Runtime Verification of Concurrent Haskell
Programs

Volker Stolz

RWTH Aachen University, 52056 Aachen, Germany

Frank Huch

Christian-Albrecht- University of Kiel, 24118 Kiel, Germany

Abstract

In this article we use model checking techniques to debug Concurrent Haskell pro-
grams. LTL formulas specifying assertions or other properties are verified at run-
time. If a run which falsifies a formula is detected, the debugger emits a warning
and records the path leading to the violation. It is possible to dynamically add
formulas at runtime, giving a degree of flexibility which is not available in static
verification of source code. We give a comprehensive example of using the new
techniques to detect lock-reversal in Concurrent Haskell programs and introduce a
template mechanism to define LTL formulas ranging over an arbitrary set of threads
or communication abstractions.

Key words: Runtime Verification, LTL Checking, Haskell

1 Introduction

Today, almost any larger software application is no longer a sequential program
but an entire concurrent system made of a varying number of processes. These
processes often share resources which must be adequately protected against
concurrent access. Usually this is achieved by concentrating these actions
in critical sections which are protected by semaphores. If a semaphore is
taken, another process wishing to take it is suspended until the semaphore
is released. Combining two or more semaphores can easily lead to situations
where a deadlock might occur. If we record a trace of actions leading up to
this event (or any other crash of the program), we can give the developer
useful advice on how to try to debug this error. Also, we do not have to
limit ourselves to recording events on semaphores. It is useful to have unique
markers throughout the program detailing periodically the position and state

Preprint submitted to Elsevier Preprint 11 August 2004

of the current run. Although this technique mostly resembles hello-debugging,
we will show that these traces offer an added value: We can do runtime
verification for a running program by means of a runtime verifier embedded
into the system.

Usually one is interested in conditions which hold in specific places or
throughout the entire execution of the program. These properties cannot be
easily determined or verified at compile time because it is not possible to verify
all possible paths of program execution. But violation of these conditions can
be detected in a post-mortem analysis or at runtime, e.g. during intensive
testing. Especially, we can aggregate information from one or more runs and
detect behaviour which did not lead to a crash but indicates that a condition
might be violated in the future or in subsequent runs. This is regularly the
case if program behaviour is dependant on scheduling or external input.

The properties we are interested in are not necessarily classic model check-
ing properties like liveness or fairness [10], but are properties of the program
known by the developer to hold at certain times. Commonly, these so-called
assertions are verified by additional code placed by ambitious programmers at
the appropriate locations in the source and usually removed before delivering
the product because they increase program size and runtime.

A temporal logic like the linear-time logic (LTL) [1] lends itself naturally
to describing properties depending on the changing states of a program over
time. Formulas must never be evaluated to False during program execution.
Our system allows the dynamic addition of new formulas which have to hold
when the system evolves.

We show how to employ the technique of specifying a formula and that
verifying it at runtime can be a significant help in testing Concurrent Haskell
[9] programs. Additionally, the system records the path leading up to the state
where the property was violated and thus aids the developer in debugging the
program.

The article is structured as follows: Section 2 gives a brief introduction to
Haskell and the technique of recording traces and using them for debugging.
Section 3 provides some background on LTL and describes the LTL runtime
verifier. Section 4 shows a sample verification of the lock-reversal problem,
which can in general be solved by templates, introduced in Section 5. Section
6 concludes the paper and presents future work.

2 Tracing Haskell programs

First, we remind the reader of the purely functional lazy programming lan-
guage Haskell [8]. Although there is extensive work on debugging Haskell (see
[13] for a comparison), these mostly focus on the difficulties on debugging the
evaluation of expressions in a lazy functional language: Evaluation might be

deferred until the value is required for subsequent calculations. This leads to
an evaluation order which cannot be easily derived from program source code
(e.g. it is not feasible to single-step through program execution as you would
in C or JAvA). We limit ourselves to debugging the 10 behaviour of Haskell
programs (sequentialised by a monad) and can omit the problems resulting
from Haskell’s lazy evaluation strategy.

