1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
-------------------------------------------------------------------------
--- Implementation of a transformation to replace Boolean equalities
--- by equational constraints (which binds variables).
---
--- @author Michael Hanus
--- @version April 2019
-------------------------------------------------------------------------

module BindingOpt (main, transformFlatProg) where

import Directory         ( renameFile )
import Distribution      ( installDir, curryCompiler )
import FileGoodies
import FilePath          ( (</>), (<.>), normalise, pathSeparator )
import List
import Maybe             (fromJust)
import System            ( getArgs,system,exitWith,getCPUTime )
import FlatCurry.Types hiding  (Cons)
import FlatCurry.Files
import FlatCurry.Goodies

import Analysis.Types
import Analysis.ProgInfo
import Analysis.RequiredValues
import CASS.Server       ( analyzeGeneric, analyzePublic, analyzeInterface )
import System.CurryPath  ( addCurrySubdir, currySubdir
                         , lookupModuleSourceInLoadPath, splitModuleFileName )
import Text.CSV


type Options = (Int, Bool, Bool) -- (verbosity, use analysis?, auto-load?)

defaultOptions :: Options
defaultOptions = (1, True, False)

systemBanner :: String
systemBanner =
  let bannerText = "Curry Binding Optimizer (version of 15/08/2018)"
      bannerLine = take (length bannerText) (repeat '=')
   in bannerLine ++ "\n" ++ bannerText ++ "\n" ++ bannerLine

usageComment :: String
usageComment = unlines
  [ "Usage: curry-transbooleq [option] ... [module or FlatCurry file] ..."
  , "       -v<n>  : set verbosity level (n=0|1|2|3)"
  , "       -f     : fast transformation without analysis"
  , "                (uses only information about the standard prelude)"
  , "       -l     : load optimized module into Curry system"
  , "       -h, -? : show this help text"
  ]

-- main function to call the optimizer:
main :: IO ()
main = getArgs >>= checkArgs defaultOptions

mainCallError :: [String] -> IO ()
mainCallError args = do
  putStrLn $ systemBanner
    ++ "\nIllegal arguments: " ++ unwords args
    ++ "\n" ++ usageComment
  exitWith 1

checkArgs :: Options -> [String] -> IO ()
checkArgs opts@(verbosity, withana, load) args = case args of
  []                   -> mainCallError []
  -- verbosity option
  ('-':'v':d:[]):margs -> let v = ord d - ord '0'
                          in if v >= 0 && v <= 4
                              then checkArgs (v, withana, load) margs
                              else mainCallError args
  -- fast option
  "-f":margs           -> checkArgs (verbosity, False, load) margs
  -- auto-loading
  "-l":margs           -> checkArgs (verbosity, withana, True) margs
  "-h":_               -> putStr (systemBanner++'\n':usageComment)
  "-?":_               -> putStr (systemBanner++'\n':usageComment)
  mods                 -> do
                          printVerbose verbosity 1 systemBanner
                          mapIO_ (transformBoolEq opts) mods

-- Verbosity level:
-- 0 : show nothing
-- 1 : show summary of optimizations performed
-- 2 : show analysis infos and details of optimizations including timings
-- 3 : show analysis infos also of imported modules
-- 4 : show intermediate data (not yet used)

-- Output a string w.r.t. verbosity level
printVerbose :: Int -> Int -> String -> IO ()
printVerbose verbosity printlevel message =
  unless (null message || verbosity < printlevel) $ putStrLn message

transformBoolEq :: Options -> String -> IO ()
transformBoolEq opts@(verb, _, _) name = do
  let isfcyname = fileSuffix name == "fcy"
  (moddir,modname) <-
         if isfcyname
           then return $ modNameOfFcyName (normalise (stripSuffix name))
           else lookupModuleSourceInLoadPath name >>=
                maybe (error $ "Source file of module '" ++ name ++
                               "' not found!")
                      (\ (dir,_) -> return (dir,name))
  printVerbose verb 1 $ "Reading and analyzing module '" ++ modname ++ "'..."
  flatprog <- if isfcyname then readFlatCurryFile name
                           else readFlatCurry     modname
  transformAndStoreFlatProg opts moddir modname flatprog

-- Drop a suffix from a list if present or leave the list as is otherwise.
dropSuffix :: Eq a => [a] -> [a] -> [a]
dropSuffix sfx s | sfx `isSuffixOf` s = take (length s - length sfx) s
                 | otherwise          = s

