
KiCS2
The Kiel Curry System (Version 2)

User Manual

Version 2.0.3 of 2018-11-24

Michael Hanus1 [editor]

Additional Contributors:

Bernd Braßel2

Björn Peemöller3

Fabian Reck4

Jan Rasmus Tikovsky5

Finn Teegen6

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(3) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(4) University of Kiel, Germany, fre@informatik.uni-kiel.de
(5) University of Kiel, Germany, jrt@informatik.uni-kiel.de
(6) University of Kiel, Germany, fte@informatik.uni-kiel.de

Contents

Preface 5

1 Overview of KiCS2 6
1.1 Installation . 6
1.2 General Use . 6
1.3 Restrictions . 6
1.4 Modules in KiCS2 . 8

2 Using the Interactive Environment of KiCS2 9
2.1 Invoking KiCS2 . 9
2.2 Commands of KiCS2 . 10
2.3 Options of KiCS2 . 12
2.4 Source-File Options . 16
2.5 Using KiCS2 in Batch Mode . 16
2.6 Command Line Editing . 17
2.7 Customization . 17
2.8 Emacs Interface . 17

3 Extensions 18
3.1 Narrowing on Int Literals . 18
3.2 Recursive Variable Bindings . 18
3.3 Functional Patterns . 19
3.4 Order of Pattern Matching . 21
3.5 Type Classes . 21

4 Recognized Syntax of Curry 22
4.1 Notational Conventions . 22
4.2 Lexicon . 22

4.2.1 Comments . 22
4.2.2 Identifiers and Keywords . 22
4.2.3 Numeric and Character Literals . 23

4.3 Layout . 24
4.4 Context-Free Grammar . 25

5 Optimization of Curry Programs 29

6 cypm: The Curry Package Manager 30

7 curry check: A Tool for Testing Properties of Curry Programs 31
7.1 Testing Properties . 31
7.2 Generating Test Data . 34
7.3 Checking Equivalence of Operations . 37
7.4 Checking Contracts and Specifications . 39
7.5 Combining Testing and Verification . 40

1

7.6 Checking Usage of Specific Operations . 41

8 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 42
8.1 Installation . 42
8.2 Basic Usage . 42

9 curry-doc: A Documentation Generator for Curry Programs 45
9.1 Installation . 45
9.2 Documentation Comments . 45
9.3 Generating Documentation . 47

10 curry-style: A Style Checker for Curry Programs 48
10.1 Installation . 48
10.2 Basic Usage . 48
10.3 Configuration . 48

11 CurryVerify: A Tool to Support the Verification of Curry Programs 49
11.1 Installation . 49
11.2 Basic Usage . 49
11.3 Options . 51

12 CurryPP: A Preprocessor for Curry Programs 53
12.1 Installation . 53
12.2 Basic Usage . 53
12.3 Integrated Code . 54

12.3.1 Regular Expressions . 54
12.3.2 Format Specifications . 55
12.3.3 HTML Code . 55
12.3.4 XML Expressions . 56

12.4 SQL Statements . 57
12.4.1 ER Specifications . 57
12.4.2 SQL Statements as Integrated Code . 60

12.5 Default Rules . 62
12.6 Contracts . 62

13 runcurry: Running Curry Programs 65
13.1 Installation . 65
13.2 Using runcurry . 65

14 CASS: A Generic Curry Analysis Server System 68
14.1 Installation . 68
14.2 Using CASS to Analyze Programs . 68

14.2.1 Batch Mode . 69
14.2.2 API Mode . 69
14.2.3 Server Mode . 70

2

14.3 Implementing Program Analyses . 72

15 ERD2Curry: A Tool to Generate Programs from ER Specifications 75
15.1 Installation . 75
15.2 Basic Usage . 75

16 Spicey: An ER-based Web Framework 77
16.1 Installation . 77
16.2 Basic usage . 77
16.3 Further remarks . 78

17 curry-peval: A Partial Evaluator for Curry 79
17.1 Installation . 79
17.2 Basic Usage . 79
17.3 Options . 81

18 Technical Problems 83

Bibliography 84

A Libraries of the KiCS2 Distribution 87
A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry 87
A.2 General Libraries . 88

A.2.1 Library AllSolutions . 88
A.2.2 Library Char . 89
A.2.3 Library Combinatorial . 90
A.2.4 Library CPNS . 91
A.2.5 Library Debug . 91
A.2.6 Library Directory . 92
A.2.7 Library Distribution . 93
A.2.8 Library Either . 99
A.2.9 Library ErrorState . 100
A.2.10 Library FileGoodies . 101
A.2.11 Library FilePath . 102
A.2.12 Library Findall . 106
A.2.13 Library Float . 107
A.2.14 Library Function . 109
A.2.15 Library FunctionInversion . 110
A.2.16 Library GetOpt . 111
A.2.17 Library Global . 112
A.2.18 Library Integer . 113
A.2.19 Library IO . 115
A.2.20 Library IOExts . 117
A.2.21 Library List . 119
A.2.22 Library Maybe . 123

3

A.2.23 Library NamedSocket . 124
A.2.24 Library Nat . 125
A.2.25 Library Profile . 126
A.2.26 Library PropertyFile . 128
A.2.27 Library Read . 129
A.2.28 Library ReadNumeric . 129
A.2.29 Library ReadShowTerm . 130
A.2.30 Library SetFunctions . 132
A.2.31 Library Socket . 136
A.2.32 Library State . 137
A.2.33 Library System . 138
A.2.34 Library Time . 140
A.2.35 Library Unsafe . 142
A.2.36 Library Test.EasyCheck . 142
A.2.37 Library Test.Prop . 147

A.3 Data Structures and Algorithms . 150
A.3.1 Library Dequeue . 150
A.3.2 Library FiniteMap . 151
A.3.3 Library Random . 154
A.3.4 Library RedBlackTree . 155
A.3.5 Library SearchTree . 156
A.3.6 Library SearchTreeTraversal . 159
A.3.7 Library SetRBT . 160
A.3.8 Library Sort . 161
A.3.9 Library TableRBT . 162
A.3.10 Library Traversal . 163
A.3.11 Library ValueSequence . 165

B Markdown Syntax 167
B.1 Paragraphs and Basic Formatting . 167
B.2 Lists and Block Formatting . 168
B.3 Headers . 170

C SQL Syntax Supported by CurryPP 171

D Auxiliary Files 176

E External Operations 178

Index 181

4

Preface

This document describes KiCS2 (Kiel Curry System Version 2), an implementation of the multi-
paradigm language Curry [15, 26] that is based on compiling Curry programs into Haskell pro-
grams. Curry is a universal programming language aiming at the amalgamation of the most im-
portant declarative programming paradigms, namely functional programming and logic program-
ming. Curry combines in a seamless way features from functional programming (nested expressions,
lazy evaluation, higher-order functions), logic programming (logical variables, partial data struc-
tures, built-in search), and concurrent programming (concurrent evaluation of constraints with
synchronization on logical variables). The current KiCS2 implementation does not support concur-
rent constraints. Alternatively, one can write distributed applications by the use of sockets that
can be registered and accessed with symbolic names. Moreover, KiCS2 also supports the high-
level implementation of graphical user interfaces and web services (as described in more detail in
[16, 17, 18, 21]).

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [26]. Therefore, this document only explains the use of the different components of KiCS2
and the differences and restrictions of KiCS2 (see Section 1.3) compared with the language Curry
(Version 0.9.0). The basic ideas of the implementation of KiCS2 can be found in [11, 12].

Important Note

This version of KiCS2 implements type classes. The concept of type classes is not yet part of the
Curry language report. The recognized syntax of type classes is specified in Section 4. Although
the implemented concept of type classes is not fully described in this manual, it is quite similar to
Haskell 98 [32] so that one can look there to find a detailed description.

Acknowledgements

This work has been supported in part by the DFG grants Ha 2457/5-1 and Ha 2457/5-2.

5

1 Overview of KiCS2

1.1 Installation

This version of KiCS2 has been developed and tested on Linux systems. In principle, it should be
also executable on other platforms on which a Haskell implementation (Glasgow Haskell Compiler
and Cabal) exists, like in many Linux distributions, Sun Solaris, or Mac OS X systems.

Installation instructions for KiCS2 can be found in the file INSTALL.txt stored in the KiCS2
installation directory. Note that KiCS2 can be installed with experimental support for profiling of
executables. To use profiling, two requirements have to be met:

• The libraries that are shipped with the GHC that is used by KiCS2 have to be installed with
profiling enabled. This is the default for the system libraries contained in the GHC release,
but may not be the case for additional libraries.

• The Makefile of KiCS2 contains an option PROFILING which has to be set to yes to enable
profiling support. You may either change the Makefile to

PROFILING = yes

or specify this setting while starting the installation process using

make <optional target> PROFILING=yes

In the following, kics2home denotes the installation directory of the KiCS2 installation.

1.2 General Use

All executables required to use the different components of KiCS2 are stored in the direc-
tory kics2home /bin. You should add this directory to your path (e.g., by the bash command
“export PATH=kics2home /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with KiCS2 creates some auxiliary files (see Section D
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the KiCS2 installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.3 Restrictions

There are a few minor restrictions on Curry programs when they are processed with KiCS2:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

6

• KiCS2 translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various run-time
systems, the definition of functions with local declarations look different from their original
definition (in order to see the result of this transformation, you can use the CurryBrowser,
see Section 8).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Encapsulated search: The general definition of encapsulated search of the Curry report [25] is
not supported. Thus, the corresponding prelude operations like try, solveAll, once, findall,
or best are not defined in the KiCS2 prelude. However, KiCS2 supports appropriate alterna-
tives to encapsulate non-deterministic computations:

Strong encapsulation: This means that all potential non-determinism is encapsulated.
Since this might result in dependencies on the evaluation strategy (see [9] for a detailed
discussion), this kind of encapsulation is only available as I/O operations. For instance,
the library AllSolutions (Section A.2.1) defines the operation

getAllValues :: a → IO [a]

to compute all values of a given argument expression. There is also the library SearchTree

(Section A.3.5) which supports user-programmable search strategies and contains some
predefined strategies like depth-first, breadth-first, iterative deepening search.

Weak encapsulation: This means that only the non-determinism defined inside an encapsu-
lation operator is encapsulated. Conceptually, these operators are offered as set functions
[3] which compute the set of all results but do not encapsulate non-determinism in the
actual arguments. See the library SetFunctions (Section A.2.30) for more details.

• Concurrent computations based on the suspension of expressions containing free variables are
not yet supported. KiCS2 supports value generators for free variables so that a free variable
is instantiated when its value is demanded. For instance, the initial expression

x == True where x free

is non-deterministically evaluated to False and True by instantiating x to False and True,
respectively. Thus, a computation is never suspended due to free variables. This behavior
also applies to free variables of primitive types like integers. For instance, the initial expression

x*y=:=1 where x,y free

is non-deterministically evaluated to the two solutions

{x = -1, y = -1} True
{x = 1, y = 1} True

• Unification is performed without an occur check.

• There is currently no general connection to external constraint solvers.

7

1.4 Modules in KiCS2

KiCS2 searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directory “kics2home /lib”.
This search path can be extended by setting the environment variable CURRYPATH (which can be also
set in a KiCS2 session by the option “:set path”, see below) to a list of directory names separated
by colons (“:”). In addition, a local standard search path can be defined in the “.kics2rc” file (see
Section 2.7). Thus, modules to be loaded are searched in the following directories (in this order,
i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.kics2rc” variable “libraries”.

4. The directory “kics2home /lib”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (kics2home /lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

8

2 Using the Interactive Environment of KiCS2

This section describes the interactive environment KiCS2 that supports the development of appli-
cations written in Curry. The implementation of KiCS2 contains also a separate compiler which is
automatically invoked by the interactive environment.

2.1 Invoking KiCS2

To start KiCS2, execute the command “kics2” or “curry” (these are shell scripts stored in
kics2home /bin where kics2home is the installation directory of KiCS2). When the system is ready
(i.e., when the prompt “Prelude>” occurs), the prelude (kics2home /lib/Prelude.curry) is already
loaded, i.e., all definitions in the prelude are accessible. Now you can type various commands (see
next section) or an expression to be evaluated.

One can also invoke KiCS2 with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

kics2 :load Mod :add List

starts KiCS2, loads the main module Mod, and adds the additional module List. The invocation

kics2 :load Mod :eval config

starts KiCS2, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

kics2 :load Mod :save :quit

starts KiCS2, loads the main module Mod, creates an executable, and terminates KiCS2. This
invocation could be useful in “make” files for systems implemented in Curry.

There are also some specific options that can be used when invoking KiCS2:

-h or --help : Print only a help message.

-V or --version : Print the version information of KiCS2 and quit.

--compiler-name : Print just the compiler name (kics2) and quit.

--numeric-version : Print just the version number and quit.

--noreadline (if used, this must be the first option): Do not use input line editing (see Section 2.6).

-Dname=val (these options must come before any KiCS2 command): Overwrite values defined in
the configuration file “.kics2rc” (see Section 2.7), where name is a property defined in the
configuration file and val its new value.

One can also invoke KiCS2 with some run-time arguments that can be accessed inside a Curry pro-
gram by the I/O operation getArgs (see library System (Section A.2.33). These run-time arguments
must be written at the end after the separator “--”. For instance, if KiCS2 is invoked by

kics2 :load Mod -- first and second

9

then a call to the I/O operation getArgs returns the list value

["first","and","second"]

2.2 Commands of KiCS2

The most important commands of KiCS2 are (it is sufficient to type a unique prefix of a
command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported
modules.

:reload Recompile all currently loaded modules.

:compile prog Compile and load the program stored in prog.curry, as with the command
“:load prog”, but compile also the generated Haskell modules. Usually, this is automatically
done when an expression is evaluated. Hence, it is not necessary to use this command.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their
exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. In the default
mode, all results of non-deterministic computations are printed. One can also print first one
result and the next result only if the user requests it. This behavior can be set by the option
interactive (see below).

Free variables in initial expressions must be declared as in Curry programs. In order to
see the results of their bindings,1 they must be introduced by a “where...free” declaration.
For instance, one can write

not b where b free

in order to obtain the following bindings and results:

{b = False} True
{b = True} False

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

If the free variables in the initial goal are of a polymorphic type, as in the expression

xs++ys=:=[z] where xs,ys,z free

they are specialized to the type “()” (since the current implementation of KiCS2 does not
support computations with polymorphic logic variables).

1Currently, bindings are only printed if the initial expression is not an I/O action (i.e., not of type “IO...”) and
there are not more than ten free variables in the initial expression.

10

:eval expr Same as expr. This command might be useful when putting commands as arguments
when invoking kics2.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:programs Show the list of all Curry programs that are available in the load path.

:cd dir Change the current working directory to dir.

:edit Load the source code of the current main module into a text editor. If the variable
editcommand is set in the configuration file “.kics2rc” (see Section 2.7), its value is used
as an editor command, otherwise the environment variable “EDITOR” is used as the editor
program.

:edit m Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.kics2rc” (see Section 2.7), its value is used as a command to
show the source text, otherwise the environment variable PAGER (or “cat”, if PAGER is undefined)
is used to show the source text.

:show m Show the source text of module m which must be accessible via the current load path if
no path specification is given.

:source f Show the source code of function f (which must be visible in the currently loaded
module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 8 for more details).

:interface Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

:interface m Similar to “:interface” but shows the interface of the module m which must be in
the load path of KiCS2.

:usedimports Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

:set option Set or turn on/off a specific option of the KiCS2 environment (see 2.3 for a description
of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options that
can only be set (e.g., path) must not contain a prefix.

