val v) = [v]
depthFirst Fail = []
depthFirst (Or ts) = concatMap depthFirst ts

Evaluating the search tree lazily, this function evaluates the list of all values in a
lazy manner, too. As an example for the definition of another search strategies,
breadth-first search can be defined as follows:

breadthFirst :: SearchTree a -> [a]
breadthFirst st = unfoldOrs [st]
where
partition (Value x) y = let (vs,ors) = y in (x:vs,ors)
partition (Or xs) y = let (vs,ors) = y in (vs,xs++ors)
partition Fail y = y

unfoldOrs [] = []
unfoldOrs (x:xs) =
let (vals,ors) = foldr partition ([],[]) (x:xs)
in vals ++ unfoldOrs ors

This search strategy is fair with respect to the SearchTree data structure.
However, if some computation runs infinitely without generating nodes in the
SearchTree, then other solutions within the SearchTree will not be found.

Our concept also allows to formulate a fair search, which is also tolerant with
respect to non-terminating, non-branching computations. Fair search is realized
by employing the multi-threading capabilities of current Haskell implementa-
tions. Therefore the definition of fair search is primitive from the point of the

Curry system.

fairSearch :: SearchTree a -> IO [a]
fairSearch external

Search trees are obtained by encapsulated search. In [1] it is shown in many exam-
ples and considerations that the interactions between encapsulation and laziness
is very complicated and prone to many problems. [1] also contains a wishlist
for future implementations of encapsulation. KiCS is the first implementation
to fully meet this wish list. Concretely, there are two methods to obtain search
trees:

1. The current (top-level) state of search can only be accessed via an io-action
getSearchTree :: a -> IO (SearchTree a).

2. A conceptual copy of a given term can be obtained by the primitive operation
searchTree :: a -> SearchTree a. This copy does not share any of the
non-deterministic choices of the main branch of computation, although all
deterministic computations are shared, i.e., only computed once, cf. the next
subsection.

This two concepts of encapsulation avoid all known conflicts with the other
features of functional logic languages.

3 Sharing across Non-Determinism

Another key feature for a seamless integration of lazy functional and logic pro-
gramming is sharing across non-determinism, as the following example shows:

Example 1 (Sharing across Non-Determinism). We consider parser combinators
which can elegantly make use of the non-determinism of functional logic lan-
guages to implement the different rules of a grammar. A simple set of parser
combinators can be defined as follows:

type Parser a = String -> (String,a)

success :: a -> Parser a
success r cs = (cs,r)

symb :: Char -> Parser Char
symb c (c’:cs) | c==c’ = (cs,c)

(<*>) :: Parser (a -> b) -> Parser a -> Parser b
p1 <*> p2) str = case p1 str of

(str1,f) -> case p2 str1 of
(str2,x) -> (str2,f x)

(<$>) :: (a -> b) -> Parser a -> Parser b
f <$> p = success f <*> p

parse :: Parser a -> String -> a
parse p str = case p str of

("",r) -> r

As an example for a non-deterministic parser, we construct a parser for the inher-
ently ambiguous, context-free language of palindromes without marked center
L = {w←−w | w ∈ {a, b}}. We restrict to this small alphabet for simplicity of the
example. If parsing is possible the parser returns the word w and fails otherwise:
pal :: P String
pal = ((\ c str -> c:str) <$> (symb ’a’ <*> p1 <*> symb ’a’))

? ((\ c str -> c:str) <$> (symb ’b’ <*> p1 <*> symb ’b’))
? success ""

where ? :: a -> a -> a is the built-in operator for branching, defined as
x ? _ = x
_ ? y = y

In all Curry implementations the parser p1 analyses a String of length 100
within milliseconds. We call this time tparse.

Unfortunately, this program does not scale well with respect to the time it
takes to compute the elements of the list to be parsed. Let’s assume that the
time to compute an element within the list [e1, . . . , e100] is t � tparse and
constructing the list [e1, . . . , e100] takes time 100 · t. Then one would expect
the total time to compute parse pal [e1,...,e100] is 100 · t + tparse. But
measurements for the Curry implementation PAKCS ([4]) show that e.g., for
t = 0.131s it takes more than 5000 · t to generate a solution for a palindrome
[e1, . . . , e100] and 9910 · t to perform the whole search for all solutions. We
obtain similar results for all the other existing implementations of lazy functional
languages.

The reason is that all these systems do not provide sharing across non-
determinism. For each non-deterministic branch in the parser the elements of the
remaining list are computed again and again. Only values which are evaluated
before non-determinism occurs are shared over the non-deterministic branches.
This behavior is not only a matter of leaking implementations within these sys-
tems. There also exists no formal definition for sharing across non-determinism
yet.