-- Extracts the directory path and module name from a given FlatCurry file name:
modNameOfFcyName :: String -> (String,String)
modNameOfFcyName name =
  let wosuffix = normalise (stripSuffix name)
      [dir,wosubdir] = splitOn (currySubdir ++ [pathSeparator]) wosuffix
   in -- construct hierarchical module name:
      (dir, intercalate "." (split (==pathSeparator) wosubdir))

transformAndStoreFlatProg :: Options -> String -> String -> Prog -> IO ()
transformAndStoreFlatProg opts@(verb, _, load) dir modname prog = do
  let name        = intercalate [pathSeparator] (split (== '.') modname)
      oldprogfile = normalise $ addCurrySubdir dir </>  name         <.> "fcy"
      newprogfile = normalise $ addCurrySubdir dir </>  name ++ "_O" <.> "fcy"
  starttime <- getCPUTime
  (newprog, transformed) <- transformFlatProg opts modname prog
  when transformed $ writeFCY newprogfile newprog
  stoptime <- getCPUTime
  printVerbose verb 2 $ "Transformation time for " ++ modname ++ ": " ++
                        show (stoptime-starttime) ++ " msecs"
  when transformed $ do
    printVerbose verb 2 $ "Transformed program stored in " ++ newprogfile
    renameFile newprogfile oldprogfile
    printVerbose verb 2 $ " ...and moved to " ++ oldprogfile
  when load $ system (curryComp ++ " :l " ++ modname) >> done
 where curryComp = installDir </> "bin" </> curryCompiler

-- Perform the binding optimization on a FlatCurry program.
-- Return the new FlatCurry program and a flag indicating whether
-- something has been changed.
transformFlatProg :: Options -> String -> Prog -> IO (Prog, Bool)
transformFlatProg (verb, withanalysis, _) modname
                  (Prog mname imports tdecls fdecls opdecls)= do
  lookupreqinfo <-
    if withanalysis
    then do (mreqinfo,reqinfo) <- loadAnalysisWithImports reqValueAnalysis
                                                          modname imports
            printVerbose verb 2 $ "\nResult of \"RequiredValue\" analysis:\n"++
                                  showInfos (showAFType AText)
                                     (if verb==3 then reqinfo else mreqinfo)
            return (flip lookupProgInfo reqinfo)
    else return (flip lookup preludeBoolReqValues)
  let (stats,newfdecls) = unzip (map (transformFuncDecl lookupreqinfo) fdecls)
      numtrans = totalTrans stats
      numbeqs  = totalBEqs  stats
      csvfname = mname ++ "_BOPTSTATS.csv"
  printVerbose verb 2 $ statSummary stats
  printVerbose verb 1 $
     "Total number of transformed (dis)equalities: " ++ show numtrans ++
     " (out of " ++ show numbeqs ++ ")"
  unless (verb<2) $ do
    writeCSVFile csvfname (stats2csv stats)
    putStrLn ("Detailed statistics written to '" ++ csvfname ++"'")
  return (Prog mname imports tdecls newfdecls opdecls, numtrans > 0)

loadAnalysisWithImports :: Analysis a -> String -> [String]
                        -> IO (ProgInfo a,ProgInfo a)
loadAnalysisWithImports analysis modname imports = do
  maininfo <- analyzeGeneric analysis modname >>= return . either id error
  impinfos <- mapIO (\m -> analyzePublic analysis m >>=
                                                     return . either id error)
                    imports
  return $ (maininfo, foldr1 combineProgInfo (maininfo:impinfos))

showInfos :: (a -> String) -> ProgInfo a -> String
showInfos showi =
  unlines . map (\ (qn,i) -> snd qn ++ ": " ++ showi i)
          . (\p -> fst p ++ snd p) . progInfo2Lists

-- Transform a function declaration.
-- Some statistical information and the new function declaration are returned.
transformFuncDecl :: (QName -> Maybe AFType) -> FuncDecl
                  -> (TransStat,FuncDecl)
transformFuncDecl lookupreqinfo fdecl@(Func qf@(_,fn) ar vis texp rule) =
  if containsBeqRule rule
  then
    let (tst,trule) = transformRule lookupreqinfo (initTState qf) rule
        on = occNumber tst
     in (TransStat fn beqs on, Func qf ar vis texp trule)
  else (TransStat fn 0 0, fdecl)
 where
  beqs = numberBeqRule rule

