State Monad

We once again consider a data type for trees with values only in leaf positions
data Tree a = L a | Tree a :+: Tree a

Using this data type, we want to define a function, which enumerates the leafs of a tree
from left to right.

numberTree :: Tree a -> Tree (Int,a)
With the example usage:

ghci> numberTree ((L 'a') :+: (L 'b')) :+: (L 'c")

(@ (1,'a")) +: (L (2,'b"))) :+: (L (3,'c"))

The recursive definition of this function will pass through the algebraic data structure
and use some kind of accumulator (an Int parameter), giving us the next number, we

should use, when we reach a leaf. Hence, we could try to define an auxiliary function
numberTreeWithNum, which is then initially called as follows:

numberTree t = numberTreeWithNum t 1

With the type numberTreeWithNum ::Tree a -> Int -> Tree (Int,a). Unfortu-
nately, we obtain a problem, when we try to define this function. In the case for the
nonempty tree, we do not know, how many numbers, will be produced in the pass
through the left tree:

numberTreeWithNum (tl :+: tr) n = numberTreeWithNum tl n :+: numberTreeWithNum tr (size

Computing the size of the left is an expensive operation and might result into exponential
run-time, because this size is computed in every single recursive step. A better solution
is, that the computation returns the next number as an additional return value. In other
words, the (next) number is some kind of accumulator passed through the tree. We get
the type

numberTreeWithAcc :: Tree a -> Int -> (Tree (Int,a), Int)

Using this function, it is easy to number all leafs. In the initial call, we only have to
select the first element of the result tuple.

numberTreeAcc t = fst (numberTreeWithAcc t 1)

In the auxiliary function a leaf simply consumes the number and increments it for the
next leaf:

numberTreeWithAcc (L x) n = (L x,n+1)
In the case of an inner node, we can then simply pass the numbers through the trees.

numberTreeWithAcc (1 :+: r) n =
let (1',nl1) = numberTreeWithAcc 1 n



(r',n2) = numberTreeWithAcc r nil
in (' :+: r', n2)

Defining functions for larger data types (esp. with larger branching) using this approach
my easily result in mistakes, since many variables have to be defined and the correct
variable has to be used. The manual passing of the state can be confusing.

Inspecting the code, we see, that it has an almost sequential structure. Hence, this code
might be a good candidate for using monads and the do-notation as well. A variant
might look like this:

numberTreeState (L x) = do
n <- get
put (n+1)
return (L (n,x)
numberTreeState (1 :+: r) = do
1' <- numberTreeState 1
r' <- numberTreeState r
return (1' :+: r')

The functions put and get are supposed to read and modify the existing state. In this
implementation the return function should have the type a -> Int -> (a,Int). Hence,
the type constructor IntState for the monad should be defined as:

type IntState a = Int -> (a,Int)

and bind would be of type IntState a -> (a -> IntState b) -> IntState b. Fur-
thermore, get and put would be of type

get :: IntState Int
put :: Int -> IntState ()

This type can be further abstracted. The state can have an arbitrary type, which means
we should use polymorphism for the type of the state as well. Furthermore, it is better
to use a newtype instead of a type synonym, because this avoid type clashes with other
functions of the same structure and allows a proper instance definition for the monad
class.

newtype State s a = State (s -> (a,s))
For this type we also define the function

runState :: State s a -> s -> (a,s)
runState (State f) = f

which allows us to start a computation in our state monad. Obviously, it holds, that
runState (State f) = fand foralla :: State s a also State (runState a) = a.

Now we can defined an instance of class Monad for the type constructor State s. return
leaves the state unchanged and bind passes the state through the computation. The idea



is the same as in the initial definition of numberTreeWithAcc

instance Monad (State s) where
return x = State (\s -> (x,s))

a >>=f = State (\s -> let (x,s') = runState a s
in runState (f x) s')

Here we exactly once program, how the state is pulled through the computation. Hence,
it is not necessary to program this again and again. We simply use the bind-operator
instead.

