1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
module Data.RedBlackTree
( RedBlackTree, empty, isEmpty, lookup, update
, toList, sortBy, newTreeLike, setInsertEquivalence, delete
) where
data RedBlackTree a
= RedBlackTree
(a -> a -> Bool)
(a -> a -> Bool)
(a -> a -> Bool)
(Tree a)
empty :: (a -> a -> Bool) -> (a -> a -> Bool) -> (a -> a -> Bool)
-> RedBlackTree a
empty eqInsert eqLookUp lessThan = RedBlackTree eqInsert eqLookUp lessThan Empty
isEmpty :: RedBlackTree _ -> Bool
isEmpty (RedBlackTree _ _ _ Empty) = True
isEmpty (RedBlackTree _ _ _ (Tree _ _ _ _)) = False
newTreeLike :: RedBlackTree a -> RedBlackTree a
newTreeLike (RedBlackTree eqIns eqLk lt _) = RedBlackTree eqIns eqLk lt Empty
lookup :: a -> RedBlackTree a -> Maybe a
lookup p (RedBlackTree _ eqLk lt t) = lookupTree eqLk lt p t
lookupTree :: (a -> a -> Bool) -> (a -> a -> Bool) -> a -> Tree a -> Maybe a
lookupTree _ _ _ Empty = Nothing
lookupTree eq lt p (Tree _ e l r)
| eq p e = Just e
| lt p e = lookupTree eq lt p l
| otherwise = lookupTree eq lt p r
update :: a -> RedBlackTree a -> RedBlackTree a
update e (RedBlackTree eqIns eqLk lt t) =
RedBlackTree eqIns eqLk lt (updateTree eqIns lt e t)
updateTree :: (a -> a -> Bool) -> (a -> a -> Bool) -> a -> Tree a -> Tree a
updateTree eq lt e t = let (Tree _ e2 l r) = upd t
in Tree Black e2 l r
where
upd Empty = Tree Red e Empty Empty
upd (Tree c e2 l r) | eq e e2 = Tree c e l r
| lt e e2 = balanceL (Tree c e2 (upd l) r)
| otherwise = balanceR (Tree c e2 l (upd r))
delete :: a -> RedBlackTree a -> RedBlackTree a
delete e (RedBlackTree eqIns eqLk lt t) =
RedBlackTree eqIns eqLk lt (blackenRoot (deleteTree eqLk lt e t))
where
blackenRoot Empty = Empty
blackenRoot (Tree _ x l r) = Tree Black x l r
deleteTree :: (a -> a -> Prelude.Bool)
-> (a -> a -> Prelude.Bool) -> a -> Tree a -> Tree a
deleteTree _ _ _ Empty = Empty
deleteTree eq lt e (Tree c e2 l r)
| eq e e2 = if isEmptyTree l then addColor c r else
if isEmptyTree r
then addColor c l
else let el = rightMost l
in delBalanceL (Tree c el (deleteTree eq lt el l) r)
| lt e e2 = delBalanceL (Tree c e2 (deleteTree eq lt e l) r)
| otherwise = delBalanceR (Tree c e2 l (deleteTree eq lt e r))
where
addColor DoublyBlack tree = tree
addColor Red tree = tree
addColor Black Empty = Empty
addColor Black (Tree Red x lx rx) = Tree Black x lx rx
addColor Black (Tree Black x lx rx) = Tree DoublyBlack x lx rx
addColor Black (Tree DoublyBlack x lx rx) = Tree DoublyBlack x lx rx
rightMost Empty = error "RedBlackTree.rightMost"
rightMost (Tree _ x _ rx) = if isEmptyTree rx then x else rightMost rx
toList :: RedBlackTree a -> [a]
toList (RedBlackTree _ _ _ t) = tree2listTree t
tree2listTree :: Tree a -> [a]
tree2listTree tree = t2l tree []
where
t2l Empty es = es
t2l (Tree _ e l r) es = t2l l (e : t2l r es)
sortBy :: Eq a => (a -> a -> Bool) -> [a] -> [a]
sortBy cmp xs = toList (foldr update (empty (\_ _->False) (==) cmp) xs)
setInsertEquivalence :: (a -> a -> Bool) -> RedBlackTree a -> RedBlackTree a
setInsertEquivalence eqIns (RedBlackTree _ eqLk lt t) = RedBlackTree eqIns eqLk lt t
rbt :: RedBlackTree a -> Tree a
rbt (RedBlackTree _ _ _ t) = t