11

:set Show a help text on the possible options together with the current values of all options.

:save Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function) will
be evaluated by the executable.

:fork expr The expression expr, which is typically of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current KiCS2 process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs where one can start a new server process by this command. The new process will
be terminated when the evaluation of the expression expr is finished.

:!cmd Shell escape: execute cmd in a Unix shell.

2.3 Options of KiCS2

The following options (which can be set by the command “:set”) are currently supported:

path path Set the additional search path for loading modules to path. Note that this search path
is only used for loading modules inside this invocation of KiCS2.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:~/tests

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

bfs Set the search mode to evaluate non-deterministic expressions to breadth-first search. This is
the default search strategy. Usually, all non-deterministic values are enumerated and printed
with a breadth-first strategy, but one can also print only the first value or all values by
interactively requesting them (see below for these options).

dfs Similarly to bfs but use a depth-first search strategy to compute and print the values of the
initial expression.

ids Similarly to bfs but use an iterative-deepening strategy to compute and print the values of
the initial expression. The initial depth bound is 100 and the depth-bound is doubled after
each iteration.

ids n Similarly to ids but use an initial depth bound of n.

parallel Similarly to bfs but use a parallel search strategy to compute and print the values of
the initial expression. The system chooses an appropriate number of threads according the
current number of available processors.

parallel n Similarly to parallel but use n parallel threads.

12

prdfs Set the search mode to evaluate non-deterministic expressions to primitive depth-first
search. This is usually the fastest method to print all non-deterministic values. However, it
does not support the evaluation of values by interactively requesting them.

choices n Show the internal choice structure (according to the implementation described in [11])
resulting from the complete evaluation of the main expression in a tree-like structure. This
mode is only useful for debugging or understanding the implementation of non-deterministic
evaluations used in KiCS2. If the optional argument n is provided, the tree is shown up to
depth n.

supply i (only available in the local compilation mode, see below) Use implementation i as the
identifier supply for choice structures (see [11] for a detailed explanation). Currently, the
following values for i are supported:

integer: Use unbounded integers as choice identifiers. This implementation is described in
[11].

ghc (default): Use a more sophisticated implementation of choice identifiers (based on the
ideas described in [8]) provided by the Glasgow Haskell Compiler.

pureio: Use IO references (i.e., memory cells) for choice identifiers. This is the most efficient
implementation for top-level depth-first search but cannot be used for more sophisticated
search methods like encapsulated search.

ioref: Use a mixture of ghc and pureio. IO references are used for top-level depth-first search
and ghc identifiers are used for encapsulated search methods.

vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like compilation messages from the Haskell com-
piler.

n = 3: Show also intermediate messages and commands of the compilation process.

n = 4: Show also all intermediate results of the compilation process.

prompt p Sets the user prompt which is shown when KiCS2 is waiting for input. If the parameter
p starts with a letter or a percent sign, the prompt is printed as the given parameter, where
the sequence “%s” is expanded to the list of currently loaded modules and “%%” is expanded to
a percent sign. If the prompt starts with a double quote, it is read as a string and, therefore,
also supports the normal escape sequences that can occur in Curry programs. The default
setting is

:set prompt "%s> "

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-
deterministic value is only computed when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values.

13

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main
expression is printed (instead of all values).

+/-optimize Turn on/off the optimization of the target program.

+/-bindings Turn on/off the binding mode. If the binding mode is on (default), then the bind-
ings of the free variables of the initial expression are printed together with the result of the
expression.

+/-time Turn on/off the time mode. If the time mode is on, the cpu time and the elapsed time of
the computation is always printed together with the result of an evaluation.

+/-trace Turn on/off the trace mode. If the trace mode is on, it is possible to trace the sources
of failing computations.

+/-profile (only available when configured during installation, see Section 1.1) Turn on/off the
profile mode. If the profile mode is on, expressions as well as programs are compiled with
GHC’s profiling capabilities enabled. For expressions, evaluation will automatically generate a
file Main.prof containing the profiling information of the evaluation. For compiled programs,
the profiling has to be manually activated using runtime options when executed:

kics2 :set +profile :load MyProgram.curry :save :quit
./MyProgram +RTS -p -RTS [additional arguments]

+/-local Turn on/off the local compilation and linking mode. In the standard execution mode
of KiCS2, the local mode is turned off so that compiled Curry programs are linked against
pre-compiled libraries that are packaged with Cabal. This makes the compilation and linking
process faster so that this is the preferred execution mode. However, one cannot change the
system libraries and directly use these changed libraries. Therefore, for experimental purposes,
one can use the local mode. In this mode, a compiled Curry program is linked against the
current versions of the system libraries which might require their re-compilation. Hence, it is
important for the local mode that KiCS2 is installed in a local directory where one has write
access, otherwise this mode might not work.

Note that some options for experimenting with KiCS2 (like supply or ghc) are available only
in the local compilation mode (since they require the recompilation of parts of the installed
system).

+/-ghci Turn on/off the ghci mode. In the ghci mode, the initial goal is send to the interactive
version of the Glasgow Haskell Compiler. This might result in a slower execution but in a
faster startup time since the linker to create the main executable is not used.

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed
to be of type IO and the program should not import the module Unsafe. Furthermore, the
allowed commands are eval, load, quit, and reload. This mode is useful to use KiCS2 in
uncontrolled environments, like a computation service in a web page, where KiCS2 could be
invoked by

kics2 :set safe

14

parser opts Define additional options passed to the KiCS2 front end, i.e., the parser program
kics2home /bin/kics2-frontend. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

cmp opts Define additional options passed to the KiCS2 compiler. For instance, setting the option

:set cmp -O 0

has the effect that all optimizations performed by the KiCS2 compiler are turned off.

ghc opts Define additional options passed to the Glasgow Haskell Compiler (GHC) when the
generated Haskell programs are compiled. Many options necessary to compile Curry programs
are already set (you can see them by setting the verbosity level to 2 or greater). One has to
be careful when providing additional options. For instance, in the default global installation
of KiCS2, libraries are pre-compiled so that inconsistencies might occur if compilation options
might be changed.

It is safe to pass specific GHC linking options. For instance, to enforce the static linking of
libraries in order to generate an executable (see command “:save”) that can be executed in
another environment, one could set the options

:set ghc -static -optl-static -optl-pthread

Other options are useful for experimental purposes, but those should be used only in the local
compilation mode (see above) to avoid inconsistent target codes for different libraries. For
instance, setting the option

:set ghc -DDISABLE_CS

has the effect that the constraint store used to enable an efficient access to complex bindings
is disabled. Similarly,

:set ghc -DSTRICT_VAL_BIND

has the effect that expressions in a unification constraint (=:=) are always fully evaluated
(instead of the evaluation to a head normal form only) before unifying both sides. Since
these options influence the compilation of the run-time system, one should also enforce the
recompilation of Haskell programs by the GHC option “-fforce-recomp”, e.g., one should set

:set ghc -DDISABLE_CS -fforce-recomp

rts opts Define additional run-time options passed to the executable generated by the Glasgow
Haskell Compiler, i.e., the parameters “+RTS o -RTS” are passed to the executable. For in-
stance, setting the option

:set rts -H512m

has the effect that the minimum heap size is set to 512 megabytes.

15

args arguments Define run-time arguments passed to the executable generated by the Glasgow
Haskell Compiler. For instance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.33) returns the
value ["first","second"].

2.4 Source-File Options

If the evaluation of operations in some main module loaded into KiCS2 requires specific options,
like an iterative-deepening search strategy, one can also put these options into the source code of
this module in order to avoid setting these options every time when this module is loaded. Such
source-file options must occur before the module header, i.e., before the first declaration (module
header, imports, fixity declaration, defining rules, etc) occurring in the module. Each source file
option must be in a line of the form

{-# KiCS2_OPTION opt #-}

where opt is an option that can occur in a “:set” command (compare Section 2.3). Such a line
in the source code (which is a comment according to the syntax of Curry) has the effect that this
option is set by the KiCS2 command “:set opt” whenever this module is loaded (not reloaded!) as
a main module. For instance, if a module starts with the lines

{-# KiCS2_OPTION ids #-}
{-# KiCS2_OPTION +ghci #-}
{-# KiCS2_OPTION v2 #-}
module M where
. . .

then the load command “:load M” will also set the options for iterative deepening, using ghci and
verbosity level 2.

2.5 Using KiCS2 in Batch Mode

Although KiCS2 is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

> kics2 :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid KiCS2 going into interactive mode after the excution of
the expression being evaluated. The actual run-time arguments (string1, string2) are defined by
setting the option args (see above).

Here is an example to use KiCS2 in this way:

> kics2 :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit
Hello World
>

16

2.6 Command Line Editing

In order to have support for line editing or history functionality in the command line of KiCS2 (as
often supported by the readline library), you should have the Unix command rlwrap installed on
your local machine. If rlwrap is installed, it is used by KiCS2 if called on a terminal. If it should not
be used (e.g., because it is executed in an editor with readline functionality), one can call KiCS2
with the parameter “--noreadline” (which must occur as the first parameter).

2.7 Customization

In order to customize the behavior of KiCS2 to your own preferences, there is a configuration file
which is read by KiCS2 when it is invoked. When you start KiCS2 for the first time, a standard
version of this configuration file is copied with the name “.kics2rc” into your home directory. The
file contains definitions of various settings, e.g., about showing warnings, using Curry extensions,
programs etc. After you have started KiCS2 for the first time, look into this file and adapt it to
your own preferences.

2.8 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available
for many platforms (see http://www.emacs.org). The distribution of KiCS2 contains also a special
Curry mode that supports the development of Curry programs in the Emacs environment. This
mode includes support for syntax highlighting, finding declarations in the current buffer, and loading
Curry programs into KiCS2 in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “kics2home /tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

17

http://www.emacs.org

3 Extensions

KiCS2 supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Narrowing on Int Literals

In addition to narrowing on algebraic data types, KiCS2 also implements narrowing on values of
the primitive type Int. For example, the goal “x == 3 where x free” is evaluated to the solutions

Prelude> x == 3 where x free
{x = (-_x2) } False
{x = 0 } False
{x = 1 } False
{x = (2 * _x3) } False
{x = 3 } True
{x = (4 * _x4 + 1)} False
{x = (4 * _x4 + 3)} False

Note that the free variables occuring in the binding are restricted to positive numbers greater than
0 (the output has been indented to increase readability). This feature is implemented by an internal
binary representation of integer numbers. If necessary, this representation can be exposed to the
user by setting the flag BinaryInt during installation:

make [kernel|install] RUNTIMEFLAGS=BinaryInt

In an experimental (local) installation, the flag can also be set in the interpreter:

:set ghc -DBinaryInt

The example above will then be evaluated (without indentation) to:

Prelude> x == 3 where x free
{x = (Neg _x2) } False
{x = 0 } False
{x = 1 } False
{x = (Pos (O _x3)) } False
{x = 3 } True
{x = (Pos (I (O _x4)))} False
{x = (Pos (I (I _x4)))} False

In this output, values without free variables are presented as before. For values containing a free
variable, the constructors Neg and Pos denote negative and positive numbers (without 0), while
the constructors O and I denote a 0– and 1–bit where the least significant bit comes first. That is,
(Pos (I (O _x4))) = +(I (O _x4)) = +(2 ∗ (O _x4)) + 1 = +(4 ∗ _x4) + 1 which meets the output
above.

3.2 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in KiCS2. For
instance, the declaration

18

ones5 = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2
where

one2 = 1 : two1
two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that the
expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.3 Functional Patterns

Functional patterns [2] are a useful extension to implement operations in a more readable way.
Furthermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is a
function call at a pattern position. With functional patterns, we can define the operation last as
follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [2] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y
last [_,y] = y
last [_,_,y] = y
. . .

which shows that the evaluation of the list elements is not demanded by the functional pattern.
In general, a pattern of the form (f t1...tn) for n > 0 (or of the qualified form (M.f t1...tn)

for n ≥ 0) is interpreted as a functional pattern if f is not a visible constructor but a defined
function that is visible in the scope of the pattern. Furthermore, for a functional pattern to be well
defined, there are two additional requirements to be satisfied:

1. If a function f is defined by means of a functional pattern fp, then the evaluation of fp must
not depend on f , i.e., the semantics of a function defined using functional patterns must not
(transitively) depend on its own definition. This excludes definitions such as

19

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

and is necessary to assign a semantics to funtions employing functional patterns (see [2] for
more details).

2. Only functions that are globally defined may occur inside a functional pattern. This restriction
ensures that no local variable might occur in the value of a functional pattern, which might
lead to an non-intuitive semantics. Consider, for instance, the following (complicated) equality
operation

eq :: a → a → Bool
eq x y = h y
where
g True = x
h (g a) = a

where the locally defined function g occurs in the functional pattern (g a) of h. Since (g a)

evaluates to the value of x whereas a is instantiated to True, the call h y now evaluates to
True if the value of y equals the value of x. In order to check this equality condition, a strict
unification between x and y is required so that an equivalent definition without functional
patterns would be:

eq :: a → a → Bool
eq x y = h y
where
h x1 | x =:= x1 = True

However, this implies that variables occuring in the value of a functional pattern imply a strict
unification if they are defined in an outer scope, whereas variables defined inside a functional
pattern behave like pattern variables. In consequence, the occurrence of variables from an
outer scope inside a functional pattern might lead to an non-intuitive behavior. To avoid such
problems, locally defined functions are excluded as functional patterns. Note that this does
not exclude a functional pattern inside a local function, which is still perfectly reasonable.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x
where
f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

20

3.4 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.
If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate instead
of finitely failing. In such cases, it could be necessary to consider the influence of the order of pattern
matching. Note that other orders of pattern matching can be obtained using auxiliary operations.

3.5 Type Classes

The concept of type classes is not yet part of the Curry language report. The recognized syntax of
type classes is specified in Section 4. Although the implemented concept of type classes is not fully
described in this manual, it is quite similar to Haskell 98 [32] so that one can look there to find a
detailed description.

21

4 Recognized Syntax of Curry

The KiCS2 Curry compiler accepts a slightly extended version of the grammar specified in the Curry
Report [26]. Furthermore, the syntax recognized by KiCS2 differs from that specified in the Curry
Report regarding numeric or character literals. We therefore present the complete description of
the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production
NonTerm nonterminal symbol

Term terminal symbol
[α] optional
{α} zero or more repetitions
(α) grouping

α | β alternative
α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF8. However, source programs are biased towards
ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Comments

Comments either begin with “--” and terminate at the end of the line, or begin with “{-” and
terminate with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be
nested.

4.2.2 Identifiers and Keywords

The case of identifiers is important, i.e., the identifier “abc” is different from “ABC”. Although the
Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the KiCS2 only
supports the free mode which puts no constraints on the case of identifiers in certain language
constructs.

Letter ::= any ASCII letter
Dashes ::= -- {-}

Ident ::= (Letter {Letter | Digit | _ | ’})〈ReservedID〉
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident

TypeVarID ::= Ident | _
ClassVarID ::= Ident

22

ExistVarID ::= Ident
DataConstrID ::= Ident

InfixOpID ::= (Symbol {Symbol})〈Dashes | ReservedSym〉
FunctionID ::= Ident
VariableID ::= Ident

LabelID ::= Ident
ClassID ::= Ident

QTypeConstrID ::= [ModuleID .] TypeConstrID
QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID
QFunctionID ::= [ModuleID .] FunctionID

QLabelID ::= [ModuleID .] LabelID
QClassID ::= [ModuleID .] ClassID

The following identifiers are recognized as keywords and cannot be used as regular identifiers.