-------------------------------------------------------------------------
-- State threaded through the program transformer:
-- * name of current function
-- * number of occurrences of (==) that are replaced by (=:=)
data TState = TState QName Int

initTState :: QName -> TState
initTState qf = TState qf 0

occNumber :: TState -> Int
occNumber (TState _ on) = on

incOccNumber :: TState -> TState
incOccNumber (TState qf on) = TState qf (on+1)

-------------------------------------------------------------------------
--- Transform a FlatCurry program rule w.r.t. information about required
--- values. If there is an occurrence of (e1==e2) where the value `True`
--- is required, then this occurrence is replaced by
---
---     (e1=:=e2)
---
--- Similarly, (e1/=e2) with required value `False` is replaced by
---
---     (not (e1=:=e2))

transformRule :: (QName -> Maybe AFType) -> TState -> Rule -> (TState,Rule)
transformRule _ tst (External s) = (tst, External s)
transformRule lookupreqinfo tstr (Rule args rhs) =
  let (te,tste) = transformExp tstr rhs Any
   in (tste, Rule args te)
 where
  -- transform an expression w.r.t. a required value
  transformExp tst (Var i) _ = (Var i, tst)
  transformExp tst (Lit v) _ = (Lit v, tst)
  transformExp tst0 exp@(Comb ct qf es) reqval
    | reqval == aTrue && isBoolEqualCall "==" exp
    = (Comb FuncCall (pre "=:=") (argsOfBoolEqualCall "==" (Comb ct qf tes))
      , incOccNumber tst1)
    | reqval == aFalse && isBoolEqualCall "/=" exp
    = (Comb FuncCall (pre "not")
         [Comb FuncCall (pre "=:=") (argsOfBoolEqualCall "/=" (Comb ct qf tes))]
      , incOccNumber tst1)
    | qf == pre "$" && length es == 2 &&
      (isFuncPartCall (head es) || isConsPartCall (head es))
    = transformExp tst0 (reduceDollar es) reqval
    | otherwise
    = (Comb ct qf tes, tst1)
   where reqargtypes = argumentTypesFor (lookupreqinfo qf) reqval
         (tes,tst1)  = transformExps tst0 (zip es reqargtypes)
  transformExp tst0 (Free vars e) reqval =
    let (te,tst1) = transformExp tst0 e reqval
     in (Free vars te, tst1)
  transformExp tst0 (Or e1 e2) reqval =
    let (te1,tst1) = transformExp tst0 e1 reqval
        (te2,tst2) = transformExp tst1 e2 reqval
     in (Or te1 te2, tst2)
  transformExp tst0 (Typed e t) reqval =
    let (te,tst1) = transformExp tst0 e reqval
     in (Typed te t, tst1)
  transformExp tst0 (Case ct e bs) reqval =
    let (te ,tst1) = transformExp tst0 e (caseArgType bs)
        (tbs,tst2) = transformBranches tst1 bs reqval
     in (Case ct te tbs, tst2)
  transformExp tst0 (Let bs e) reqval =
    let (tbes,tst1) = transformExps tst0 (zip (map snd bs) (repeat Any))
        (te,tst2) = transformExp tst1 e reqval
     in (Let (zip (map fst bs) tbes) te, tst2)

  transformExps tst [] = ([],tst)
  transformExps tst ((exp,rv):exps) =
    let (te, tste ) = transformExp tst exp rv
        (tes,tstes) = transformExps tste exps
     in (te:tes, tstes)

  transformBranches tst [] _ = ([],tst)
  transformBranches tst (br:brs) reqval =
    let (tbr,tst1) = transformBranch tst br reqval
        (tbrs,tst2) = transformBranches tst1 brs reqval
     in (tbr:tbrs, tst2)

  transformBranch tst (Branch pat be) reqval =
    let (tbe,tstb) = transformExp tst be reqval
     in (Branch pat tbe, tstb)