We are especially interested in the extension Concurrent Haskell [9] which
integrates concurrent lightweight threads in Haskell’s IO monad. As these
threads can communicate, different schedules can lead to different results.
Communication can take place by means of MVars (mutable variables). These
MVars also take the role of semaphores protecting critical sections which makes
them especially interesting to analyse.

In the IO monad, threads can create MVars (newEmptyMVar), read values
from MVars (takeMVar) and write values to MVars (putMVar). If a thread tries
to read from an empty MVar or write to a full MVar, then it suspends until the
MVar is filled respectively emptied by another thread. MVars can be used as
simple semaphores, e.g. to assure mutual exclusion, or for simple inter-thread
communication. Based on MVars, higher-level communication objects are built
but are out of the scope of this paper.

In former work [3], we developed a tool for visualising communication
between Concurrent Haskell threads called the Concurrent Haskell Debugger
which makes it also possible to explicitly manipulate the scheduling of threads.
This debugger is also able to replay recorded, concurrent executions for which
a bug was found by the techniques presented in this paper.

As a simple example, we consider a small client server application imple-
mented in Concurrent Haskell * :

server r a ¢ = do client r a n = do
req <- takeMVar r putMVar r n
putMVar a (req,c) (m,v) <- takeMVar a
server r a (ctreq) -- stateProp (n,m)

client r a n
main = do
r <- newEmptyMVar
a <- newEmptyMVar
forkIO (client r a 0)
forkIO (client r a 1)
server r a 0O

1 The do-notation used in this example is syntactic sugar for Haskell’s IO-Monad. A user
not familiar with Haskell should just read it as a sequence of actions and ’<-’ as a (parallel)
assignment. Comments start with '--’. The action stateProp (n,m) will be needed for

debugging purposes and is explained below.

The system consists of a server and two clients. The server provides a counter,
which can be accessed and incremented by client requests. Whenever a client
sends a request through the MVar r, the server responds through the MVar a.
The answer contains the request (an Int) and the current value of the counter
(c). Both MVars are globally used for communication and synchronisation
between the server and all clients. In its recursive call, the server increments
its state by the request.

The system is initialised in main by creating two empty MVars and forking
two client threads. Thereafter, the main thread itself switches to the server.

This example motivates our approach for run-time verification. On a first
view, the program fulfils the following property:

(P) If a client sends a request, then the client receives an answer
which contains the current counter state of the server.

We want to check this property by means of run-time verification. In a first
step, we add atomic state propositions to the system, which identify relevant
points during the execution. Therefore, we insert (uncomment) the action
'stateProp (n,m)’ after the takeMVar action in the client definition. During
the execution of this action, the global state proposition (n,m) is valid. A
necessary condition for (P) is that during the execution of the system only
properties (0,0) and (1,1) occur, i.e. the answer m belongs to the correspond-
ing request n.

Instead of developing a variety of algorithms which should be checked
during the execution, we provide a general purpose checker for the powerful
logic LTL. The programmer may specify properties by means of an abstract
data type for LTL and can add LTL-assertions to any program point. For our
example, it would be sensible to add the LTL-assertion

check "P" (g (Not (StateProp (1,0)) :/\: Not (StateProp (0,1))))

to the program. The formula expresses that in every state of the system (’g’,
globally) neither (1,0) nor (0,1) are valid state propositions. The assertion
named "P" is activated by the execution of check. We will discuss the em-
bedding of LTL in Concurrent Haskell in the next section.

Running this program for a while shows that the property is violated.
The asserted LTL-property does not hold because of a race condition. In the
background, we record a trace of the performed concurrent actions, which can
be replayed by means of our Concurrent Haskell Debugger. This helps the user
to understand the reason for the bug. The trace is produced by overloading
every Concurrent Haskell function which writes a trace output into a file,
similarly to [3].

In our small system, the bug results from a scheduling in which the exe-
cution of one client is interrupted by the scheduler directly after sending the

request. Then, the servers answers the request. After this, the other client
sends his request and reads the answer MVar, but obtains the response to the
request of the other client. The program can be corrected by generating fresh
answer MVars for a request and submitting them to the server with the request.