ReservedID ::= case | class | data | default | deriving | do | else | external
| fcase | foreign | free | if | import | in | infix | infixl | infixr
| instance | let | module | newtype | of | then | type | where

Note that the identifiers as, forall, hiding and qualified are no keywords. They have only a
special meaning in module headers and can thus be used as ordinary identifiers elsewhere. The
following symbols also have a special meaning and cannot be used as an infix operator identifier.

ReservedSym ::= .. | : | :: | = | \ | | | <- | -> | @ | ~ | =>

4.2.3 Numeric and Character Literals

In contrast to the Curry Report, KiCS2 adopts Haskell’s notation of literals for both numeric as
well as character and string literals, extended with the ability to denote binary integer literals.

Int ::= Decimal
| 0b Binary | 0B Binary
| 0o Octal | 0O Octal
| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent]
| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit {Digit}
Binary ::= Binit {Binit}
Octal ::= Octit {Octit}

Hexadecimal ::= Hexit {Hexit}

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

For character and string literals, the syntax is as follows:

Char ::= ’ (Graphic〈\〉 | Space | Escape〈\&〉) ’
String ::= " { Graphic〈" | \〉 | Space | Escape | Gap } "

23

Escape ::= \ (CharEsc | AsciiEsc | Decimal | o Octal | x Hexadecimal)
CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
AsciiEsc ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= A | . . . | Z | @ | [| \ |] | ^ | _
Gap ::= \ WhiteChar {WhiteChar} \

Graphic ::= any graphical character
WhiteChar ::= any whitespace character

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol, and the indentation of a line is the indentation of its first symbol.2

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly braces ({ }) and
the single entities are separated by semicolons (;). Instead of using the curly braces and semicolons
of the context-free syntax, a Curry programmer can also specify these lists by indentation: the
indentation of a list of syntactic entities after let, where, do, or of is the indentation of the next
symbol following the let, where, do, of. Any item of this list starts with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in the previous line. Lines with an indentation less than the indentation of the
list terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, can be written with the layout rules as

f x = h x
where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where
g y = y + 1
h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.

2In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

24

4.4 Context-Free Grammar

Module ::= module ModuleID [Exports] where Block
| Block

Block ::= { [ImportDecls ;] BlockDecl1 ; . . . ; BlockDecln } (no fixity declarations here, n ≥ 0)

Exports ::= (Export1 , . . . , Exportn) (n ≥ 0)

Export ::= QFunction
| QTypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| QTypeConstrID (..)
| QClassID [(Function1 , . . . , Functionn)] (n ≥ 0)

| QClassID (..)
| module ModuleID

ConsLabel ::= DataConstr | Label

ImportDecls ::= ImportDecl1 ; . . . ; ImportDecln (n ≥ 1)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportSpec]
ImportSpec ::= (Import1 , . . . , Importn) (n ≥ 0)

| hiding (Import1 , . . . , Importn) (n ≥ 0)

Import ::= Function
| TypeConstrID [(ConsLabel1 , . . . , ConsLabeln)] (n ≥ 0)

| TypeConstrID (..)
| ClassID [(Function1 , . . . , Functionn)] (n ≥ 0)

| ClassID (..)

BlockDecl ::= TypeSynDecl
| DataDecl
| NewtypeDecl
| FixityDecl
| FunctionDecl
| DefaultDecl
| ClassDecl
| InstanceDecl

TypeSynDecl ::= type SimpleType = TypeExpr
SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

DataDecl ::= data SimpleType (external data type)
| data SimpleType = ConstrDecls [deriving DerivingDecl]

ConstrDecls ::= ConstrDecl1 | . . . | ConstrDecln (n ≥ 1)

ConstrDecl ::= [ExistVars] [Context =>] ConDecl
ExistVars ::= forall ExistVarID1 . . . ExistVarIDn . (n ≥ 1)

ConDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| TypeAppExpr ConOp TypeAppExpr (infix data constructor)
| DataConstr { FieldDecl1 , . . . , FieldDecln } (n ≥ 0)

FieldDecl ::= Label1 , . . . , Labeln :: TypeExpr (n ≥ 1)

DerivingDecl ::= (QClassID1 , . . . , QClassIDn) (n ≥ 0)

NewtypeDecl ::= newtype SimpleType = NewConstrDecl [deriving DerivingDecl]
NewConstrDecl ::= DataConstr SimpleTypeExpr

| DataConstr { Label :: TypeExpr }

QualTypeExpr ::= [Context =>] TypeExpr
Context ::= Constraint

25

| (Constraint1 , . . . , Constraintn) (n ≥ 0)

Constraint ::= QClassID ClassVarID
| QClassID (ClassVarID SimpleTypeExpr1 . . . SimpleTypeExprn) (n ≥ 1)

TypeExpr ::= TypeAppExpr [-> TypeExpr]
TypeAppExpr ::= [TypeAppExpr] SimpleTypeExpr

SimpleTypeExpr ::= TypeVarID
| GTypeConstr
| (TypeExpr1 , . . . , TypeExprn) (tuple type, n ≥ 2)

| [TypeExpr] (list type)
| (TypeExpr) (parenthesized type)

GTypeConstr ::= () (unit type constructor)
| [] (list type constructor)
| (->) (function type constructor)
| (, {,}) (tuple type constructor)
| QTypeConstrID

DefaultDecl ::= default (TypeExpr1 , . . . , TypeExprn) (n ≥ 0)

ClassDecl ::= class [SimpleContext =>] ClassID ClassVarID [where ClsDecls]
ClsDecls ::= { ClsDecl1 ; . . . ; ClsDecln } (n ≥ 0)

ClsDecl ::= Signature
| Equat

SimpleContext ::= SimpleConstraint
| (SimpleConstraint1 , . . . , SimpleConstraintn) (n ≥ 0)

SimpleConstraint ::= QClassID ClassVarID

InstanceDecl ::= instance [SimpleContext =>] QClassID InstType [where InstDecls]
InstDecls ::= { InstDecl1 ; . . . ; InstDecln } (n ≥ 0)

InstDecl ::= Equat
InstType ::= GTypeConstr

| (GTypeConstr ClassVarID1 . . . ClassVarIDn) (n ≥ 0)

| (ClassVarID1 , . . . , ClassVarIDn) (n ≥ 2)

| [ClassVarID]
| (ClassVarID -> ClassVarID)

FixityDecl ::= Fixity [Int] Op1 , . . . , Opn (n ≥ 1)

Fixity ::= infixl | infixr | infix

FunctionDecl ::= Signature | ExternalDecl | Equation
Signature ::= Functions :: QualTypeExpr

ExternalDecl ::= Functions external (externally defined functions)
Functions ::= Function1 , . . . , Functionn (n ≥ 1)

Equation ::= FunLhs Rhs
FunLhs ::= Function SimplePat1 . . . SimplePatn (n ≥ 0)

| ConsPattern FunOp ConsPattern
| (FunLhs) SimplePat1 . . . SimplePatn (n ≥ 1)

Rhs ::= = Expr [where LocalDecls]
| CondExprs [where LocalDecls]

CondExprs ::= | InfixExpr = Expr [CondExprs]

LocalDecls ::= { LocalDecl1 ; . . . ; LocalDecln } (n ≥ 0)

LocalDecl ::= FunctionDecl

26

| PatternDecl
| Variable1 , . . . , Variablen free (n ≥ 1)

| FixityDecl
PatternDecl ::= Pattern Rhs

Pattern ::= ConsPattern [QConOp Pattern] (infix constructor pattern)
ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern, n ≥ 1)

| - (Int | Float) (negative pattern)
| SimplePat

SimplePat ::= Variable
| _ (wildcard)
| GDataConstr (constructor)
| Literal (literal)
| (Pattern) (parenthesized pattern)
| (Pattern1 , . . . , Patternn) (tuple pattern, n ≥ 2)

| [Pattern1 , . . . , Patternn] (list pattern, n ≥ 1)

| Variable @ SimplePat (as-pattern)
| ~ SimplePat (irrefutable pattern)
| (QFunction SimplePat1 . . . SimplePatn) (functional pattern, n ≥ 1)

| (ConsPattern QFunOp Pattern) (infix functional pattern)
| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabel = Pattern

Expr ::= InfixExpr :: QualTypeExpr (expression with type signature)
| InfixExpr

InfixExpr ::= NoOpExpr QOp InfixExpr (infix operator application)
| - InfixExpr (unary minus)
| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (lambda expression, n ≥ 1)

| let LocalDecls in Expr (let expression)
| if Expr then Expr else Expr (conditional)
| case Expr of { Alt1 ; . . . ; Altn } (case expression, n ≥ 1)

| fcase Expr of { Alt1 ; . . . ; Altn } (fcase expression, n ≥ 1)

| do { Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n ≥ 0)

| FuncExpr
FuncExpr ::= [FuncExpr] BasicExpr (application)
BasicExpr ::= Variable (variable)

| _ (anonymous free variable)
| QFunction (qualified function)
| GDataConstr (general constructor)
| Literal (literal)
| (Expr) (parenthesized expression)
| (Expr1 , . . . , Exprn) (tuple, n ≥ 2)

| [Expr1 , . . . , Exprn] (finite list, n ≥ 1)

| [Expr [, Expr] .. [Expr]] (arithmetic sequence)
| [Expr | Qual1 , . . . , Qualn] (list comprehension, n ≥ 1)

| (InfixExpr QOp) (left section)
| (QOp〈-〉 InfixExpr) (right section)
| QDataConstr { FBind1 , . . . , FBindn } (record construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (record update, n ≥ 1)

27

Alt ::= Pattern -> Expr [where LocalDecls]
| Pattern GdAlts [where LocalDecls]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

FBind ::= QLabel = Expr

Qual ::= Pattern <- Expr (generator)
| let LocalDecls (local declarations)
| Expr (guard)

Stmt ::= Pattern <- Expr
| let LocalDecls
| Expr

Literal ::= Int | Float | Char | String

GDataConstr ::= () (unit)
| [] (empty list)
| (,{,}) (tuple)
| QDataConstr

Variable ::= VariableID | (InfixOpID) (variable)
Function ::= FunctionID | (InfixOpID) (function)

QFunction ::= QFunctionID | (QInfixOpID) (qualified function)
DataConstr ::= DataConstrID | (InfixOpID) (constructor)

QDataConstr ::= QDataConstrID | (QInfixOpID) (qualified constructor)
Label ::= LabelID | (InfixOpID) (label)

QLabel ::= QLabelID | (QInfixOpID) (qualified label)

VarOp ::= InfixOpID | ` VariableID ` (variable operator)
FunOp ::= InfixOpID | ` FunctionID ` (function operator)

QFunOp ::= QInfixOpID | ` QFunctionID ` (qualified function operator)
ConOp ::= InfixOpID | ` DataConstrID ` (constructor operator)

QConOp ::= GConSym | ` QDataConstrID ` (qualified constructor operator)
LabelOp ::= InfixOpID | ` LabelID ` (label operator)

QLabelOp ::= QInfixOpID | ` QLabelID ` (qualified label operator)

Op ::= FunOp | ConOp | LabelOp (operator)
QOp ::= VarOp | QFunOp | QConOp | QLabelOp (qualified operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

28

5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into
the intermediate FlatCurry representation, KiCS2 applies a transformation to optimize Boolean
equalities occurring in the Curry program. The ideas and details of this optimization are described
in [5]. Therefore, we sketch only some basic ideas and options to influence this optimization.

Consider the following definition of the operation last to extract the last element in list:

last xs | xs == _++[x]
= x

where x free

In order to evaluate the condition “xs == ++[x]”, the Boolean equality is evaluated to True or
False by instantiating the free variables and x. However, since we know that a condition must
be evaluated to True only and all evaluations to False can be ignored, we can use the constrained
equality to obtain a more efficient program:

last xs | xs =:= _++[x]
= x

where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, KiCS2
encourages programmers to use only the Boolean equality operator “==” in programs. The constraint
equality operator “=:=” can be considered as an optimization of “==” if it is ensured that only positive
results are required, e.g., in conditions of program rules.

To support this programming style, KiCS2 has a built-in optimization phase on FlatCurry
files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “==” and
replaces them by “=:=” whenever the result False is not required. The usage of the optimizer can
be influenced by setting the property flag bindingoptimization in the configuration file .kics2rc.
The following values are recognized for this flag:

no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude
operations in order to decide whether the value False is not required as a result of a Boolean
equality. Hence, the transformation can be efficiently performed without any complex analysis.

full: Perform a complete “required values” analysis of the program (see [5]) and use this information
to optimize programs. In most cases, this does not yield better results so that the fast mode
is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the
configuration file .kics2rc or dynamically pass this change to the invocation of KiCS2 by

. . . -Dbindingoptimization=no . . .

29

6 cypm: The Curry Package Manager

The Curry package manager (CPM) is a tool to distribute and install Curry libraries and applications
and manage version dependencies between these libraries. Since CPM offers a lot of functionality,
there is a separate manual available.3 Therefore, we describe here only some basic CPM commands.

The executable cypm is located in the bin directory of KiCS2. Hence, if you have this directory
in your path, you can start CPM by cloning a copy of the central package index repository:

> cypm update

Now you can show a short list of all packages in this index by

> cypm list
Name Synopsis Version
---- -------- -------
abstract-curry Libraries to deal with AbstractCurry programs 2.0.0
abstract-haskell Libraries to represent Haskell programs in Curry 2.0.0
addtypes A tool to add missing type signatures in a Curry 2.0.0

program
base Base libraries for Curry systems 1.0.0
. . .

The command

> cypm info PACKAGE

can be used to show more information about the package with name PACKAGE.
Some packages do not contain only useful libraries but also tools with some binary. In order to

install such tools, one can use the command

> cypm install PACKAGE

This command checks out the package in some internal directory ($HOME/.cpm/app_packages) and
installs the binary of the tool provided by the package in $HOME/.cpm/bin. Hence it is recommended
to add this directory to your path.

For instance, the most recent version of CPM can be installed by the following commands:

> cypm update
. . .

> cypm install cpm
. . . Package ’cpm-xxx’ checked out . . .

. . .

INFO Installing executable ’cypm’ into ’/home/joe/.cpm/bin’

Now, the binary cypm of the most recent CPM version can be used if $HOME/.cpm/bin is in your path
(before kics2home /bin!).

A detailed description how to write your own packages with the use of other packages can be
found in the manual of CPM.

3http://curry-language.org/tools/cpm

30

http://curry-language.org/tools/cpm

7 curry check: A Tool for Testing Properties of Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be
executed can be unit tests as well as property tests parameterized over some arguments. The
tests can be part of any Curry source program and, thus, they are also useful to document the
code. CurryCheck is based on EasyCheck [13]. Actually, the properties to be tested are written
by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [14] but
extended to the demands of functional logic programming.

7.1 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

The operator “-=-” specifies a test where both sides must have a single identical value. Since this
operator (as many more, see below) are defined in the library Test.Prop,4 we also have to import
this library. Apart from unit tests, which are often tedious to write, we can also write a property,
i.e., a test parameterized over some arguments. For instance, an interesting property of reversing a
list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- xs

Note that each property is defined as a Curry operation where the arguments are the parameters
of the property. Altogether, our program is as follows:

module Rev(rev) where

import Test.Prop

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

revRevIsId xs = rev (rev xs) -=- xs

4The library Test.Prop is a clone of the library Test.EasyCheck which defines only the interface but not the
actual test implementations. Thus, the library Test.Prop has less import dependencies. When CurryCheck generates
programs to execute the tests, it automatically replaces references to Test.Prop by references to Test.EasyCheck
in the generated programs.