-------------------------------------------------------------------------
-- Check whether the expression argument is a call to a Boolean (dis)equality
-- and return the arguments of the call.
-- The first argument is "==" (for checking equalities) or "/="
-- (for checking disequalities).
-- If type classes are present, a Boolean (dis)equality call can be
-- * an instance (dis)equality call: "_impl#==#Prelude.Eq#..." ... e1 e2
--   (where there can be additional arguments for other Eq dicts)
-- * a class (dis)equality call: apply (apply ("==" [dict]) e1) e2
--   (where dict is a dictionary parameter)
-- * a default instance (dis)equality call:
--   apply (apply ("_impl#==#Prelude.Eq#..." []) e1) e2
checkBoolEqualCall :: String -> Expr -> Maybe [Expr]
checkBoolEqualCall deq exp = case exp of
  Comb FuncCall qf es ->
    if isNotEqualInstanceFunc qf && length es > 1
      then Just (drop (length es - 2) es)
                -- drop possible Eq dictionary arguments
      else if qf == pre "apply"
             then case es of
                    [Comb FuncCall qfa [Comb FuncCall qfe [_],e1],e2] ->
                      if qfa == pre "apply" &&
                         (qfe == pre deq || isNotEqualInstanceFunc qfe)
                        then Just [e1,e2]
                        else Nothing
                    [Comb FuncCall qfa [Comb FuncCall qfe [],e1],e2] ->
                      if qfa == pre "apply" &&
                         (qfe == pre deq || isNotEqualInstanceFunc qfe)
                        then Just [e1,e2]
                        else Nothing
                    _ -> Nothing
             else Nothing
  _ -> Nothing
 where
  isNotEqualInstanceFunc (_,f) =
    ("_impl#"++deq++"#Prelude.Eq#") `isPrefixOf` f

-- Is this a call to a Boolean equality?
isBoolEqualCall :: String -> Expr -> Bool
isBoolEqualCall deq exp = checkBoolEqualCall deq exp /= Nothing

-- Returns the arguments of a call to a Boolean equality.
argsOfBoolEqualCall :: String -> Expr -> [Expr]
argsOfBoolEqualCall deq exp = fromJust (checkBoolEqualCall deq exp)

-------------------------------------------------------------------------

--- Reduce an application of Prelude.$ to a combination:
reduceDollar :: [Expr] -> Expr
reduceDollar args = case args of
  [Comb (FuncPartCall n) qf es, arg2]
    -> Comb (if n==1 then FuncCall else (FuncPartCall (n-1))) qf (es++[arg2])
  [Comb (ConsPartCall n) qf es, arg2]
    -> Comb (if n==1 then ConsCall else (ConsPartCall (n-1))) qf (es++[arg2])
  _ -> error "reduceDollar"

--- Try to compute the required value of a case argument expression.
--- If one branch of the case expression is "False -> failed",
--- then the required value is `True` (this is due to the specific
--- translation of Boolean conditional rules of the front end).
--- If the case expression has one non-failing branch, the constructor
--- of this branch is chosen, otherwise it is `Any`.
caseArgType :: [BranchExpr] -> AType
caseArgType branches
  | not (null (tail branches)) &&
    branches!!1 == Branch (Pattern (pre "False") []) failedFC
  = aCons (pre "True")
  | length nfbranches /= 1
  = Any
  | otherwise = getPatCons (head nfbranches)
 where
  failedFC = Comb FuncCall (pre "failed") []

  nfbranches = filter (\ (Branch _ be) -> be /= failedFC) branches

  getPatCons (Branch (Pattern qc _) _) = aCons qc
  getPatCons (Branch (LPattern _)   _) = Any

--- Compute the argument types for a given abstract function type
--- and required value.
argumentTypesFor :: Maybe AFType -> AType -> [AType]
argumentTypesFor Nothing                _      = repeat Any
argumentTypesFor (Just EmptyFunc)       _      = repeat Any
argumentTypesFor (Just (AFType rtypes)) reqval =
  maybe (-- no exactly matching type, look for Any type:
         maybe (-- no Any type: if reqtype==Any, try lub of all other types:
                if (reqval==Any || reqval==AnyC) && not (null rtypes)
                then foldr1 lubArgs (map fst rtypes)
                else repeat Any)
               fst
               (find ((`elem` [AnyC,Any]) . snd) rtypes))
        fst
        (find ((==reqval) . snd) rtypes)
 where
  lubArgs xs ys = map (uncurry lubAType) (zip xs ys)


-- Does Prelude.== occur in a rule?
containsBeqRule :: Rule -> Bool
containsBeqRule (External _) = False
containsBeqRule (Rule _ rhs) = containsBeqExp rhs
 where
  -- containsBeq an expression w.r.t. a required value
  containsBeqExp (Var _) = False
  containsBeqExp (Lit _) = False
  containsBeqExp exp@(Comb _ _ es) =
    isBoolEqualCall "==" exp || isBoolEqualCall "/=" exp ||
    any containsBeqExp es
  containsBeqExp (Free _ e   ) = containsBeqExp e
  containsBeqExp (Or e1 e2   ) = containsBeqExp e1 || containsBeqExp e2
  containsBeqExp (Typed e _  ) = containsBeqExp e
  containsBeqExp (Case _ e bs) = containsBeqExp e || any containsBeqBranch bs
  containsBeqExp (Let bs e   ) = containsBeqExp e ||
                                 any containsBeqExp (map snd bs)