The consequence of this example is that programmers have to avoid using
non-determinism, if a function might later be applied to expensive computations.
I.e., non-determinism has to be avoided completely. Laziness even complicates
this problem: many evaluations are suspended until their value is demanded.
A programmer cannot know which values are already computed and, hence,
may be used within a non-deterministic computation. Thus, sadly, when looking
for possibilities to improve efficiency, the programmer in a lazy functional logic
language is well advised to first and foremost try to eliminate the logic features

he might have employed, which does not sound like a seamless integration of
functional and logic programming.

KiCS provides sharing across non-determinism which becomes possible by
handling non-determinism by means of a tree data structure. There is only one
global heap in which all non-deterministic computations are performed. If the
evaluation of a data structure in one non-deterministic branch is determinisitic
it is automatically shared to all other branches.

4 Narrowing instead of Residuation

Implementations of functional and functional logic languages usually provide
numbers as an external data type and reuse the default implementation of the
underlying language (e.g. C) for the implementation of operations like (+), (-),
(<=), (==). This provides a very efficient implementation of pure computations
within the high-level language.

However, in the context of functional logic languages, this approach results
in a major drawback: numbers cannot be guessed by means of narrowing. On
the other hand, the most beautiful standard examples for the expressive power
of narrowing are defined for Peano numbers:

data Peano = O | S Peano

add O m = m
add (S n) m = S (add m n)

mult O _ = O
mult (S n) m = add m (mult m n)

These functions cannot only be used for their intended purpose. We can also
invert them to define new operations. For instance, the subtraction function can
be defined by means of add:

sub n m | add r m =:= n = r
where r free

In KiCS numbers are implemented as binary encodings of natural numbers

data Nat = IHi | O Nat | I Nat

which in a second step are extend with an algebraic sign and a zero to represent
arbitrary integers.

data Int = Pos Nat | Zero | Neg Nat

To avoid redundant representations of numbers by leading zeros, the type Nat
encodes only positive numbers. The leading one of the binary encoding (its most
significant bit), terminates the Nat value. Applying the constructor O to a Nat
duplicates is while I duplicates and afterwards increments it. Similarly, in pat-
tern matching even numbers can be matched by O and odd numbers by I.

The implementation of the standard operations for numbers is presented in
[2]. To get an impression how the implementation works, we present the defini-
tion of the addition for natural numbers here:
add :: Nat -> Nat -> Nat
IHi ‘add‘ m = succ m 1 + m = m + 1
O n ‘add‘ IHi = I n 2n + 1 = 2n + 1
O n ‘add‘ O m = O (n ‘add‘ m) 2n + 2m = 2 · (n + m)
O n ‘add‘ I m = I (n ‘add‘ m) 2n + (2m + 1) = 2 · (n + m) + 1
I n ‘add‘ IHi = O (succ n) (2n + 1) + 1 = 2 · (n + 1)
I n ‘add‘ O m = I (n ‘add‘ m) (2n + 1) + 2m = 2 · (n + m) + 1
I n ‘add‘ I m = O (succ n ‘add‘ y) (2n + 1) + (2m + 1) = 2(n + 1 + m)

where succ is the successor function for Nat. Similarly, all standard definitions
for numbers (Nats as well as Ints) can be implemented. In contrast to other
Curry implementation, KiCS uses this Int definition and the corresponding
operations ((+), (*), (-),. . .) for arbitrary computations on numbers.

Using these numbers within KiCS, many search problems can be expressed as
elegantly as using Peano numbers. For instance, all solutions for the Pythagorean
triples problem can in KiCS (in combination with breadth first search) be com-
puted with the following expression:

let a,b,c free in a*a + b*b =:= c*c &> (a,b,c)

For a fixed c, e.g. previously bound by c =:= 20, all solutions are also computed
by depth first search.

The same implementation is used for characters in KiCS, which allows to
guess small strings as well. To avoid the overhead related to encoding characters
as binary numbers, internally a standard representation as Haskell character is
used in the case when characters are not guessed by narrowing.

References

1. B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming, 2004(6), 2004.

2. B. Braßel, F. Huch, and S. Fischer. Declaring numbers. In Proceedings of the
16th International Workshop on Funcional and (Constraint) Logic Programming
(WFLP’07), Paris (France), July 2007.

3. Emilio Jess Gallego and Julio Mario. An overview of the sloth2005 curry system.
In Michael Hanus, editor, First Workshop on Curry and Functional Logic Program-
ming. ACM Press, September 2005.

4. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Avail-
able at http://www.informatik.uni-kiel.de/~pakcs/, 2006.

5. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, 2006.

6. W. Lux and H. Kuchen. An efficient abstract machine for curry. In K. Beiersdörfer,
G. Engels, and W. Schäfer, editors, Informatik ’99 — Annual meeting of the German
Computer Science Society (GI), pages 390–399. Springer, 1999.