31

Now we can run all tests by invoking the CurryCheck tool. If our program is stored in the file
Rev.curry, we can execute the tests as follows:

> curry check Rev
...
Executing all tests...
revNull (module Rev, line 7):
Passed 1 test.

rev123 (module Rev, line 8):
Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.
In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests
by defaulting the type variable to prelude type Ordering (the actual default type can also be set
by a command-line flag). If we want to test this property on integers numbers, we can explicitly
provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] → Prop
revRevIsId xs = rev (rev xs) -=- xs

The command curry check has some options to influence the output, like “-q” for a quiet execution
(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test
cases are shown. Moreover, the return code of curry check is 0 in case of successful tests, otherwise,
it is 1. Hence, CurryCheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the
properties do not have to be exported, as show in the module Rev above. Hence, one can add
properties to any library and export only library-relevant operations. To test these properties,
CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires
write permission on the directory where the source code is stored.

The library Test.Prop defines many combinators to construct properties. In particular, there
are a couple of combinators for dealing with non-deterministic operations (note that this list is
incomplete):

• The combinator “<~>” is satisfied if the set of values of both sides are equal.

• The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of
y must be a subset of the set of values of x.

• The property x <~y is satisfied if y evaluates to every value of x, i.e., the set of values of x
must be a subset of the set of values of y.

• The combinator “<~~>” is satisfied if the multi-set of values of both sides are equal. Hence,
this operator can be used to compare the number of computed solutions of two expressions.

• The property always x is satisfied if all values of x are true.

• The property eventually x is satisfied if some value of x is true.

32

• The property failing x is satisfied if x has no value, i.e., its evaluation fails.

• The property x # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

insert :: a → [a] → [a]
insert x xs = x : xs
insert x (y:ys) = y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of
the list:

insertAsFirstOrLast :: Int → [Int] → Prop
insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] → Prop
permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left
argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since we
know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].
Actually, this list has only one permuted value since the two possible permutations are identical
and the combinator “#” counts the number of different values. The property would be correct if all
elements in the input list xs are different. This can be expressed by a conditional property: the
property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if
we define a predicate allDifferent by

allDifferent [] = True
allDifferent (x:xs) = x ‘notElem‘ xs && allDifferent xs

then we can reformulate our property as follows:

permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

33

This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually $ sorted (perm xs)

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] → [Int}
psort xs | sorted ys = ys
where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <~> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used
as an oracle to test more efficient sorting algorithms like quicksort:

qsort :: [Int] → [Int]
qsort [] = []
qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>x) l)

The following property specifies the correctness of quicksort:

qsortIsSorting xs = qsort xs <~> psort xs

Actually, if we test this property, we obtain a failure:

> curry check ExampleTests
...
qsortIsSorting (module ExampleTests, line 53) failed
Falsified by third test.
Arguments:
[1,1]
Results:
[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.
Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful
test execution.

For I/O operations, it is difficult to execute them with random data. Hence, CurryCheck only
supports specific I/O unit tests:

• a ‘returns‘ x is satisfied if the I/O action a returns the value x.

• a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can
write several I/O tests that are executed in a well-defined order.

7.2 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these
values. Since these values are generated in a systematic way, one can even prove a property if the

34

number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is validated by checking it with all possible values:

> curry check -v ExampleTests
...
0:
False
False
1:
False
True
2:
True
False
3:
True
True
neg_or (module ExampleTests, line 67):
Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given
limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line
flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> curry check -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for function
types). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply
collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy (in the
current implementation: randomized level diagonalization [13]). For instance, we can get 20 values
for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],[2],
[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

Since the features of PAKCS for search space exploration are more limited, PAKCS uses in
CurryCheck explicit generators for search tree structures which are defined in the module
SearchTreeGenerators. For instance, the operations

genInt :: SearchTree Int

genList :: SearchTree a → SearchTree [a]

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library
Test.EasyCheck also defines an operation

35

valuesOfSearchTree :: SearchTree a → [a]

so that we obtain 20 values for a list of integers in PAKCS by

...> take 20 (valuesOfSearchTree (genList genInt))
[[],[1],[1,1],[1,-1],[2],[6],[3],[5],[0],[0,1],[0,0],[-1],[-1,0],[-2],
[-3],[1,5],[1,0],[2,-1],[4],[3,-1]]

Apart from the different implementations, CurryCheck can test properties on predefined types,
as already shown, as well as on user-defined types. For instance, we can define our own Peano
representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-
phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:

data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are
not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced
trees). Of course, one could drop undesired values by an explicit condition. For instance, consider
the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:

sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests
this property by enumerating integers, i.e., also many negative numbers which are dropped for the
tests. In order to generate only valid test data, we define our own generator for a search tree
containing only valid data:

genInt = genCons0 0 ||| genCons1 (+1) genInt

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1

36

constructs from a given search tree a new tree where the function given in the first argument is
applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than
one argument. The combinator “|||” combines two search trees.

If the Curry program containing properties defines a generator operation with the name genτ ,
then CurryCheck uses this generator to test properties with argument type τ . Hence, if we put
the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check
this property are only non-negative integers. Since these integers are slowly increasing, i.e., the
search tree is actually degenerated to a list, we can also use the following definition to obtain a
more balanced search tree:

genInt = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genInt
||| genCons1 (\n → 2*n+1) genInt

The library SearchTree defines the structure of search trees as well as operations on search trees, like
limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).
For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a
new data type and defining a generator for this data type. For instance, to test only the operation
sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define
a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genCons1 NonNeg genNN
where

genNN = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genNN
||| genCons1 (\n → 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type

sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+1) ‘div‘ 2

or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

7.3 Checking Equivalence of Operations

CurryCheck supports also equivalence tests for operations. Two operations are considered as equiv-
alent if they can be replaced by each other in any possible context without changing the computed
values (this is also called contextual equivalence and precisely defined in [4] for functional logic
programs). For instance, the Boolean operations

f1 :: Bool → Bool f2 :: Bool → Bool
f1 x = not (not x) f2 x = x

are equivalent, whereas

g1 :: Bool → Bool g2 :: Bool → Bool

37

g1 False = True g2 x = True
g1 True = True

are not equivalent: g1 failed has no value but g2 failed evaluates to True.
To check the equivalence of operations, one can use the property combinator <=>:

f1_equiv_f2 = f1 <=> f2
g1_equiv_g2 = g1 <=> g2

The left and right argument of this combinator must be a defined operation or a defined operation
with a type annotation in order to specify the argument types used for checking this property.

CurryCheck transforms such properties into properties where both operations are compared
w.r.t. all partial values and partial results. The details are described in [?].

It should be noted that CurryCheck can test the equivalence of non-terminating operations pro-
vided that they are productive, i.e., always generate (outermost) constructors after a finite number
of steps (otherwise, the test of CurryCheck might not terminate). For instance, CurryCheck reports
a counter-example to the equivalence of the following non-terminating operations:

ints1 n = n : ints1 (n+1)

ints2 n = n : ints2 (n+2)

-- This property will be falsified by CurryCheck:
ints1_equiv_ints2 = ints1 <=> ints2

This is done by iteratively guessing depth-bounds, computing both operations up to these depth-
bounds, and comparing the computed results. Since this might be a long process, CurryCheck
supports a faster comparison of operations when it is known that they are terminating. If the name
of a test contains the suffix ’TERMINATE, CurryCheck assumes that the operations to be tested are
terminating, i.e., they always yields a result when applied to ground terms. In this case, CurryCheck
does not iterate over depth-bounds but evaluates operations completely. For instance, consider the
following definition of permutation sort (the operations perm and sorted are defined above):

psort :: Ord a => [a] → [a]
psort xs | sorted ys = ys

where ys = perm xs

A different definition can be obtained by defining a partial identity on sorted lists:

isort :: Ord a => [a] → [a]
isort xs = idSorted (perm xs)
where idSorted [] = []

idSorted [x] = [x]
idSorted (x:y:ys) | x<=y = x : idSorted (y:ys)

We can test the equivalence of both operations by specializing both operations on some ground type
(otherwise, the type checker reports an error due to an unspecified type Ord context):

psort_equiv_isort = psort <=> (isort :: [Int] → [Int])

CurryCheck reports a counter example by the 274th test. Since both operations are terminating,
we can also check the following property:

38

psort_equiv_isort’TERMINATE = psort <=> (isort :: [Int] → [Int])

Now a counter example is found by the 21th test.
Instead of annotating the property name to use more efficient equivalence tests for terminating

operations, one can also ask CurryCheck to analyze the operations in order to safely approximate
termination or productivity properties. For this purpose, one can call CurryCheck with the option
“--equivalence=equiv” or “-eequiv”. The parameter equiv determines the mode for equivalence
checking which must have one of the following values (or a prefix of them):

manual: This is the default mode. In this mode, all equivalence tests are executed with first technique
described above, unless the name of the test has the suffix ’TERMINATE.

autoselect: This mode automatically selects the improved transformation for terminating opera-
tions by a program analysis, i.e., if it can be proved that both operations are terminating,
then the equivalence test for terminating operations is used. It is also used when the name of
the test has the suffix ’TERMINATE.

safe: This mode analyzes the productivity behavior of operations. If it can be proved that both
operations are terminating or the test name has the suffix ’TERMINATE, then the more efficient
equivalence test for terminating operations is used. If it can be proved that both operations
are productive or the test name has the suffix ’PRODUCTIVE, then the first general test technique
is used. Otherwise, the equivalence property is not tested. Thus, this mode is useful if one
wants to ensure that all equivalence tests always terminate (provided that the additional user
annotations are correct).

ground: In this mode, only ground equivalence is tested, i.e., each equivalence property

g1_equiv_g2 = g1 <=> g2

is transformed into a property which states that both operations must deliver the same values
on same input values, i.e.,

g1_equiv_g2 x1 ... xn = g1 x1 ... xn <~> g2 x1 ... xn

Note this property is more restrictive than contextual equivalence. For instance, the non-
equivalence of g1 and g2 as shown above cannot be detected by testing ground equivalence
only.

7.4 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-
plementations for a given problem in the same programming language, as discussed in [4]. If a
specification or contract is provided for some function, then CurryCheck automatically generates
properties to test this specification or contract.

Following the notation proposed in [4], a specification for an operation f is an operation f’spec
of the same type as f . A contract consists of a pre- and a postcondition, where the precondition
could be omitted. A precondition for an operation f of type τ → τ ′ is an operation

f’pre :: τ → Bool

39

whereas a postcondition for f is an operation

f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than one argument
is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition
and a specification for a sort operation sort and an implementation via quicksort as follows (where
sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | sorted ys = ys where ys = perm xs

-- An implementation of sort with quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondi-
tion are automatically generated. For instance, a specification is satisfied if it is equivalent to its
implementation, and a postcondition is satisfied if each value computed for some input satisfies
the postcondition relation between input and output. For our example, CurryCheck generates the
following properties (if there are also preconditions for some operation, these preconditions are used
to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x = always (sort’post x (sort x))

sortSatisfiesSpecification :: Prop
sortSatisfiesSpecification = sort <=> sort’spec

7.5 Combining Testing and Verification

Usually, CurryCheck tests all user-defined properties as well as postconditions or specifications, as
described in Section 7.4. If a programmer uses some other tool to verify such properties, it is not
necessary to check such properties with test data. In order to advice CurryCheck to do so, it is
sufficient to store the proofs in specific files. Since the proof might be constructed by some tool
unknown to CurryCheck or even manually, CurryCheck does not check the proof file but trusts the
programmer and uses a naming convention for files containing proofs. If there is a property p in a
module M for which a proof in file proof-M-p.* (the name is case independent), then CurryCheck
assumes that this file contains a valid proof for this property. For instance, the following property
states that sorting a list does not change its length:

sortlength xs = length (sort xs) <~> length xs

40

If this property is contained in module Sort and there is a file proof-Sort-sortlength.txt contain-
ing a proof for this property, CurryCheck considers this property as valid and does not check it.
Moreover, it uses this information to simplify other properties to be tested. For instance, consider
the property sortSatisfiesPostCondition of Section 7.4. This can be simplified to always True so
that it does not need to be tested.

One can also provide proofs for generated properties, e.g., determinism, postconditions, specifi-
cations, so that they are not tested:

• If there is a proof file proof-M-fIsDeterministic.*, a determinism annotation for operation
M.f is not tested.

• If there is a proof file proof-M-fSatisfiesPostCondition.*, a postcondition for operation
M.f is not tested.

• If there is a proof file proof-M-fSatisfiesSpecification.*, a specification for operationM.f

is not tested.

Note that the file suffix and all non-alpha-numberic characters in the name of the proof file are
ignored. Furthermore, the name is case independent This should provide enough flexibility when
other verification tools require specific naming conventions. For instance, a proof for the property
Sort.sortlengh could be stored in the following files in order to be considered by CurryCheck:

proof-Sort-sortlength.tex
PROOF_Sort_sortlength.agda
Proof-Sort_sortlength.smt
ProofSortSortlength.smt

7.6 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code
of the given program for unintended uses of specific operations (these checks can be omitted via the
option “--nosource”). Currently, the following source code checks are performed:

• The prelude operation “=:<=” is used to implement functional patterns [2]. It should not be
used in source programs to avoid unintended uses. Hence, CurryCheck reports such unin-
tended uses.

• Set functions [3] are used to encapsulate all non-deterministic results of some function in a set
structure. Hence, for each top-level function f of arity n, the corresponding set function can
be expressed in Curry (via operations defined in the library SetFunctions) by the application
“setn f” (this application is used in order to extend the syntax of Curry with a specific
notation for set functions). However, it is not intended to apply the operator “setn” to
lambda abstractions, locally defined operations or operations with an arity different from n.
Hence, CurryCheck reports such unintended uses of set functions.

41

8 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-
grams

CurryBrowser is a tool to browse through the modules and operations of a Curry application, show
them in various formats, and analyze their properties.5 Moreover, it is constructed in a way so that
new analyzers can easily be connected to CurryBrowser. A detailed description of the ideas behind
this tool can be found in [19, 20].

8.1 Installation

The current implementation of CurryBrowser is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryBrowser, use the following
commands:

> cypm update
> cypm install currybrowse

This downloads the newest package, compiles it, and places the executable curry-browse into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryBrowser as described below.

8.2 Basic Usage

When CurryBrowser is installed as described above, it can be started in two ways:

• In the KiCS2 environment after loading the module mod and typing the command “:browse”.

• As a shell command (provided that $HOME/.cpm/bin is in your path): curry-browse mod

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on
a particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be
opened or closed by clicking. After selecting a module in the list of modules, its source code,
interface, or various other formats of the module can be shown in the main (right) text area. For
instance, one can show pretty-printed versions of the intermediate flat programs (see below) in order
to see how local function definitions are translated by lambda lifting [27] or pattern matching is
translated into case expressions [15, 33]. Since Curry is a language with parametric polymorphism
and type inference, programmers often omit the type signatures when defining functions. Therefore,
one can also view (and store) the selected module as source code where missing type signatures are
added.

5Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization
tool (dot http://www.graphviz.org/), otherwise they have no effect.

42

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box of the
left column (the “function list”) with prefixes indicating the properties of the individual functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text
area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some
analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

43

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

44

9 curry-doc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the KiCS2 distribution that generates the documentation for a Curry program
(i.e., the main module and all its imported modules) in HTML format. The generated HTML
pages contain information about all data types and functions exported by a module as well as
links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

9.1 Installation

The current implementation of CurryDoc is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryDoc, use the following
commands:

> cypm update
> cypm install currydoc

This downloads the newest package, compiles it, and places the executable curry-doc into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryDoc as described below.