data Color = Red | Black | DoublyBlack
deriving Eq
data Tree a = Tree Color a (Tree a) (Tree a)
| Empty
isEmptyTree :: Tree _ -> Bool
isEmptyTree Empty = True
isEmptyTree (Tree _ _ _ _) = False
isBlack :: Tree _ -> Bool
isBlack Empty = True
isBlack (Tree c _ _ _) = c == Black
isRed :: Tree _ -> Bool
isRed Empty = False
isRed (Tree c _ _ _) = c == Red
isDoublyBlack :: Tree _ -> Bool
isDoublyBlack Empty = True
isDoublyBlack (Tree c _ _ _) = c == DoublyBlack
left :: Tree a -> Tree a
left Empty = error "RedBlackTree.left"
left (Tree _ _ l _) = l
right :: Tree a -> Tree a
right Empty = error "RedBlackTree.right"
right (Tree _ _ _ r) = r
singleBlack :: Tree a -> Tree a
singleBlack Empty = Empty
singleBlack (Tree Red x l r) = Tree Red x l r
singleBlack (Tree Black x l r) = Tree Black x l r
singleBlack (Tree DoublyBlack x l r) = Tree Black x l r
balanceL :: Tree a -> Tree a
balanceL tree
| isRed leftTree && isRed (left leftTree)
= let Tree _ z (Tree _ y (Tree _ x a b) c) d = tree
in Tree Red y (Tree Black x a b) (Tree Black z c d)
| isRed leftTree && isRed (right leftTree)
= let Tree _ z (Tree _ x a (Tree _ y b c)) d = tree
in Tree Red y (Tree Black x a b) (Tree Black z c d)
| otherwise = tree
where
leftTree = left tree
balanceR :: Tree a -> Tree a
balanceR tree
| isRed rightTree && isRed (right rightTree)
= let Tree _ x a (Tree _ y b (Tree _ z c d)) = tree
in Tree Red y (Tree Black x a b) (Tree Black z c d)
| isRed rightTree && isRed (left rightTree)
= let Tree _ x a (Tree _ z (Tree _ y b c) d) = tree
in Tree Red y (Tree Black x a b) (Tree Black z c d)
| otherwise = tree
where
rightTree = right tree
delBalanceL :: Tree a -> Tree a
delBalanceL tree = if isDoublyBlack (left tree) then reviseLeft tree else tree
reviseLeft :: Tree a -> Tree a
reviseLeft tree
| isEmptyTree r = tree
| blackr && isRed (left r)
= let Tree col x a (Tree _ z (Tree _ y b c) d) = tree
in Tree col y (Tree Black x (singleBlack a) b) (Tree Black z c d)
| blackr && isRed (right r)
= let Tree col x a (Tree _ y b (Tree _ z c d)) = tree
in Tree col y (Tree Black x (singleBlack a) b) (Tree Black z c d)
| blackr
= let Tree col x a (Tree _ y b c) = tree
in Tree (if col==Red then Black else DoublyBlack) x (singleBlack a)
(Tree Red y b c)
| otherwise
= let Tree _ x a (Tree _ y b c) = tree
in Tree Black y (reviseLeft (Tree Red x a b)) c
where
r = right tree
blackr = isBlack r
delBalanceR :: Tree a -> Tree a
delBalanceR tree = if isDoublyBlack (right tree) then reviseRight tree
else tree
reviseRight :: Tree a -> Tree a
reviseRight tree
| isEmptyTree l = tree
| blackl && isRed (left l)
= let Tree col x (Tree _ y (Tree _ z d c) b) a = tree
in Tree col y (Tree Black z d c) (Tree Black x b (singleBlack a))
| blackl && isRed (right l)
= let Tree col x (Tree _ z d (Tree _ y c b)) a = tree
in Tree col y (Tree Black z d c) (Tree Black x b (singleBlack a))
| blackl
= let Tree col x (Tree _ y c b) a = tree
in Tree (if col==Red then Black
else DoublyBlack) x (Tree Red y c b) (singleBlack a)
| otherwise
= let Tree _ x (Tree _ y c b) a = tree
in Tree Black y c (reviseRight (Tree Red x b a))
where
l = left tree
blackl = isBlack l
|