3 Model checking LTL

Linear-time temporal logic (LTL) [1] is a subset of the Computation Tree
Logic CTL* and extends propositional logic with operators which describe
events along a computation path. The operators of LTL have the following
meaning:

o “Next” (X ¢): The property ¢ holds in the next step

o “Eventually” (F ¢): ¢ will hold at some state in the future (also: “in the
future”, “finally”)

o “Globally” (G ¢): At every state on the path ¢ holds

o “Until” (¢ U #): Combines two properties in the sense that: ¢ has to hold
until finally v holds.

The semantics of LTL is defined with respect to all paths in a given Kripke
structure (a transition system with states labelled by atomic propositions
(AP)). The path semantics of LTL is defined as follows:

Definition 1 (Path Semantics of LTL) Let AP be a set of atomic proposi-
tions. An infinite word over atomic propositions T = popips ... € (P(AP))“
is called a path. A path w satisfies an LTL—formula ¢ (7 |= @) in the following
cases:

pom | P iff P € po T E e iffmlEe
T oAy firkeadriy por b X ifftbe
popr--- E o UV iff FieN:ppii...E=¢Y andVj<i:pipj1... =
Further operations can be defined in terms of the above:
ff = PA-P tt = —ff PV ip==(-p A)
p—t=-pvy Fe=ttUp Ge=-Fp

As an example we consider the formula P U Q. It is valid on the path
{PHP}{Q}...Dbut it is neither valid on the path {P}{P}0{Q} ... nor on the
path {P}H{P}H{P}...

From the definition of the path semantics one can easily derive the following
equivalence:

e Uy ~ V(oA (X (e Uv)))

Using this equivalence it is easy to implement a checker that successively
checks the formula for a given path.

3.1 Runtime verification

In traditional model checking, the complete state space is derived from a
specification and all possible paths are checked. There are two reasons why
formal verification is often not used in practice: First, for real programs the
specification has to be derived from the source code which is to be checked.
This usually involves parsing the source and additional annotations, e.g. as
comments. Furthermore, model checking is not applicable for large systems,
because of state space explosion. In many cases, a system may even have an
infinite state space and the model checking problem is undecidable.

Runtime verification does not need the state space beforehand, but simply
tracks state changes in a running program. Thus, it limits itself to verifying
that a formula holds along the path the program actually takes. This means
that although errors could not be detected in the current run, they may still
be present in the state space of the program. Various runs taking different
paths may be necessary to find a path which violates the formula. However,
runtime verification enables the use of well understood, formal techniques for
the systematic validation of concurrent systems.

Atomic propositions in a state are set or deleted explicitly by the program
where the necessary statements have either been introduced by the developer
or a tool which derived them from some sort of specification.

3.2 Implementing LTL in Haskell

In this section we sketch the rough details of the LTL runtime checking engine.
In Haskell, LTL formulas can simply be implemented as an algebraic data type:

data LTL a = StateProp (Prop a) -- atomic proposition

| TT -- True

| FF -- False

| X (LTL a) -- NeXt

| Not (LTL a) -- Negation

| U (LTL a) (LTL a) -- Until

| R (LTL a) (LTL a) -- Release

| (LTL a) :/\: (LTL a) -— And

| (LTL a) :\/: (LTL a) -- Or

We allow arbitrary types as atomic propositions. Therefore, LTL is polymor-
phically defined over a type variable a. We also define disjunction and a release
operator R. Like many model checking approaches, it is used as the dual op-
erator to U. We deal with negation by pushing all negations in front of atomic

propositions. Similarly to Definition 1, we handle the abbreviations F and G:
f phi = U TT phi g phi = Not (f (Not phi))

For the checking engine, a separate thread maintains the global state of atomic

propositions and LTL formulas to be checked. It accepts requests from the
user’s program to modify the set of valid atomic propositions. setProp,

releaseProp :: 0Ord? a => Prop a -> I0 () extend respectively restrict
the set of valid atomic propositions. check :: 0rd a => String -> LTL a
-> I0 () adds new formulas to the pool of formulas at runtime. Finally, a

step message (produced by any concurrent action) causes the check thread

to evaluate the active formulas with respect to the currently holding atomic

propositions. Evaluation of a formula can have three different results which

we map into the data type Either Bool (LTL a) ®:

(i) Left True: The formula was proven and can be removed from the pool.