9.2 Documentation Comments

A documentation comment starts at the beginning of a line with “--- ” (also in literate programs!).
All documentation comments immediately before a definition of a datatype or (top-level) function
are kept together.6 The documentation comments for the complete module occur before the first
“module” or “import” line in the module. The comments can also contain several special tags. These
tags must be the first thing on its line (in the documentation comment) and continues until the
next tag is encountered or until the end of the comment. The following tags are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

6The documentation tool recognizes this association from the first identifier in a program line. If one wants to
add a documentation comment to the definition of a function which is an infix operator, the first line of the operator
definition should be a type definition, otherwise the documentation comment is not recognized.

45

@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-
ported set of elements is described in detail in the appendix). For instance, it can contain Markdown
annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code
elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed
by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines
prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the
Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<” must
be quoted (e.g., “<”). However, header tags like <h1> should not be used since the structuring is
generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark references
to names of operations or data types in Curry programs which are translated into links inside
the generated HTML documentation. Such references have to be enclosed in single quotes. For
instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas the
text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants to
write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single words,
i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted, as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of ‘xs‘ and ‘ys‘
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.
--- It is based on the operation ’conc’ to concatenate two lists.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

46

http://en.wikipedia.org/wiki/Markdown

--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

9.3 Generating Documentation

To generate the documentation, execute the command

curry-doc Example

This command creates the directory DOC_Example (if it does not exist) and puts all HTML docu-
mentation files for the main program module Example and all its imported modules in this directory
together with a main index file index.html. If one prefers another directory for the documentation
files, one can also execute the command

curry-doc docdir Example

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the KiCS2 distribution), one can call curry-doc with the following options:

curry-doc --noindexhtml docdir Mod : This command generates the documentation for module Mod
in the directory docdir without the index pages (i.e., main index page and index pages for all
functions and constructors defined in Mod and its imported modules).

curry-doc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined in
the modules Mod1, Mod2,. . . ,Modn and their imported modules) in the directory docdir.

47

10 curry-style: A Style Checker for Curry Programs

CASC is a tool to check the formatting style of Curry programs. The preferred style for writing
Curry programs, which is partially checked by this tool, is described in a separate web page7

Currently, CASC only checks a few formatting rules, like line lengths or indentation of if-then-else,
but the kind of checks performed by CASC will be extended in the future.

10.1 Installation

The current implementation of CASC is a package managed by the Curry Package Manager CPM
(see also Section 6). Thus, to install the newest version of CASC, use the following commands:

> cypm update
> cypm install casc

This downloads the newest package, compiles it, and places the executable curry-style into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CASC as described below.

10.2 Basic Usage

To check the style of some Curry program stored in the file prog.curry, one can invoke the style
checker by the command

curry-style prog

After processing the program, a list of all positions with stylistic errors is printed.

10.3 Configuration

CASC can be configured so that not all stylistic rules are checked. For this purpose, one should copy
the global configuration file cascrc of CASC, which is stored in the main directory of the package,8

into the home directory under the name “.cascrc”. Then one can configure this file according to
your own preferences, which are described in this file.

7http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html
8If you installed CASC as described above, the downloaded package is located in the directory

$HOME/.cpm/bin_packages/casc.

48

http://www.informatik.uni-kiel.de/~pakcs/CurryStyleGuide.html

11 CurryVerify: A Tool to Support the Verification of Curry Pro-
grams

CurryVerify is a tool that supports the verification of Curry programs with the help of other theo-
rem provers or proof assistants. Basically, CurryVerify extends CurryCheck (see Section 7), which
tests given properties of a program, by the possibility to verify these properties. For this purpose,
CurryVerify translates properties into the input language of other theorem provers or proof assis-
tants. This is done by collecting all operations directly or indirectly involved in a given property
and translating them together with the given property.

Currently, only Agda [30] is supported as a target language for verification (but more target
languages may be supported in future releases). The basic schemes to translate Curry programs into
Agda programs are presented in [7]. That paper also describes the limitations of this approach. Since
Curry is a quite rich programming language, not all constructs of Curry are currently supported in
the translation process (e.g., no case expressions, local definitions, list comprehensions, do notations,
etc). Only a kernel language, where the involved rules correspond to a term rewriting system, are
translated into Agda. However, these limitations might be relaxed in future releases. Hence, the
current tool should be considered as a first prototypical approach to support the verification of
Curry programs.

11.1 Installation

The current implementation of CurryVerify is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryVerify, use the following
commands:

> cypm update
> cypm install verify

This downloads the newest package, compiles it, and places the executable curry-verify into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryVerify as described below.

11.2 Basic Usage

To translate the properties of a Curry program stored in the file prog.curry into Agda, one can
invoke the command

curry-verify prog

This generates for each property p in module prog an Agda program “TO-PROVE-p.agda”. If one
completes the proof obligation in this file, the completed file should be renamed into “PROOF-p.agda”.
This has the effect that CurryCheck does not test this property again but trusts the proof and use
this knowledge to simplify other tests.

As a concrete example, consider the following Curry module Double, shown in Figure 2, which
uses the Peano representation of natural numbers (module Nat) to define an operation to double the
value of a number, a non-deterministic operation coin which returns its argument or its incremented

49

module Double(double,coin,even) where

import Nat
import Test.Prop

double x = add x x

coin x = x ? S x

even Z = True
even (S Z) = False
even (S (S n)) = even n

evendoublecoin x = always (even (double (coin x)))

Figure 2: Curry program Double.curry

argument, and a predicate to test whether a number is even. Furthermore, it contains a property
specifying that doubling the coin of a number is always even.

In order to prove the correctness of this property, we translate it into an Agda program by
executing

> curry-verify Double
. . .

Agda module ’TO-PROVE-evendoublecoin.agda’ written.
If you completed the proof, rename it to ’PROOF-evendoublecoin.agda’.

The Curry program is translated with the default scheme (see further options below) based on the
“planned choice” scheme, described in [7]. The result of this translation is shown in Figure 3.

The Agda program contains all operations involved in the property and the property itself.
Non-deterministic operations, like coin, have an additional additional argument of the abstract
type Choice that represents the plan to execute some non-deterministic branch of the program. By
proving the property for all possible branches as correct, it universally holds.

In our example, the proof is quite easy. First, we prove that the addition of a number to itself
is always even (lemma even-add-x-x, which uses an auxiliary lemma add-suc). Then, the property
is an immediate consequence of this lemma:

add-suc : ∀ (x y : N) → add x (suc y) ≡ suc (add x y)
add-suc zero y = refl
add-suc (suc x) y rewrite add-suc x y = refl

even-add-x-x : ∀ (x : N) → even (add x x) ≡ tt
even-add-x-x zero = refl
even-add-x-x (suc x) rewrite add-suc x x | even-add-x-x x = refl

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x rewrite even-add-x-x (coin c1 x) = refl

50

As the proof is complete, we rename this Agda program into PROOF-evendoublecoin.agda so that
the proof can be used by further invocations of CurryCheck.

11.3 Options

The command curry-verify can be parameterized with various options. The available options can
also be shown by executing

curry-verify --help

The options are briefly described in the following.

-h, -?, --help These options trigger the output of usage information.

-q, --quiet Run quietly and produce no informative output. However, the exit code will be
non-zero if some translation error occurs.

-v[n], --verbosity[=n] Set the verbosity level to an optional value. The verbosity level 0 is the
same as option -q. The default verbosity level 1 shows the translation progress. The verbosity
level 2 (which is the same as omitting the level) shows also the generated (Agda) program.
The verbosity level 3 shows also more details about the translation process.

-n, --nostore Do not store the translated program in a file but show it only.

-p p, --property=p As a default, all properties occurring in the source program are translated. If
this option is provided, only property p is translated.

-t t, --target=t Define the target language of the translation. Currently, only t = Agda is sup-
ported, which is also the default.

-s s, --scheme=s Define the translation scheme used to represent Curry programs in the target
language.

For the target Agda, the following schemes are supported:

choice Use the “planned choice” scheme, see [7] (this is the default). In this scheme, the
choices made in a non-deterministic computation are abstracted by passing a parameter
for these choices.

nondet Use the “set of values” scheme, see [7], where non-deterministic values are represented
in a tree structure.

51

-- Agda program using the Iowa Agda library

open import bool

module TO-PROVE-evendoublecoin
(Choice : Set)
(choose : Choice → B)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where

open import eq
open import nat
open import list
open import maybe

-- Translated Curry operations:

add : N → N → N
add zero x = x
add (suc y) z = suc (add y z)

coin : Choice → N → N
coin c1 x = if choose c1 then x else suc x

double : N → N
double x = add x x

even : N → B
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x = ?

Figure 3: Agda program TO-PROVE-evendoublecoin.agda

52

12 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp” implements various transformations on Curry source programs.
It supports some experimental language extensions that might become part of the standard parser
of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below
in more detail:

Integrated code: This extension allows to integrate code written in some other language into
Curry programs, like regular expressions, format specifications (“printf”), HTML and XML
code.

Default rules: If this feature is used, one can add a default rule to operations defined in a Curry
module. This provides a similar power than sequential rules but with a better operational
behavior. The idea of default rules is described in [6].

Contracts: If this feature is used, the Curry preprocessor looks for contracts (i.e., specification,
pre- and postconditions) occurring in a Curry module and adds them as assertions that are
checked during the execution of the program. Currently, only strict assertion checking is
supported which might change the operational behavior of the program. The idea and usage
of contracts is described in [4].

12.1 Installation

The current implementation of Curry preprocessor is a package managed by the Curry Package
Manager CPM. Thus, to install the newest version of currypp, use the following commands:

> cypm update
> cypm install currypp

This downloads the newest package, compiles it, and places the executable currypp into the direc-
tory $HOME/.cpm/bin. Hence one should add this directory to the path in order to use the Curry
preprocessor as described below.

12.2 Basic Usage

In order to apply the preprocessor when loading a Curry source program into KiCS2, one has to
add an option line at the beginning of the source program. For instance, in order to use default
rules in a Curry program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the KiCS2 front end to process the Curry source
program with the program currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “contracts” to enable dynamic contract check-
ing. To support integrated code, one has to set the option “foreigncode” (which can also be com-
bined with “defaultrules”). If one wants to see the result of the transformation, one can also
set the option “-o”. This has the effect that the transformed source program is stored in the file
Prog.curry.CURRYPP if the name of the original program is Prog.curry.

53

For instance, in order to use integrated code and default rules in a module and store the trans-
formed program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program. If the options about the kind of preprocessing is omitted, all kinds
of preprocessing are applied. Thus, the preprocessor directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp #-}

is equivalent to

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=contracts #-}

12.3 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number
of starting back ticks and ending ticks must always be identical. After the initial back ticks, there
must be an identifier specifying the kind of integrated code, e.g., regex or html (see below). For
instance, if one uses regular expressions (see below for more details), the following expressions are
valid in source programs:

match ‘‘regex (a|(bc*))+’’
match ‘‘‘‘regex aba*c’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. For this
purpose, the program containing this code must start with the preprocessing directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

The next sections describe the currently supported foreign languages.

12.3.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained in
the language generated by a regular expression, one can specify regular expression similar to POSIX.
The foreign regular expression code must be marked by “regex”. Since this code is transformed into
operations of the KiCS2 library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid
identifier:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import RegExp

isID :: String → Bool
isID = match ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

54

12.3.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with
foreign code marked by “format”. In this case, one can write a format specification, similarly to the
printf statement of C, followed by a comma-separated list of arguments. This format specification is
transformed into operations of the KiCS2 library Format so that it must be imported. For instance,
the following program defines an operation that formats a string, an integer (with leading sign and
zeros), and a float with leading sign and precision 3:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import Format

showSIF :: String → Int → Float → String
showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159

Thus, the execution of main will print the line

Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the
formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String → Int → Float → IO ()
showSIF s i f = ‘‘printf "Name: %s | %+.5i | %+6.3f\n",s,i,f’’

main = showSIF "Curry" 42 3.14159

12.3.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see KiCS2 library
HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.
In order to include strings computed by Curry expressions into these HTML syntax, these Curry
expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

htmlPage :: String → [HtmlExp]
htmlPage name = ‘‘html
<html>

<head>
<title>Simple Test

<body>
<h1>Hello {name}!</h1>
<p>

55

Bye!
<p>Bye!

<h2>{reverse name}
Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type HtmlExp instead of String, it
can be integrated into the HTML syntax by double curly brackets. The following simple example,
taken from [18], shows the use of this feature:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

main :: IO HtmlForm
main = return $ form "Question" $

‘‘html
Enter a string: {{textfield tref ""}}
<hr>
{{button "Reverse string" revhandler}}
{{button "Duplicate string" duphandler}}’’

where
tref free

revhandler env = return $ form "Answer"
‘‘html <h1>Reversed input: {reverse (env tref)}’’

duphandler env = return $ form "Answer"
‘‘html

<h1>
Duplicated input:
{env tref ++ env tref}’’

12.3.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see KiCS2 library XML).
The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing tags
and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be included
by enclosing them in curly and double curly brackets, respectively. The following example program
shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

import XML

main :: IO ()
main = putStrLn $ showXmlDoc $ head ‘‘xml

56

<contact>
<entry>
<phone>+49-431-8807271
<name>Hanus
<first>Michael
<email>mh@informatik.uni-kiel.de
<email>hanus@email.uni-kiel.de

<entry>
<name>Smith
<first>Bill
<phone>+1-987-742-9388

’’

12.4 SQL Statements

The Curry preprocessor also supports SQL statements in their standard syntax as integrated code.
In order to ensure a type-safe integration of SQL statements in Curry programs, SQL queries are
type-checked in order to determine their result type and ensure that the entities used in the queries
are type correct with the underlying relational database. For this purpose, SQL statements are
integrated code require a specification of the database model in form of entity-relationship (ER)
model. From this description, a set of Curry data types are generated which are used to represent
entities in the Curry program (see Section 12.4.1). The Curry preprocessor uses this information to
type check the SQL statements and replace them by type-safe access methods to the database. In
the following, we sketch the use of SQL statements as integrated code. A detailed description of the
ideas behind this technique can be found in [23]. Currently, only SQLite databases are supported.

12.4.1 ER Specifications

The structure of the data stored in underlying database must be described as an entity-relationship
model. Such a description consists of

1. a list of entities where each entity has attributes,

2. a list of relationships between entities which have cardinality constraints that must be satisfied
in each valid state of the database.

Entity-relationships models are often visualized as entity-relationship diagrams (ERDs). Figure 4
shows an ERD which we use in the following examples.