  containsBeqBranch (Branch _ be) = containsBeqExp be

-- Number of occurrences of Prelude.== or Prelude./= occurring in a rule:
numberBeqRule :: Rule -> Int
numberBeqRule (External _) = 0
numberBeqRule (Rule _ rhs) = numberBeqExp rhs
 where
  -- numberBeq an expression w.r.t. a required value
  numberBeqExp (Var _) = 0
  numberBeqExp (Lit _) = 0
  numberBeqExp exp@(Comb _ _ es) =
    if isBoolEqualCall "==" exp
      then 1 + sum (map numberBeqExp (argsOfBoolEqualCall "==" exp))
      else if isBoolEqualCall "/=" exp
             then 1  + sum (map numberBeqExp (argsOfBoolEqualCall "/=" exp))
             else sum (map numberBeqExp es)
  numberBeqExp (Free _ e) = numberBeqExp e
  numberBeqExp (Or e1 e2) = numberBeqExp e1 + numberBeqExp e2
  numberBeqExp (Typed e _) = numberBeqExp e
  numberBeqExp (Case _ e bs) = numberBeqExp e + sum (map numberBeqBranch bs)
  numberBeqExp (Let bs e) = numberBeqExp e + sum (map numberBeqExp (map snd bs))

  numberBeqBranch (Branch _ be) = numberBeqExp be

pre :: String -> QName
pre n = ("Prelude", n)

-------------------------------------------------------------------------
-- Loading prelude analysis result:
loadPreludeBoolReqValues :: IO [(QName, AFType)]
loadPreludeBoolReqValues = do
  maininfo <- analyzeInterface reqValueAnalysis "Prelude" >>=
                                                return . either id error
  return (filter (hasBoolReqValue . snd) maininfo)
 where
  hasBoolReqValue EmptyFunc = False
  hasBoolReqValue (AFType rtypes) =
    maybe False (const True) (find (isBoolReqValue . snd) rtypes)

  isBoolReqValue rt = rt == aFalse || rt == aTrue

-- Current relevant Boolean functions of the prelude:
preludeBoolReqValues :: [(QName, AFType)]
preludeBoolReqValues =
 [(pre "&&",    AFType [([Any,Any],aFalse), ([aTrue,aTrue],aTrue)])
 ,(pre "not",   AFType [([aTrue],aFalse), ([aFalse],aTrue)])
 ,(pre "||",    AFType [([aFalse,aFalse],aFalse), ([Any,Any],aTrue)])
 ,(pre "&",     AFType [([aTrue,aTrue],aTrue)])
 ,(pre "solve", AFType [([aTrue],aTrue)])
 ,(pre "&&>",   AFType [([aTrue,Any],AnyC)])
 ]

--- Map a constructor into an abstract value representing this constructor:
aCons :: QName -> AType
aCons qn = Cons [qn]

--- Abstract `False` value
aFalse :: AType
aFalse = aCons (pre "False")

--- Abstract `True` value
aTrue :: AType
aTrue  = aCons (pre "True")

-------------------------------------------------------------------------
--- Statistical information (e.g., for benchmarking the tool):
--- * function name
--- * number of Boolean (dis)equalities in the rule
--- * number of transformed (dis)equalities in the rule
data TransStat = TransStat String Int Int

--- Number of all transformations:
totalTrans :: [TransStat] -> Int
totalTrans = sum . map (\ (TransStat _ _ teqs) -> teqs)

--- Number of all Boolean (dis)equalities:
totalBEqs :: [TransStat] -> Int
totalBEqs = sum . map (\ (TransStat _ beqs _) -> beqs)

--- Show a summary of the actual transformations:
statSummary :: [TransStat] -> String
statSummary = concatMap showSum
 where
  showSum (TransStat fn _ teqs) =
    if teqs==0
      then ""
      else "Function "++fn++": "++
           (if teqs==1 then "one occurrence" else show teqs++" occurrences") ++
           " of (==) transformed into (=:=)\n"

--- Translate statistics into CSV format:
stats2csv :: [TransStat] -> [[String]]
stats2csv stats =
  ["Function","Boolean equalities", "Transformed equalities"] :
  map (\ (TransStat fn beqs teqs) -> [fn, show beqs, show teqs]) stats

-------------------------------------------------------------------------