(ii) Left False: The verification failed. In case this condition does not
coincide with a program crash, the user might want to proceed to check
the remaining formulas.

(iii) Right (: After this step, the formula reduced to neither True nor False.
The new formula ¢ has to be checked on the remaining path.

The evaluation function called by the check thread is as follows (due to the lack
of space, we restrict ourselves to basic propositions and the until operator):

checkStep :: Ord a => LTL a -> Set a -> Either Bool (LTL a)
checkStep (StateProp p) stateProps = Left (p ‘elem‘ stateProps)

checkStep u@(U phi psi) stateProps =
let phiEval = checkStep phi stateProps in
case checkStep psi stateProps of
Left True -> Left True
Left False -> case phiEval of
Left False -> Left False
Left True -> Right u
Right phi’ -> Right (phi’ :/\: w)
Right psi’ -> case phiEval of
Left False —-> Right psi’
Left True -> Right (psi’ :\/: w)
Right phi’ -> Right (psi’ :\/: (phi’ :/\: u))

2 ‘Ord a=>’is a Haskell class constraint for the type a. Since atomic propositions are stored
in a set, an ordering on propositions must be defined.

3 The Haskell type Either can be used to union two arbitrary types. The underlying types
are identified by two constructors: data Either a b = Left a | Right b.

In the last two cases of the outer case expression we build a new formula that
has to be checked in the next step. From model checking we know that only a
finite set of formulas can occur. To avoid multiple checking of equal formulas
(resulting from nested fixed point operators, e.g., G F' @), the check thread
stores the formulas to be checked in a set.

3.8 Verifying concurrent programs

As long as only one process is generating a debugging trace that we use for ver-
ification, the interpretation of the debugging trace is clear. Each new entry in
the trace corresponds to a transition in the Kripke structure. What happens if
we allow more than one process to manipulate the global state? Consider the
following example: Two processes (P; and P;) want to set a different proposi-
tion each, unaware of the other process (see Figure 1). Although the states of
the two processes are aligned on the time axis, it is wrong to assume that they
proceed in lock-step! Concurrent Haskell has an interleaving semantics, so if
we join the propositions from both processes we obtain the model in Figure 2.
Notice how each path resembles a possible execution order in Haskell. A left
branch indicates process P; taking a step while a right branch corresponds to
a step by process P,. If there is only one transition leaving a state, this is the
only possible step because one of the processes has already reached its final
state (final propositions underlined).

P1 . P2

Fig. 1. Separate @
state spaces Fig. 2. Interleaved state spaces

Because of this interleaving it is clear that you should not use “NeXt”
explicitly in your formula but instead use “Until” or another fixed point
operator: Changes in propositions relevant to one formula may affect the
evaluation of others. We enforce this in the implementation by hiding the
“NeXt”-constructor from the programmer by Haskell’s module system.

3.4 Using LTL to check assertions

In Section 2 we already presented a simple application of our LTL runtime
checker. In this example, we only set a single atomic proposition by means
of stateProp. Sometimes it can be useful to set propositions for a period
of time, e.g., to represent a thread being in a critical section. The function
stateProp is defined as a sequence of setProp, step and releaseProp.

The step messages for the check engine thread are automatically gener-
ated by extended versions of the concurrency actions. l.e., we only consider
concurrency actions of the system as steps while calculations, independently
of how much time they take, are not interpreted as steps in the state space.
This is permissible since a computation does not affect the concurrent system
as long as the result is not used for communication.

Executing a program containing a (specified) bug and giving it enough
time and a “favourable” scheduling, the runtime verifier will stop the program
as soon as the formula is falsified. Furthermore, it prints a message which
formula was falsified and stores a trace which can be used by the Concurrent
Haskell Debugger.