Instead of requiring the use of soem graphical ER modeling tool, ERDs must be specified in
textual form as a Curry data term, see also [10]. In this representation, an ERD has a name, which
is also used as the module name of the generated Curry code, lists of entities and relationships:

data ERD = ERD String [Entity] [Relationship]

Each entity consists of a name and a list of attributes, where each attribute has a name, a domain,
and specifications about its key and null value property:

57

(1,1)

(0..n)

Taking

+has_a

+belongs_to

Student

Name
Firstname
MatNum
Email
Age

Result

Attempt
Grade
Points

Lecture

Title
Topic

Lecturer

Name
Firstname

Exam

GradeAverage

Place

Street
StrNr
RoomNr

Time

Time

Participation

+participated_by +participated

(0..n) (0..n)

Teaching

+teaches

+taught_by

(1,1)

(1,1)

(0..n)+belongs_to

Resulting

+results_in

+result_of

(0..n)

(1,1)

Belonging

(0..n)
+has_a ExamPlace

ExamTime

+taking_place
(0..n)

(1,1)
+in

+ taking_place +at

(0..n) (1,1)

Figure 4: A simple entity-relationship diagram for university lectures [23]

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)
| FloatDom (Maybe Float)
| CharDom (Maybe Char)
| StringDom (Maybe String)
| BoolDom (Maybe Bool)
| DateDom (Maybe ClockTime)
| UserDefined String (Maybe String)
| KeyDom String -- later used for foreign keys

58

Thus, each attribute is part of a primary key (PKey), unique (Unique), or not a key (NoKey). Fur-
thermore, it is allowed that specific attributes can have null values, i.e., can be undefined. The
domain of each attribute is one of the standard domains or some user-defined type. In the latter
case, the first argument of the constructor UserDefined is the qualified type name used in the Curry
application program. For each kind of domain, one can also have a default value (modeled by the
Maybe type). The constructor KeyDom is not necessary to represent ERDs but it is internally used to
transform complex ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities (REnd), where each
connection has the name of the connected entity, the role name of this connection, and its cardinality
as arguments:

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Between Int MaxValue

data MaxValue = Max Int | Infinite

The cardinality is either a fixed integer or a range between two integers (where Infinite as the upper
bound represents an arbitrary cardinality). For instance, the simple-complex (1:n) relationship
Teaching in Fig.4 can be represented by the term

Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)]

The KiCS2 library Database.ERD contains the ER datatypes described above. Thus, the specification
of the conceptual database model must be a data term of type Database.ERD.ERD. Figure 5 on
(page 64) shows the complete ER data term specification corresponding to the ERD of Fig. 4.

Such a data term specification should be stored in Curry program file as an (exported!) top-level
operation type ERD. If our example term is defined as a constant in the Curry program UniERD.curry,
then one has to use the tool “erd2curry” to process the ER model so that it can be used in SQL
statements. This tool is invoked with the parameter “--cdbi”, the (preferably absolute) file name
of the SQLite database, and the name of the Curry program containing the ER specification. If the
SQLite database file does not exist, it will be initialized by the tool. In our example, we execute
the following command (provided that the tool erd2curry is already installed:

> erd2curry --db ‘pwd‘/Uni.db --cdbi UniERD.curry

This initializes the SQLite database Uni.db and performs the following steps:

1. The ER model is transformed into tables of a relational database, i.e., the relations of the
ER model are either represented by adding foreign keys to entities (in case of (0/1:1) or
(0/1:n) relations) or by new entities with the corresponding relations (in case of complex
(n:m) relations).

2. A new Curry module Uni CDBI is generated. It contains the definitions of entities and rela-
tionships as Curry data types. Since entities are uniquely identified via a database key, each

59

entity definition has, in addition to its attributes, this key as the first argument. For instance,
the following definitions are generated for our university ERD (among many others):

data StudentID = StudentID Int

data Student = Student StudentID String String Int String Int

-- Representation of n:m relationship Participation:
data Participation = Participation StudentID LectureID

Note that the two typed foreign key columns (StudentID, LectureID) ensures a type-safe
handling of foreign-key constraints. These entity descriptions are relevant for SQL queries
since some queries (e.g., those that do not project on particular database columns) return lists
of such entities. Moreover, the generated module contains useful getter and setter functions
for each entity. Other generated operations, like entity description and definitions of their
columns, are not relevant for the programming but only used for the translation of SQL
statements.

3. Finally, an info file Uni SQLCODE.info is created. It contains information about all entities,
attributes and their types, and relationships. This file is used by the SQL parser and translator
of the Curry preprocessor to type check the SQL statements and generate appropriate Curry
library calls.

12.4.2 SQL Statements as Integrated Code

After specifying and processing the ER model of the database, one can write SQL statements in
their standard syntax as integrated code (marked by the language tag “sql”) in Curry programs.
Since the SQL translator checks the correct use of these statements against the ER model, it needs
access to the generated info file Uni SQLCODE.info. This can be ensured in one of the following ways:

• The path to the info file is passed as a parameter prefixed by “--model:” to the Curry prepro-
cessor, e.g., by the preprocessor directive

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=--model:. . ./Uni_SQLCode.info #-}

• The info file is placed in the same directory as the Curry source file to be processed or in one
of its parent directories. The directories are searched from the directory of the source file up
to its parent directories. If one of these directories contain more than one file with the name
“... SQLCODE.info”, an error is reported.

After this preparation, one can write SQL statements in the Curry program. For instance, to
retrieve all students from the database, one can define the following SQL query:

allStudents :: IO (SQLResult [Student])
allStudents = ‘‘sql Select * From Student;’’

Since the execution of database accesses might produce errors, the result of SQL statements is
always of type “SQLResult τ ”, where SQLResult is a type synonym defined in the KiCS2 library
Database.CDBI.Connection:

type SQLResult a = Either DBError a

60

This library defines also an operation

fromSQLResult :: SQLResult a → a

which returns the retrieved database value or raises a run-time error. Hence, if one does not want to
check the occurrence of database errors immediately, one can also define the above query as follows:

allStudents :: IO [Student]
allStudents = liftM fromSQLResult ‘‘sql Select * From Student;’’

In order to get more control on executing the SQL statement, one can add a star character after
the language tag. In this case, the SQL statement is translated into a database action, i.e., into the
type DBAction defined in the KiCS2 library Database.CDBI.Connection:

allStudentsAction :: DBAction [Student]
allStudentsAction = ‘‘sql* Select * From Student;’’

Then one can put allStudentsAction inside a database transaction or combine it with other database
actions (see Database.CDBI.Connection for operations for this purpose).

In order to select students with an age between 20 and 25, one can put a condition as usual:

youngStudents :: IO (SQLResult [Student])
youngStudents = ‘‘sql Select * From Student

Where Age between 18 and 21;’’

Usually, one wants to parameterize queries over some values computed by the context of the Curry
program. Therefore, one can embed Curry expressions instead of concrete values in SQL statements
by enclosing them in curly brackets:

studAgeBetween :: Int → Int → IO (SQLResult [Student])
studAgeBetween min max =

‘‘sql Select * From Student
Where Age between {min} and {max};’’

Instead of retrieving complete entities (database tables), one can also project on some attributes
(database columns) and one can also order them with the usual “Order By” clause:

studAgeBetween :: Int → Int → IO (SQLResult [(String,Int)])
studAgeBetween min max =

‘‘sql Select Name, Age
From Student Where Age between {min} and {max}
Order By Name Desc;’’

In addition to the usual SQL syntax, one can also write conditions on relationships between entities.
For instance, the following code will be accepted:

studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades = ‘‘sql Select Distinct s.Name, r.Grade

From Student as s, Result as r
Where Satisfies s has_a r And r.Grade < 2.0;’’

This query retrieves a list of pairs containing the names and grades of students having a grade
better than 2.0. This query is beyond pure SQL since it also includes a condition on the relation
has a specified in the ER model (“Satisfies s has a r”).

61

The complete SQL syntax supported by the Curry preprocessor is shown in Appendix C. More
details about the implementation of this SQL translator can be found in [23, 28].

12.5 Default Rules

An alternative to sequential rules are default rules, i.e., these two options cannot be simultaneously
used. Default rules are activated by the preprocessor option “defaultrules”. In this case, one can
add to each operation a default rule. A default rule for a function f is defined as a rule defining the
operation “f’default” (this mechanism avoids any language extension for default rules). A default
rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern
do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules
are described in [6].

Default rules are preferable over the sequential rule selection strategy since they have a better
operational behavior. This is due to the fact that the test for the application of default rules is
done with the same (sometimes optimal) strategy than the selection of standard rules. Moreover,
default rules provide a similar power than sequential rules, i.e., they can be applied if the standard
rules have complex (functional) patterns or complex conditions.

As a simple example, we show the implementation of the previous example for sequential rules
with a default rule:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value
mlookup’default _ _ = Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming. For
instance, the following program defines a solution to the n-queens puzzle, where the default rule is
useful since it is easier to characterize the unsafe positions of the queens on the chessboard (see the
first rule of safe):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

import Combinatorial(permute)
import Integer(abs)

-- A placement is safe if two queens are not in a same diagonal:
safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed
safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:
queens :: Int → [Int]
queens n = safe (permute [1..n])

12.6 Contracts

Contracts are annotations in Curry program to specify the intended meaning and use of operations
by other operations or predicates expressed in Curry. The idea of using contracts for the devel-
opment of reliable software is discussed in [4]. The Curry preprocessor supports dynamic contract

62

checking by transforming contracts, i.e., specifications and pre-/postconditions, into assertions that
are checked during the execution of a program. If some contract is violated, the program terminates
with an error.

The transformation of contracts into assertions is described in [4]. Note that only strict asser-
tion checking is supported at the moment. Strict assertion checking might change the operational
behavior of the program. The notation of contracts is defined in [4]. To transform such contracts
into assertions, one has to use the option “contracts” for the preprocessor.

As a concrete example, consider an implementation of quicksort with a postcondition and a
specification (where the code for sorted and perm is not shown here):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=contracts #-}

. . .

-- Trivial precondition:
sort’pre xs = length xs >= 0

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- A buggy implementation of quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If this program is executed, the generated assertions report a contract violation for some inputs:

Quicksort> sort [3,1,4,2,1]
Postcondition of ’sort’ (module Quicksort, line 27) violated for:
[1,2,1] → [1,2]

ERROR: Execution aborted due to contract violation!

63

ERD "Uni"
[Entity "Student"

[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False,
Attribute "MatNum" (IntDom Nothing) Unique False,
Attribute "Email" (StringDom Nothing) Unique False,
Attribute "Age" (IntDom Nothing) NoKey True],

Entity "Lecture"
[Attribute "Title" (StringDom Nothing) NoKey False,
Attribute "Topic" (StringDom Nothing) NoKey True],

Entity "Lecturer"
[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False],

Entity "Place"
[Attribute "Street" (StringDom Nothing) NoKey False,
Attribute "StrNr" (IntDom Nothing) NoKey False,
Attribute "RoomNr" (IntDom Nothing) NoKey False],

Entity "Time"
[Attribute "Time" (DateDom Nothing) Unique False],

Entity "Exam"
[Attribute "GradeAverage" (FloatDom Nothing) NoKey True],

Entity "Result"
[Attribute "Attempt" (IntDom Nothing) NoKey False,
Attribute "Grade" (FloatDom Nothing) NoKey True,
Attribute "Points" (IntDom Nothing) NoKey True]]

[Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)],

Relationship "Participation"
[REnd "Student" "participated_by" (Between 0 Infinite),
REnd "Lecture" "participates" (Between 0 Infinite)],

Relationship "Taking"
[REnd "Result" "has_a" (Between 0 Infinite),
REnd "Student" "belongs_to" (Exactly 1)],

Relationship "Resulting"
[REnd "Exam" "result_of" (Exactly 1),
REnd "Result" "results_in" (Between 0 Infinite)],

Relationship "Belonging"
[REnd "Exam" "has_a" (Between 0 Infinite),
REnd "Lecture" "belongs_to" (Exactly 1)],

Relationship "ExamDate"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Time" "at" (Exactly 1)],

Relationship "ExamPlace"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Place" "in" (Exactly 1)]]

Figure 5: The ER data term specification of Fig. 4

64

13 runcurry: Running Curry Programs

runcurry is a simple tool to support the execution of Curry programs without explicitly invoking
the interactive environment. Hence, it can be useful to write short scripts in Curry intended for
direct execution. The Curry program must always contain the definition of an operation main of
type IO (). The execution of the program consists of the evaluation of this operation.

13.1 Installation

The implementation of runcurry is a package managed by the Curry Package Manager CPM. Thus,
to install the newest version of runcurry, use the following commands:

> cypm update
> cypm install runcurry

This downloads the newest package, compiles it, and places the executable runcurry into the direc-
tory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to use
runcurry as described below.

13.2 Using runcurry

Basically, the command runcurry supports three modes of operation:

• One can execute a Curry program whose file name is provided as an argument when runcurry is
called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be dropped.
One can write additional commands for the interactive environment, typically settings of some
options, before the Curry program name. All arguments after the Curry program name are
passed as run-time arguments. For instance, consider the following program stored in the file
ShowArgs.curry:

import System(getArgs)

main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

• One can also execute a Curry program whose program text comes from the standard input.
Thus, one can either “pipe” the program text into this command or type the program text on
the keyboard. For instance, if we type

> runcurry
main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

65

1
2
3
4
5
6
7
8

is produced.

• One can also write the program text in a script file to be executed like a shell script. In this
case, the script must start with the line

#!/usr/bin/env runcurry

followed by the source text of the Curry program. If the name of the script file has a suffix,
it must be different from .curry and .lcurry.

For instance, we can write a simple Curry script to count the number of code lines in a Curry
program by removing all blank and comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char(isSpace)
import System(getArgs)

-- count number of program lines in a file:
countCLines :: String → IO Int
countCLines f =

readFile f >>=
return . length . filter (not . isEmptyLine) . map stripSpaces . lines

where
stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] = True
isEmptyLine [_] = False
isEmptyLine (c1:c2:_) = c1==’-’ && c2==’-’

-- The main program reads Curry file names from arguments:
main = do

args <- getArgs
mapIO_ (\f → do ls <- countCLines f

putStrLn $ "Stripped lines of file "++f++": " ++ show ls)
args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of
the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

66

When this command is executed, the command runcurry compiles the program and evaluates
the expression main. Since the compilation might take some time in more complex scripts,
one can also save the result of the compilation in a binary file. To obtain this behavior, one
has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program
is saved (in the same directory as the script). Now, when the same script is executed the next
time, the stored binary file is executed (provided that it is still newer than the script file itself,
otherwise it will be recompiled). This feature combines easy scripting with Curry together
with fast execution.

67

14 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [24]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

14.1 Installation

The current implementation of CASS is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of CASS, use the following commands:

> cypm update
> cypm install cass

This downloads the newest package, compiles it, and places the executable cass into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
CASS as described below.

14.2 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> cass -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> cass -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

68

append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

main :: Int → Int → [Int]
main x y = rev [x .. y]

CASS supports three different usage modes to analyze this program.

14.2.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command cass, where
the analysis name and the name of the module to be analyzed must be provided:9

> cass Demand Rev
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of main are demanded whereas only the first argument of append
is demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

14.2.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in the module AnalysisServer)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

The modules of the CASS implementation are stored in the directory
kics2home /currytools/CASS and the modules implementing the various program analyses are
stored in kics2home /currytools/analysis. Hence, one should add these directories to the Curry
load path when using CASS in API mode.

9More output is generated when the parameter debugLevel is changed in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time.

69

The CASS module GenericProgInfo contains operations to access the analysis information com-
puted by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it exists. As a
simple example, consider the demand analysis which is implemented in the module Demandedness

by the following operation:

demandAnalysis :: Analysis DemandedArgs

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import AnalysisServer (analyzeGeneric)
import GenericProgInfo (lookupProgInfo)
import Demandedness (demandAnalysis)

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.main:

. . .> demandedArgumentsOf "Rev" "main"
[1,2]

14.2.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does not
have a direct interface to Curry. In this case, one can connect to CASS via some socket using a simple
communication protocol that is specified in the file kics2home /currytools/CASS/Protocol.txt and
sketched below.

To start CASS in the server mode, one has to execute the command

> cass --server [-p <port>]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>
AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

70

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic CurryTerm
< Deterministic Text
< Deterministic XML
< HigherOrder CurryTerm
< DependsOn CurryTerm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> cass --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 57
Overlapping XML
Overlapping CurryTerm
Overlapping Text
Deterministic XML
...
> AnalyzeModule Demand Text Rev
ok 3
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand CurryTerm Rev
ok 1

71

[(("Rev","append"),"demanded arguments: 1"),(("Rev","main"),"demanded arguments: 1,2"),(("Rev","rev"),"demanded arguments: 1")]
> AnalyzeModule Demand XML Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

</operation>
<operation>

<module>Rev</module>
<name>main</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer
ok 0
Connection closed by foreign host.