It remains to prove, the monad laws are fulfilled. return is a left identity for bind:

return x >>= £
State (\s —>
let (x',s') = runState (return x) s
in runState (f x') s')
State (\s ->
let (x',s') = runState (State (\s -> (x,8))) s
in runState (f x') s')
State (\s ->
let (x',8') = (\s > (x,8)) s
in runState (f x') s')
State (\s —>
let (x',s') = (x,s8)
in runState (f x') s')
State (\s -> runState (f x) s)
State (runState (f x))
f x

return is also a right identity for bind:

a >>= return
State (\s -> let (x,s') = runState a s
in runState (return x) s')
State (\s -> let (x,s') = runState a s
in runState (State (\s -> (x,s8))) s')
State (\s -> let (x,s') = runState a s
in (\s > (x,s)) s')
State (\s —> let (x,s') = runState a s in (x,s'))
State (\s -> runState a s)
State (runState a)
a

Finally, we prove the associativity for bind:

(a >>=f) >=g
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a >>=

(\s —> let (x,s') = runState (a >>= f) s
in runState (g x) s')
(\s —>
(x,s') = runState (State (\t —>
let (y,t') = runState a t
in runState (f y) t')) s
runState (g x) s')
(\s —>
(x,8') = (\t > let (y,t') = runState a t
in runState (f y) t') s
runState (g x) s')
(\s —>
(x,8') = let (y,t') = runState a s
in runState (f y) t'
runState (g x) s')
(\s —>
(y,t') = runState a s
(x,s') = runState (f y) t'
runState (g x) s')
(s —>
(y,t') = runState a s
let (x,s') = runState (f y) t'
in runState (g x) s')
(s —>
(y,t') = runState a s
(\t -> let (x,s') = runState (f y) t
in runState (g x) s') t')
(\s ->
(y,t') = runState a s
runState (State (\t ->
let (x,s') = runState (f y) t
in runState (g x) s')) t')
(\s -> let (y,t') = runState a s
in runState (f y >>=g) t')
\x > f x>=g

It remains to define the functions get and put. The function get leaves the state
unchanged and additionally yields it as first component of the result tuple.

get

:: State s s

get = State (\s -> (s,s))

The function put ignores the passed state and replaces it be the argument parameter

put

:: s -> State s ()

put s = State (\_ -> (QO,s))



Using these definitions, it is now very easy to define numberTree by means of a monadic,
auxiliary function numberTreeState:

numberTree :: Tree a -> Tree (Int,a)
numberTree t = fst (runState (numberTreeState t) 1)

numberTreeState (L x) = do
n <- get
put (n+1)
return (L (n,x))
numberTreeState (1 :+: r) = do
1' <- numberTreeState 1
r' <- numberTreeState r
return (1' :+: r')

The presented implementation is not the only possible Implementation of a state monad.
Hence, it makes sense to generalize this approach to a class as well. State monads provide,
beside the operation of class Monad two functions get and put, which can be abstracted
as follows:

class Monad m => MonadState s m where
get :: m s
put :: s >m QO

MonadState is a so called Multi Parameter typeclass. Both, the type of the state and the
type constructor for the monad are type parameters of MonadState. Multi-Parameter
Classes do not belong to Haskell’98 Standard. However, they can be used in GHC
oder GHCi by enabling the language extension MultiParamTypeClasses. To declare
corresponding instances, the extension FlexibleInstances must be enabled as well.

The partially applied type constructor State s can be made an instance of MonadState
s by copying the definitions for get and put into the instance declaration.

instance MonadState s (State s) where
get State (\s -> (s,s))
put s = State (\_ -> (O,s))

Similar to MonadPlus there are also some reasonable laws for state monads

get >>= put = return ()

which means, that setting the state to the actual state has no effect and

put s >> get = put s >> return s

which means, that get has no effect on the state but yields the state set by put before.
Our implementation fulfills these laws:

get >>= put
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(\s ->

(x,8') = runState get s

runState (put x) s'

As —>

(x,s') = runState (State (\s -> (s,s))) s
runState (put x) s')

(s —>
(x,8") = (s,8)
runState (put x) s')

(\s -> runState (put s) s)
(\s -> runState (State (\_ -> ((0),s))) s)
(s => (O,s)

= return ()

And the second law:

put s
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put s

>> get

A\t ->

(x,t') = runState (put s) t

runState get t')

At ->

(x,t') = runState (State (\_ —> (0,s))) t
runState get t')

A\t —>

(x,t') = (O,s)

runState (State (\s -> (s,s))) t')

At > (s,s))

A\t -> let (x,t') = (O,s) in (s,t'))

At —>

(x,t') = runState (State (\_ -> ((),8))) t
runState (State (\s' -> (s,s'))) t'

A\t ->

(x,t') = runState (put s) t
runState (return s) t'

>> return s

Using the class MonadState it would also be possible to execute the code in an arbitrary
state monad. This can be seen from it most general type:

numberTreeState :: MonadState Int m => Tree a -> m (Tree (Int,a))

So far, we got to know no further instance of MonadState. However, we will see an
alternative approach later.
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