4 Example application: Lock-reversal

In this section we will discuss how to implement the following rather complex
check using the LTL runtime verifier: If two locks are taken in a specific or-
der (with no release steps in between), the debugger should warn the user if
he also uses these locks in swapped order (lock-reversal) because in concur-
rent programs this would mean that two processes could deadlock when their
execution is scheduled in an unfortunate order.

However, this warning might not be adequate as it is always possible to
construct a program which takes the locks in reverse order and will never
deadlock. This can be achieved by adding another lock, a so-called gate lock,
to the program which assures mutual exclusion and prevents the system from
deadlocking. An algorithm which avoids this kind of false warnings in the
presence of gate locks is detailed in [11].

This particular technique of noticing inadvertent lock-reversal at runtime
is employed in the development phase of the recent FreeBSD operating system
kernel under the name of witness [6]. In [11] the same technique is used in
the Java PathFinder [15], a model checker for Java applications.

We consider two concurrent processes competing repeatedly for two locks
A and B. It is not possible to acquire several locks in one go, so both locks
have to be obtained sequentially. If we assume that the first process tries to
obtain them in the order A, B and the second one in B, A, we can see that
sooner or later the system ends up in a state where process 1 holds lock A and
waits for B to become available while process 2 holds B waiting on A! This

situation is exactly the circular holding pattern which indicates a deadlock (cf.
chapter 7 of [2]). In small programs the bug might be easy to spot. For larger
applications we can conclude that it is very hard to prevent this error from
simply perusing the source code. Even when testing the program the error
might not occur for various runs. For example it may be possible that process
1 and 2 are never executed interleaved but rather in a sequential manner.
For debugging Concurrent Haskell programs, we provide an algebraic data
type which contains the ThreadId of the corresponding thread so that formulas
can contain per-thread expressions. Additionally, we will record the name of
the MVar being held. We use this data type as predefined atomic propositions.
They are automatically set and released by concurrency actions as follows:

* takeMVar: setProp (ThreadProp <threadId> <mvarName>)
e putMVar: releaseProp (ThreadProp <threadId> <mvarName>)

This strategy can also be applied to other concurrency functions.

By using this approach, the program will generate a trace containing the
above propositions, possibly in the order indicating the erroneous behaviour.
We can detect this and warn the developer that his application has the po-
tential to enter a deadlock under certain conditions.

In the following we give a sample LTL formula for two locks which will
evaluate to False in case the locks are used in reverse order. Notice that we
have to provide fixed ThreadIds and lock names in the Haskell program to
detect a specific situation. In Section 5, we will see how to solve this more
elegantly with templates, as it is usually impractical in a dynamic system to
generate all formulas beforehand. Instead of using the algebraic data type
from the assertion, we will write holds,,;,) in the formula if process 7 holds
lock z. The effect of the “Globally” is to check this formula over and over
again for each step the program makes:

G ~p = G = (holdsy, 1,y N —holdsy, 1,y A (holds g, 1,) U holdsg, 1))

For a better understanding of this formula, we consider the following program:

main = do take ml m2 = do
check "lock" (g (Not takeMVar ml
(phi (StateProp (ThreadProp 1 "B")) takeMVar m2
(StateProp (ThreadProp 1 "A"))))) e
mvA <- newMVar () putMVar m1 ()
mvB <- newMVar () putMVar m2 ()

take mvB mvA

-- helper function:
phi u v = (u :/\: (Not v)) :/\: (u ‘U‘ v)

10

When this program is executed, first the formula is passed to the verifier.
The two overloaded newMVar invocations trigger releaseProp statements for
the model checker because they use the instrumented putMVar internally. As
the current state contains no properties yet, they are of no effect. When
the take function is invoked, this will set the corresponding proposition and
execute a transition in the LTL checker: After the first takeMVar the formula
is evaluated in the current state {—holds, 1,), holdsy, 1)} and reduced to
-¢' N G =g, where

@' = holds g, 1) U holdsy, 1,)
= holdsp, 1,y V (holdsy, 1,y N X ¢').

After stepping the formula and taking the next MVar we can see that the
new state {holds,, ;,), holds,, i, } evaluates ¢’ to True, which in turn gets
negated and invalidates the whole formula. The model checker has deter-
mined that the specified property does not hold for the current path and acts
accordingly, e.g. prints a warning to the user.