14.3 Implementing Program Analyses

Each program analysis accessible by CASS must be registered in the CASS module Registry. The
registered analysis must contain an operation of type

Analysis a

where a denotes the type of analysis results. For instance, the Overlapping analysis is implemented
as a function

overlapAnalysis :: Analysis Bool

where the Boolean analysis result indicates whether a Curry operation is defined by overlapping
rules.

In order to add a new analysis to CASS, one has to implement a corresponding analysis operation,
registering it in the module Registry (in the constant registeredAnalysis) and compile the modified
CASS implementation.

An analysis is implemented as a mapping from Curry programs represented in FlatCurry into
the analysis result. Hence, to implement the Overlapping analysis, we define the following operation
on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool

72

isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e
isOverlappingFunction (Func f _ _ _ (External _)) = f==("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f==(pre "?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e
orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs

where orInBranch (Branch _ be) = orInExpr be
orInExpr (Typed e _) = orInExpr e

In order to enable the inclusion of different analyses in CASS, CASS offers several constructor
operations for the abstract type “Analysis a” (defined in the CASS module Analysis). Each analysis
has a name provided as a first argument to these constructors. The name is used to store the analysis
information persistently and to pass specific analysis tasks to analysis workers. For instance, a simple
function analysis which depends only on a given function definition can be defined by the analysis
constructor

simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

Another analysis constructor supports the definition of a function analysis with dependencies (which
is implemented via a fixpoint computation):

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain.

For instance, a determinism analysis could be based on an abstract domain described by the
data type

data Deterministic = NDet | Det

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

73

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot—it requires a fixpoint computation. CASS provides such fixpoint
computations and requires only the implementation of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.

In our example, the determinism analysis can be implemented by the following operation:

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

The complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

This definition is sufficient to execute the analysis with CASS since the analysis system takes care
of computing fixpoints, calling the analysis functions with appropriate values, analyzing imported
modules, etc. Nevertheless, the analysis must be defined so that the fixpoint computation always
terminates. This can be achieved by using an abstract domain with finitely many values and
ensuring that the analysis function is monotone w.r.t. some ordering on the values.

74

15 ERD2Curry: A Tool to Generate Programs from ER Specifica-
tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored in
relational databases. The Curry code is generated from a description of the logical model of the
database in form of an entity relationship diagram. The idea of this tool is described in detail in
[10]. Thus, we describe only the basic steps to use this tool.

15.1 Installation

The current implementation of ERD2Curry is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of ERD2Curry, use the following
commands:

> cypm update
> cypm install ertools

This downloads the newest package, compiles it, and places the executable erd2curry into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute ERD2Curry as described below.

15.2 Basic Usage

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has to
store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”. This
description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

If MyData is the name of the ERD, the Curry program file “MyData.curry” is generated containing all
the necessary database access code as described in [10]. In addition to the generated Curry program
file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry are created in the same
directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method
since the interface to the Umbrello UML Modeller is no longer actively supported, one can also
define an ERD in a Curry program as a (exported!) top-level operation of type ERD (w.r.t. the type
definition given in the library kics2home /lib/Database/ERD.curry). The directory examples in the
package ertools10 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ERD model for a blog with entries, comments, and tags.

UniERD.curry: This is an ERD model for university lectures as presented in the paper [10].

Figure 6 shows the ER specification stored in the Curry program file “BlogERD.curry”. This ER
specification can be compiled into a Curry program by the command

erd2curry BlogERD.curry

10If you installed ERD2Curry as described above, the downloaded ertools package is located in the directory
$HOME/.cpm/bin_packages/ertools.

75

import Database.ERD

blogERD :: ERD
blogERD =
ERD "Blog"

[Entity "Entry"
[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment"
[Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Tag"
[Attribute "Name" (StringDom Nothing) Unique False]

]
[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Between 0 Infinite)],

Relationship "Tagging"
[REnd "Entry" "tags" (Between 0 Infinite),
REnd "Tag" "tagged" (Between 0 Infinite)]

]

Figure 6: The Curry program BlogERD.curry

There is also the possibility to visualize an ER specification as a graph with the graph visualization
program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand in
your “.kics2rc” file, see Section 2.7, according to your local environment). The visualization can
be performed by the command

erd2curry -v BlogERD.curry

76

16 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey gener-
ates an initial implementation from an entity-relationship (ER) description of the underlying data.
The generated implementation contains operations to create and manipulate entities of the data
model, supports authentication, authorization, session handling, and the composition of individ-
ual operations to user processes. Furthermore, the implementation ensures the consistency of the
database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by the user
cannot lead to an inconsistent state of the database.

16.1 Installation

The actual implementation of Spicey is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of Spicey, use the following commands:

> cypm update
> cypm install spicey

This downloads the newest package, compiles it, and places the executable spiceup into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
Spicey as described below.

16.2 Basic usage

The idea of this tool, which is part of the distribution of KiCS2, is described in detail in [22]. Thus,
we summarize only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model in a Curry program
file as an (exported!) top-level operation type ERD (w.r.t. the type definitions defined in the module
Database.ERD of the package cdbi) and store it in some program file, e.g., “MyERD.curry”. The
directory examples in the package spicey11 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ER model for a blog with entries, comments, and tags, as presented
in the paper [22].

UniERD.curry: This is an ER model for university lectures as presented in the paper [10].

Then you can generate the sources of your web application by the command

> spiceup MyERD.curry

with the ERD program as a parameter. You can also provide a file name for the SQLite3 database
used by the application generated by Spicey, e.g.,

> spiceup --db MyData.db MyERD.curry

If the parameter “--db DBFILE” is not provided, then DBDFILE is set to the default name “ERD.db”
(where ERD is the name of the specified ER model). Since this specification will be used in the
generated web programs, a relative database file name will be relative to the place where the web

11If you installed Spicey as described above, the downloaded spicey package is located in the directory
$HOME/.cpm/app packages/spicey.

77

programs are stored. In order to avoid such confusion, it might be better to specify an absolute path
name for the database file. This path could also be set in the definition of the constant sqliteDBFile
in the generated Curry program Model/ERD.curry.

Spicey generates the web application as a Curry package in a new directory. Thus, change into
this directory (e.g., cd ERD) and install all required packages by the command

> make install

The generated file README.txt contains some information about the generated project structure.
One can compile the generated programs by

> make compile

In order to generate the executable web application, configure the generated Makefile by adapting
the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and
run

> make deploy

After the successful compilation and deployment of all files, the application is executable in a web
browser by selecting the URL <URL of web dir>/spicey.cgi.

16.3 Further remarks

The application generated by Spicey is a schematic initial implementation. It provides an appropri-
ate basic programming structure but it can be extended in various ways. In particular, one can also
use embedded SQL statements (see [23] for details) when further developing the Curry code, since
the underlying database access operations are generated with the cdbi package. The syntax and
use of such embedded SQL statements is sketched in [23] and described in the Curry preprocessor.

78

17 curry-peval: A Partial Evaluator for Curry

peval is a tool for the partial evaluation of Curry programs. It operates on the FlatCurry represen-
tation and can thus easily be incorporated into the normal compilation chain. The essence of partial
evaluation is to anticipate at compile time (or partial evaluation time) some of the computations
normally performed at run time. Typically, partial evaluation is worthwhile for functions or opera-
tions where some of the input arguments are already known at compile time, or operations built by
the composition of multiple other ones. The theoretical foundations, design and implementation of
the partial evaluator is described in detail in [31].

17.1 Installation

The current implementation of the partial evaluator is a package managed by the Curry Package
Manager CPM (see also Section 6). Thus, to install the newest version of the partial evaluator, use
the following commands:

> cypm update
> cypm install peval

This downloads the newest package, compiles it, and places the executable curry-peval into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
use the partial evaluator as described below.

17.2 Basic Usage

The partial evaluator is supplied as a binary that can be invoked for a single or multiple modules
that should be partially evaluated. In each module, the partially evaluator assumes the parts of the
program that should be partially evaluated to be annotated by the function

PEVAL :: a
PEVAL x = x

predefined in the module Prelude, such that the user can choose the parts to be considered.
To give an example, we consider the following module which is assumed to be placed in the file

Examples/power4.curry:

square x = x * x
even x = mod x 2 == 0
power n x = if n <= 0 then 1

else if (even n) then power (div n 2) (square x)
else x * (power (n - 1) x)

power4 x = PEVAL (power 4 x)

By the call to PEVAL, the expression power 4 x is marked for partial evaluation, such that the
function power will be improved w.r.t. the arguments 4 andx. Since the first argument is known
in this case, the partial evalautor is able to remove the case distinctions in the implementation of
power, and we invoke it via

$ curry-peval Examples/power4.curry
Curry Partial Evaluator

79

Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

Final Partial Evaluation

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

Writing specialized program into file ’Examples/.curry/power4_pe.fcy’.

Note that the partial evaluator successfully removed the case distinction, such that the opera-
tion power4 can be expected to run reasonably faster. The new auxiliary function power4._pe0 is
integrated into the existing module such that only the implementation of power4 is changed, which
becomes visible if we increase the level of verbosity:

$ curry-peval -v2 Examples/power4.curry
Curry Partial Evaluator
Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions

power4.power 4 v1

... (skipped output)

Resulting program

module power4 (power4.square, power4.even, power4.power, power4.power4) where

import Prelude

power4.square :: Prelude.Int → Prelude.Int
power4.square v1 = v1 * v1

power4.even :: Prelude.Int → Prelude.Bool
power4.even v1 = (Prelude.mod v1 2) == 0

power4.power :: Prelude.Int → Prelude.Int → Prelude.Int
power4.power v1 v2 = case (v1 <= 0) of

Prelude.True → 1
Prelude.False → case (power4.even v1) of

Prelude.True → power4.power (Prelude.div v1 2) (power4.square v2)
Prelude.False → v2 * (power4.power (v1 - 1) v2)

power4.power4 :: Prelude.Int → Prelude.Int

80

power4.power4 v1 = power4._pe0 v1

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

17.3 Options

The partial evaluator can be parametrized using a number of options, which can also be shown
using --help.

-h, -?, --help These options trigger the output of usage information.

-V, --version These options trigger the output of the version information of the partial evaluator.

-d, --debug This flag is intended for development and testing issues only, and necessary to print
the resulting program to the standard output stream even if the verbosity is set to zero.

--assert, --closed These flags enable some internal assertions which are reasonable during devel-
opment of the partial evaluator.

--no-funpats Normally, functions defined using functional patterns are automatically considered
for partial evaluation, since their annotation using PEVAL is a little bit cumbersome. However,
this automatic consideration can be disabled using this flag.

-v n, --verbosity=n Set the verbosity level to n, see above for the explanation of the different
levels.

--color=mode, --colour=mode Set the coloring mode to mode, see above for the explanation of the
different modes.

-S semantics, --semantics=semantics Allows the use to choose a semantics used during partial
evaluation. Note that only the natural semantics can be considered correct for non-confluent
programs, which is why it is the default semantics [31]. However, the rlnt calculus can also be
chosen which is based on term rewriting, thus implementing a run-time choice semantics [1].
The letrw semantics is currently not fully supported, but implements the gist of let-rewriting
[29].

-A mode, --abstract=mode During partial evaluation, all expressions that may potentially occur in
the evaluation of an annotated expression are considered and evaluated, in order to ensure that
all these expressions are also defined in the resulting program. Unfortunately, this imposes
the risk of non-termination, which is why similar expressions are generalized according to the
abstraction criterion. While the none criterion avoids generalizations and thus may lead to
non-termination of the partial evaluator, the criteria wqo and wfo both ensure termination.
In general, the criterion wqo seems to be a good compromise of ensured termination and the
quality of the computed result program.

-P mode, --proceed=mode While the abstraction mode is responsible to limit the number of different
expressions to be considered, the proceed mode limits the number of function calls to be

81

evaluated during the evaluation of a single expressions. While the mode one only allows a
single function call to be evaluated, the mode each allows a single call of each single function,
while all puts no restrictions on the number of function calls to be evaluated. Clearly, the
last alternative also imposes a risk of non-termination.

--suffix=SUFFIX Set the suffix appended to the file name to compute the output file. If the suffix
is set to the empty string, then the original FlatCurry file will be replaced.

82

18 Technical Problems

One can implement distributed systems with KiCS2 by the use of the library NamedSocket (Sec-
tion A.2.23) that supports a socket communication with symbolic names rather than natural num-
bers. For instance, this library is the basis of programming dynamic web pages with the Curry
package html. However, it might be possible that some technical problems arise due to the use of
named sockets. Therefore, this section gives some information about the technical requirements of
KiCS2 and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of KiCS2:

Port 8767: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for named sockets in Curry. If some other process uses this port on the machine, the
distribution facilities defined in the module NamedSocket cannot be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | fgrep 8767” (or similar).

The CPNS is implemented as a demon listening on its port 8767 in order to serve requests
about registering a new symbolic name for a named socket or asking the physical port number of an
registered named socket. The demon will be automatically started for the first time on a machine
when a user runs a program using named sockets. It can also be manually started and terminated by
the scripts kics2home /currytools/cpns/start and kics2home /currytools/cpns/stop. If the demon
is already running, the command kics2home /currytools/cpns/start does nothing (so it can be
always executed before invoking a Curry program using named sockets).

If you detect any further technical problem, please write to

kics2@curry-language.org

83

References

[1] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[2] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings
of the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

[3] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[4] S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.
of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL
2012), pages 33–47. Springer LNCS 7149, 2012.

[5] S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2015), pages 73–88. Springer LNCS 9527, 2015.

[6] S. Antoy and M. Hanus. Default rules for Curry. In Proc. of the 18th International Symposium
on Practical Aspects of Declarative Languages (PADL 2016), pages 65–82. Springer LNCS 9585,
2016.

[7] S. Antoy, M. Hanus, and S. Libby. Proving non-deterministic computations in Agda. In Proc. of
the 24th International Workshop on Functional and (Constraint) Logic Programming (WFLP
2016), volume 234 of Electronic Proceedings in Theoretical Computer Science, pages 180–195.
Open Publishing Association, 2017.

[8] L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal of Functional
Programming, 4(1):117–123, 1994.

[9] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic compu-
tations. Journal of Functional and Logic Programming, 2004(6), 2004.

[10] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of
the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),
pages 316–332. Springer LNCS 4902, 2008.

[11] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to
Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

[12] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. Implementing equational constraints in a
functional language. In Proc. of the 15th International Symposium on Practical Aspects of
Declarative Languages (PADL 2013), pages 125–140. Springer LNCS 7752, 2013.

84

[13] J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer
LNCS 4989, 2008.

[14] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–279.
ACM Press, 2000.

[15] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[16] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[17] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[18] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[19] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

[20] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61–74, 2006.

[21] M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of the 8th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’06), pages 27–38. ACM Press, 2006.

[22] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.
Theory and Practice of Logic Programming, 14(3):269–291, 2014.

[23] M. Hanus and J. Krone. A typeful integration of SQL into Curry. In Proceedings of the
24th International Workshop on Functional and (Constraint) Logic Programming, volume 234
of Electronic Proceedings in Theoretical Computer Science, pages 104–119. Open Publishing
Association, 2017.

[24] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

[25] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

85

[26] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

[27] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[28] J. Krone. Integration of SQL into Curry. Master’s thesis, University of Kiel, 2015.

[29] Francisco Javier López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. A
simple rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP ’07,
pages 197–208, New York, NY, USA, 2007. ACM.