5 Using formula templates

In the previous section, we used a static formula to demonstrate the mecha-
nism. But in a dynamic system MVars may be generated and used on the fly
and thus make it impossible to generate all formulas beforehand. To be able
to manage this problem elegantly, we introduce templates. Templates contain
free variables which are instantiated with all properties occurring throughout
the program run. This includes instantiating new formulas once a new propo-
sition is used. Ideally, we would like to be able to specify a template for the
problem above in the following form: “If I observe a process taking lock x and
holding it until taking lock ¥, I'd like to install a formula which invalidates iff
another process takes x and y in reverse order.” To rephrase this in LTL:

hOldS(pin) N ﬁhOldS(pin) A (hOldS(pin) U hOldS(pi7ly))
—- G ﬁ(holds(pj,ly) A =holds g, 1) A (holds(pj,ly) U holds(pﬁlz))), 1#£ J,xFy

However, implementing this in Haskell would mean devising a new syntax and
writing a different LTL front end because such a formula-template cannot be
easily captured with an algebraic data type: the LTL syntax would have to
be extended for each new proposition.

It is far easier to use a real Haskell function instead which gets passed all
currently known propositions every time a new proposition is set for the first
time and decides itself which of those can be used to instantiate the formula.
Because of Haskell’'s guarded expression syntax, this closely resembles the
above syntax including the additional conditions.

11

It is not possible because of the type system to collect functions of different
arities in a data structure as would be necessary for the implementation of
the template mechanism, we use a simple trick: Since all propositions are of a
single type, a template function simply takes a list of propositions as argument.
The template engine will generate all possible permutations of the required
length of propositions and pass them to the function. If the propositions are
unsuitable for the template, the function returns Nothing?. Otherwise, an
LTL formula is returned via Just. The following Haskell function implements
the proposed template:

lockF :: Ord a => [Prop a] -> Maybe (LTL a)
lockF (pl@(ThreadProp il x1) :p2@(ThreadProp i2 y1):
p30@(ThreadProp j1 y2):p4@(ThreadProp j2 x2):_)
| i1 == i2 &% x1 == x2 && j1 == j2 && yl == y2 &&
il /= j1 && x1 /= y1 = Just
((phi p1 p2) --> g (Not (phi p3 p4)))
| otherwise = Nothing
lockF _ = Nothing

We use pattern matching to extract four arguments from the list of pa-
rameters and discard the rest through the “_"-placeholder. If the arguments
are not four ThreadProps, the second definition of lockF tells the template
engine that the propositions were unsuitable for instantiation by returning
Nothing. If the template received four ThreadProps, the actual content must
be tested against the additional constraints: The guard tests if we are really
instantiating the pattern with two different threads and two different locks
like we required in the mathematical specification above. It is not possible to
use the same variable multiple times in pattern matching expression like it is
e.g. in PROLOG, so we have to use fresh variables for each thread and each
lock and explicitly test in the guard those variables which have to coincide.

After the tests succeed, we use the saved expressions in p1...p4 to build
the formula. Notice that this template can be instantiated for the first time
only after at least four (different) propositions fulfilling the necessary require-
ments have been set by the program. At this point, we can add the instantiated
formula to the formulas already present and begin checking it, starting from
the current state.

We observe that without further modifications, for example ordering on the
arguments, the template might be instantiated too often, leading to redundant
formulas, e.g. if the formula is commutative. To optimise the generation of
permutations when a new proposition is set, we only generate new permuta-
tions by maintaining a list of all already used propositions.

4 The predefined Haskell data type Maybe is defined as follows:
data Maybe a = Nothing | Just a

12

5.1 Partial instantiation

For some formulas, including the one above, it is even possible that either the
formula evaluates to True or False without requiring all arguments or that the
last action leading to the last required proposition is indeed the proposition
which would have invalidated the formula. But as these are temporal formulas
and we do not instantiate a template until we have a sufficient number of
arguments, we might miss to do a partial instantiation: For the template
above, we could instantiate the left hand side of the implication as soon as
we have the first two appropriate arguments. This partial formula could then
be evaluated and stepped in time. In the present case the left hand side of
the implication might evaluate to False, thus rendering the remainder of the
formula redundant.

However, once again an actual implementation of doing partial instantia-
tion and evaluation leads to even more complex bookkeeping: By projecting
this feature onto Haskell’s partial application, we can implement this as a
function returning Nothing for unsuitable propositions like before, and either
a new, partially instantiated formula requiring less arguments or a complete
formula otherwise.

newtype TemplateF a = TF -- new data type for templates
([Prop a] -> Maybe (Either (TemplateF a) (LTL a)))

lockF :: Ord a => [Prop al] ->
Maybe (Either (TemplateF a) (LTL a))
lockF (p1@(ThreadProp il x1) :p2@(ThreadProp i2 y1):_)
| i1 == i2 && x1 /= y1 = (Just . Left . TF)

(\ xs -> lockF2 (pl:p2:xs)) -- return anonymous function
| otherwise = Nothing -- with partial application
lockF _ = Nothing

lockF2 :: Ord a => [Prop a] —>
Maybe (Either (TemplateF a) (LTL a))
lockF2 (p1@(ThreadProp il x1):p2@(ThreadProp i2 y1):
p3@(ThreadProp j1 y2):p4@(ThreadProp j2 x2):_)
| x1 == x2 && j1 == j2 && yl == y2 && il /= j1 =
(Just . Right) ((phi pl p2) --> g (Not (phi p3 p4)))
| otherwise = Nothing
lockF2 _ = Nothing

Partial instantiation allows us to avoid testing a huge amount of argument
combinations because only a fraction of arguments for the first two positions
is valid. Just for those the second set of arguments has to be generated,
providing an enormous benefit for this example. In general, the worst-case

13

behaviours is equal to the previous behaviour of plain templates.

The system additionally offers the ability to record the entire trace of
the program (or a configurable trailing part thereof) and check new formulas
against this trace. Of course the amount of memory or storage required for
keeping this trail might be prohibitive for most programs. Stepping partially
instantiated templates will be supported in a future version.

6 Conclusion, Related and Future work

We presented a debugging framework for Concurrent Haskell that records way
points in program execution and allows the developer to trace a particular path
through the program by the Concurrent Haskell Debugger to draw conclusions
about erroneous behaviour. Conditions which have to hold throughout pro-
gram execution or at specific times can be expressed as formulas in the linear-
time temporal logic LTL. The debugging trace provides the state transition
annotations which are checked by the LTL model checking engine against the
a set of formulas. In addition to specific debugging modules the developer
can use explicit annotations to add information to the debugging trace. The
debugger supports printing the tail of the trace from the point where it started
proving the particular formula which turned False. Furthermore, we extend
our previous work [14] with a powerful template mechanism which allows dy-
namic instantiation of formulas when the exact propositions are not known
beforehand, e.g. because they are parameterised by ThreadIds or MVars.
Several other approaches to runtime verification exist, especially for Java.
Java PathFinder [11] is an instrumentation of the Java Virtual Machine which
is able to collect data about problematic traces and run a traditional model
checking algorithm. Java PathExplorer [5] picks up the idea of runtime verifi-
cation and uses the Maude rewriting logic tool [12] to implement e.g. Future
or Past time LTL. Both approaches still require several components while our
Haskell library is self-contained. Java PathExplorer also offers so called error
pattern analysis by user-implemented algorithms. Compaq’s Visual Threads
[7] debugger for POSIX threads applications allows scripted, rule-based ver-
ification. The Temporal Rover [4] checks time-dependent specifications and
handles assertions embedded in comments by source-to-source transformation.
As future work, we intend to integrate the information from LTL checking
in the graphical Concurrent Haskell Debugger to provide a comprehensive de-
bugging facility for Concurrent Haskell. The effect of runtime verification on
performance and memory requirements have yet to be examined for larger ex-
amples. We expect to profit from the inherent sharing of sub-formulas because
of our choice of a lazy functional programming language. More information
on the library for LTL runtime verification can be found at
http://www-1i2.informatik.rwth-aachen.de/"stolz/Haskell/.

14

http://www-i2.informatik.rwth-aachen.de/~stolz/Haskell/

References

[1] A.Pnueli. The Temporal Logics of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46-77, 1977.

[2] A.Silberschatz and P.B. Galvin. Operating System Concepts. Addison-Wesley,
4th edition, 1994.

[3] T. Bottcher and F. Huch. A Debugger for Concurrent Haskell. In Proceedings
of the 14th International Workshop on the Implementation of Functional
Languages, Madrid, Spain, September 2002.

[4] D. Drusinsky. The Temporal Rover and the ATG Rover. In W.Visser,
K.Havelund, G.Brat, and S.Park, editors, SPIN Model Checking and Software
Verification (7th International SPIN Workshop), volume 1885 of Lecture Notes
in Computer Science, pages 323-330, Stanford, CA, USA, August/September
2000. Springer.

[5] K. Havelund and G. Rosu. Java PathExplorer - A Runtime Verification Tool.
In Proceedings 6th International Symposium on Artificial Intelligence, Robotics
and Automation in Space, ISAIRAS’01, Montreal, Canada, June 2001.

[6] J.H.Baldwin. Locking in the Multithreaded FreeBSD Kernel. In Samuel J.
Leffler, editor, Proceedings of BSDCon 2002, February 11-14, 2002, San
Francisco, California, USA. USENIX, 2002.

[7] J.J.Harrow. Runtime Checking of Multithreaded Applications with Visual
Threads. In W.Visser, K.Havelund, G.Brat, and S.Park, editors, SPIN
Model Checking and Software Verification (7th International SPIN Workshop),
volume 1885 of Lecture Notes in Computer Science, Stanford, CA, USA,
August/September 2000. Springer.

[8] S. Peyton Jones et al. Haskell 98 Report. Technical report,
http://www.haskell.org/, 1998.

[9] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Conference
Record of POPL °96: The 23'Y ACM Symposium on Principles of Programming
Languages, pages 295-308, St. Petersburg Beach, Florida, 1996.

[10] E.M.Clarke Jr., O.Grumberg, and D.A.Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[11] K.Havelund. Using Runtime Analysis to Guide Model Checking of Java
Programs. In W.Visser, K.Havelund, G.Brat, and S.Park, editors, SPIN Model
Checking and Software Verification (7th International SPIN Workshop), volume
1885 of Lecture Notes in Computer Science, Stanford, CA, USA, 2000. Springer.

[12] M.Clavel, F.J.Durén, S.Eker, P.Lincoln, N.Marti-Oliet, J.Meseguer, and
J.F.Quesada. The Maude system. In Proceedings of the 10th International
Conference on Rewriting Techniques and Applications, RTA’99, volume 1631 of
Lecture Notes in Computer Science, Trento, Italy, July 1999. Springer.

15

[13] O.Chitil, C.Runciman, and M.Wallace. Freja, Hat and Hood — A Comparative
Evaluation of Three Systems for Tracing and Debugging Lazy Functional
Programs. In M. Mohnen and P. Koopman, editors, Proceedings of the
13th International Workshop on Implementation of Functional Languages (IFL
2000), volume 2011 of Lecture Notes in Computer Science, 2001.

[14] V. Stolz and F. Huch. Runtime Verification of Concurrent Haskell (work in
progress). Proceedings of the 12th International Workshop on Functional and
(Constraint) Logic Programming (WFLP’03), Technical Report DSIC-11/13/03,
Universidad Politécnica de Valencia, Spain, 2003.

[15] W.Visser, K.Havelund, G.Brat, and S.Park. Model Checking Programs. In
Proc. of ASE’2000: The 15th IEEE International Conference on Automated
Software Engineering. IEEE CS Press, September 2000.

16

	Introduction
	Tracing Haskell programs
	Model checking LTL
	Runtime verification
	Implementing LTL in Haskell
	Verifying concurrent programs
	Using LTL to check assertions

	Example application: Lock-reversal
	Using formula templates
	Partial instantiation

	Conclusion, Related and Future work
	References