[30] U. Norell. Dependently typed programming in Agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming (AFP’08), pages 230–266. Springer, 2009.

[31] Björn Peemöller. Normalization and Partial Evaluation of Functional Logic Programs. Depart-
ment of Computer Science, Kiel University, 2016. Dissertation, Faculty of Engineering, Kiel
University.

[32] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cambridge
University Press, 2003.

[33] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The Im-
plementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

86

http://www.curry-language.org

A Libraries of the KiCS2 Distribution

The KiCS2 distribution comes with an extensive collection of libraries for application programming.
The libraries for meta-programming by representing Curry programs as datatypes in Curry are de-
scribed in the following subsection in more detail. The complete set of libraries with all exported
types and functions are described in the further subsections. For a more detailed online documen-
tation of all libraries of KiCS2, see http://www-ps.informatik.uni-kiel.de/kics2/lib/index.
html.

A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are Curry
packages flatcurry and abstractcurry which define datatypes for the representation of Curry pro-
grams. AbstractCurry.Types (package abstractcurry) is a more direct representation of a Curry
program, whereas FlatCurry.Types (package flatcurry) is a simplified representation where local
function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and
pattern matching is translated into explicit case/or expressions. Thus, FlatCurry.Types can be
used for more back-end oriented program manipulations (or, for writing new back ends for Curry),
whereas AbstractCurry.Types is intended for manipulations of programs that are more oriented
towards the source program.
There are predefined I/O actions to read AbstractCurry and FlatCurry programs:
AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the
corresponding source program and return a data term representing this program (according to the
definitions in the modules AbstractCurry.Types and FlatCurry.Types).
Since all datatypes are explained in detail in these modules, we refer to the online documentation12

of these modules.
As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []
rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

(Prog "test"
["Prelude"]
[]
[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])
(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]
(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])
(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])
(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],

12http://www-ps.informatik.uni-kiel.de/kics2/lib/FlatCurry.Types.html and http://www-ps.
informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html

87

http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/FlatCurry.Types.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html

Comb ConsCall ("Prelude",":")
[Var 2,Comb ConsCall ("Prelude","[]") []]

])
]))]

[]
)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These
operations are useful to encapsulate non-deterministic operations between I/O actions in order to
connect the worlds of logic and functional programming and to avoid non-determinism failures on
the I/O level.
In contrast the "old" concept of encapsulated search (which could be applied to any subexpression
in a computation), the operations to encapsulate search in this module are I/O actions in order to
avoid some anomalities in the old concept.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy). Con-
ceptually, all values are computed on a copy of the expression, i.e., the evaluation of the
expression does not share any results. Moreover, the evaluation suspends as long as the
expression contains unbound variables.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllSolutions :: (a → Bool) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right
strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,
the evaluation of the constraint does not share any results. Moreover, this evaluation
suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getOneSolution :: (a → Bool) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Bool) → IO [a]

Returns a list of values that do not satisfy a given constraint.

88

A.2.2 Library Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

isControl :: Char → Bool

Returns true if the argument is a control character.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

89

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

A.2.3 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are
intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-
sented as lists. Ideally these lists contains no duplicate elements and the order of their elements
cannot be observed. In practice, these conditions are not enforced.

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list.

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list in
the same order.

allSubsets :: Ord a ⇒ [a] → [[a]]

Compute all the sublists of a list.

splitSet :: [a] → ([a],[a])

Split a list into any two sublists.

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the
result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their
concatenation is a permutation of the input list. No guarantee is made on the order of
the arguments in the output.

90

A.2.4 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the
library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: IO ()

Starts the "Curry Port Name Server" (CPNS) running on the local machine. The CPNS
is responsible to resolve symbolic names for ports into physical socket numbers so that
a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()

Shows all registered ports at the local CPNS demon (in its logfile).

cpnsStop :: IO ()

Terminates the local CPNS demon

registerPort :: String → Int → Int → IO ()

Registers a symbolic port at the local host.

getPortInfo :: String → String → IO (Int,Int)

Gets the information about a symbolic port at some host.

unregisterPort :: String → IO ()

Unregisters a symbolic port at the local host.

cpnsAlive :: Int → String → IO Bool

Tests whether the CPNS demon at a host is alive.

main :: IO ()

Main function for CPNS demon. Check arguments and execute command.

A.2.5 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

91

traceShow :: Show a ⇒ a → b → b

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: Show a ⇒ a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the
given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not
met it fails with the given error message.

A.2.6 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

92

createDirectory :: String → IO ()

Creates a new directory with the given name.

createDirectoryIfMissing :: Bool → String → IO ()

Creates a new directory with the given name if it does not already exist. If the first
parameter is True it will also create all missing parent directories.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameDirectory :: String → String → IO ()

Renames a directory.

getHomeDirectory :: IO String

Returns the home directory of the current user.

getTemporaryDirectory :: IO String

Returns the temporary directory of the operating system.

getAbsolutePath :: String → IO String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the
current home directory.

removeFile :: String → IO ()

Deletes a file from the file system.

renameFile :: String → String → IO ()

Renames a file.

copyFile :: String → String → IO ()

Copy the contents from one file to another file

A.2.7 Library Distribution

This module contains functions to obtain information concerning the current distribution of the
Curry implementation, e.g., compiler version, load paths, front end.

93

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front
end of the Curry compiler.

Exported constructors:

• FCY :: FrontendTarget

FCY

– FlatCurry file ending with .fcy

• TFCY :: FrontendTarget

TFCY

– Typed FlatCurry file ending with .tfcy

• FINT :: FrontendTarget

FINT

– FlatCurry interface file ending with .fint

• ACY :: FrontendTarget

ACY

– AbstractCurry file ending with .acy

• UACY :: FrontendTarget

UACY

– Untyped (without type checking) AbstractCurry file ending with .uacy

• HTML :: FrontendTarget

HTML

– colored HTML representation of source program

• CY :: FrontendTarget

CY

– source representation employed by the frontend

• TOKS :: FrontendTarget

TOKS

– token stream of source program

• TAFCY :: FrontendTarget

94

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry
compiler.

Exported constructors:

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., "pakcs" or "kics2").

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

curryCompilerRevisionVersion :: Int

The revision version number of the Curry compiler.

curryRuntime :: String

The name of the run-time environment (e.g., "sicstus", "swi", or "ghc")

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

baseVersion :: String

The version number of the base libraries (e.g., "1.0.5").

installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution. This
file must have the usual format of property files (see description in module PropertyFile).

rcFileContents :: IO [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the
list of pairs (var,val).

95

getRcVar :: String → IO (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-
case/lowercase is ignored for the variable names.

getRcVars :: [String] → IO [Maybe String]

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase
is ignored for the variable names.

splitModuleFileName :: String → String → (String,String)

Split the FilePath of a module into the directory prefix and the FilePath correspond-
ing to the module name. For instance, the call splitModuleFileName "Data.Set"
"lib/Data/Set.curry" evaluates to ("lib", "Data/Set.curry"). This can be useful
to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String → [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers
"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] → String

Join the components of a module identifier. For instance, joinModuleIdentifiers
["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String → String

Strips the suffix ".curry" or ".lcurry" from a file name.

modNameToPath :: String → String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the
name by directory separator chars.

currySubdir :: String

Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.

inCurrySubdir :: String → String

Transforms a path to a module name into a file name by adding the currySubDir
to the path and transforming a hierarchical module name into a path. For instance,
inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String → String → String

Transforms a file name by adding the currySubDir to the file name. This version respects
hierarchical module names.

addCurrySubdir :: String → String

96

Transforms a directory name into the name of the corresponding sub directory containing
auxiliary files.

sysLibPath :: [String]

finding files in correspondence to compiler load path Returns the current path (list of
directory names) of the system libraries.

getLoadPathForModule :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.
a given module path. The directory prefix of the module path (or "." if there is no such
prefix) is the first element of the load path and the remaining elements are determined
by the environment variable CURRYRPATH and the entry "libraries" of the system’s
rc file.

lookupModuleSourceInLoadPath :: String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the current load path. If the module is hierarchical, the directory
is the top directory of the hierarchy. Returns Nothing if there is no corresponding source
file.

lookupModuleSource :: [String] → String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up
the module source in the load path provided as the first argument. If the module is
hierarchical, the directory is the top directory of the hierarchy. Returns Nothing if there
is no corresponding source file.

defaultParams :: FrontendParams

The default parameters of the front end.

rcParams :: IO FrontendParams

The default parameters of the front end as configured by the compiler specific resource
configuration file.

setQuiet :: Bool → FrontendParams → FrontendParams

Set quiet mode of the front end.

setExtended :: Bool → FrontendParams → FrontendParams

Set extended mode of the front end.

setCpp :: Bool → FrontendParams → FrontendParams

Set cpp mode of the front end.

addDefinition :: (String,Int) → FrontendParams → FrontendParams

97

Add cpp definition of the front end.

setDefinitions :: [(String,Int)] → FrontendParams → FrontendParams

Set cpp definitions of the front end.

setOverlapWarn :: Bool → FrontendParams → FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] → FrontendParams → FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all
modules in this path (instead of using the default path).

setHtmlDir :: String → FrontendParams → FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

setLogfile :: String → FrontendParams → FrontendParams

Set the logfile parameter of the front end. If this parameter is set, all messages produced
by the front end are stored in this file.

setSpecials :: String → FrontendParams → FrontendParams

Set additional specials parameters of the front end. These parameters are specific for
the current front end and should be used with care, since their form might change in
the future.

addTarget :: FrontendTarget → FrontendParams → FrontendParams

Add an additional front end target.

quiet :: FrontendParams → Bool

Returns the value of the "quiet" parameter.

extended :: FrontendParams → Bool

Returns the value of the "extended" parameter.

cpp :: FrontendParams → Bool

Returns the value of the "cpp" parameter.

definitions :: FrontendParams → [(String,Int)]

Returns the value of the "cpp" parameter.

overlapWarn :: FrontendParams → Bool

Returns the value of the "overlapWarn" parameter.

fullPath :: FrontendParams → Maybe [String]

98

Returns the full path parameter of the front end.

htmldir :: FrontendParams → Maybe String

Returns the htmldir parameter of the front end.

logfile :: FrontendParams → Maybe String

Returns the logfile parameter of the front end.

specials :: FrontendParams → String

Returns the special parameters of the front end.

callFrontend :: FrontendTarget → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,
one can call the front end of the Curry compiler with this action. If the front end returns
with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget → FrontendParams → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to
date, one can call the front end of the Curry compiler with this action where various
parameters can be set. If the front end returns with an error, an exception is raised.

A.2.8 Library Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either a b] → [a]

Extracts from a list of Either all the Left elements in order.

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either a b → a

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either a b] → ([a],[b])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,
to the first component of the output. Similarly the Right elements are extracted to the
second component of the output.

99

A.2.9 Library ErrorState

A combination of Error and state monad like ErrorT State in Haskell.

Exported types:

type ES a b c = b → Either a (c,b)

Error state monad.

Exported functions:

evalES :: (a → Either b (c,a)) → a → Either b c

Evaluate an ES monad

returnES :: a → b → Either c (a,b)

Lift a value into the ES monad

failES :: a → b → Either a (c,b)

Failing computation in the ES monad

(>+=) :: (a → Either b (c,a)) → (c → a → Either b (d,a)) → a → Either b

(d,a)

Bind of the ES monad

(>+) :: (a → Either b (c,a)) → (a → Either b (d,a)) → a → Either b (d,a)

Sequence operator of the ES monad

(<$>) :: (a → b) → (c → Either d (a,c)) → c → Either d (b,c)

Apply a pure function onto a monadic value.

(<*>) :: (a → Either b (c → d,a)) → (a → Either b (c,a)) → a → Either b

(d,a)

Apply a function yielded by a monadic action to a monadic value.

gets :: a → Either b (a,a)

Retrieve the current state

puts :: a → a → Either b ((),a)

Replace the current state

modify :: (a → a) → a → Either b ((),a)

Modify the current state

mapES :: (a → b → Either c (d,b)) → [a] → b → Either c ([d],b)

100

Map a monadic function on all elements of a list by sequencing the effects.

concatMapES :: (a → b → Either c ([d],b)) → [a] → b → Either c ([d],b)

Same as concatMap, but for a monadic function.

mapAccumES :: (a → b → c → Either d ((a,e),c)) → a → [b] → c → Either d

((a,[e]),c)

Same as mapES but with an additional accumulator threaded through.

A.2.10 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is /.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is
:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns "." if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory
prefix is "." if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

101

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if
such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is
delivered if there is no such file.

A.2.11 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

Exported functions:

pathSeparator :: Char

pathSeparators :: String

isPathSeparator :: Char → Bool

searchPathSeparator :: Char

isSearchPathSeparator :: Char → Bool

extSeparator :: Char

102

isExtSeparator :: Char → Bool

splitSearchPath :: String → [String]

getSearchPath :: IO [String]

splitExtension :: String → (String,String)

takeExtension :: String → String

replaceExtension :: String → String → String

(<.>) :: String → String → String

dropExtension :: String → String

addExtension :: String → String → String

hasExtension :: String → Bool

splitExtensions :: String → (String,String)

dropExtensions :: String → String

takeExtensions :: String → String

splitDrive :: String → (String,String)

103

joinDrive :: String → String → String

takeDrive :: String → String

dropDrive :: String → String

hasDrive :: String → Bool

isDrive :: String → Bool

splitFileName :: String → (String,String)

replaceFileName :: String → String → String

dropFileName :: String → String

takeFileName :: String → String

takeBaseName :: String → String

replaceBaseName :: String → String → String

hasTrailingPathSeparator :: String → Bool

addTrailingPathSeparator :: String → String

dropTrailingPathSeparator :: String → String

104

takeDirectory :: String → String

replaceDirectory :: String → String → String

combine :: String → String → String

(</>) :: String → String → String

splitPath :: String → [String]

splitDirectories :: String → [String]

joinPath :: [String] → String

equalFilePath :: String → String → Bool

makeRelative :: String → String → String

normalise :: String → String

isValid :: String → Bool

makeValid :: String → String

isRelative :: String → Bool

isAbsolute :: String → Bool

105

A.2.12 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are
not fully declarative, i.e., the results depend on the order of evaluation and program rules. There
are newer and better approaches the encapsulate search, in particular, set functions (see module
SetFunctions), which should be used.
In previous versions of PAKCS, some of these operations were part of the standard prelude. We
keep them in this separate module in order to support a more portable standard prelude.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy). Con-
ceptually, all values are computed on a copy of the expression, i.e., the evaluation of the
expression does not share any results. In PAKCS, the evaluation suspends as long as
the expression contains unbound variables. Similar to Prolog’s findall.

getSomeValue :: a → IO a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The
expression must have a value, otherwise the computation fails. Conceptually, the value
is computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. In PAKCS, the evaluation suspends as long as the expression contains
unbound variables.

allValues :: a → [a]

Returns all values of an expression (currently, via an incomplete depth-first strategy).
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation of
the expression does not share any results. In PAKCS, the evaluation suspends as long
as the expression contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someValue :: a → a

Returns some value for an expression (currently, via an incomplete depth-first strat-
egy). If the expression has no value, the computation fails. Conceptually, the value is
computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. In PAKCS, the evaluation suspends as long as the expression contains
unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

oneValue :: a → Maybe a

106

Returns just one value for an expression (currently, via an incomplete depth-first strat-
egy). If the expression has no value, Nothing is returned. Conceptually, the value is
computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. In PAKCS, the evaluation suspends as long as the expression contains
unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

allSolutions :: (a → Bool) → [a]

Returns all values satisfying a predicate, i.e., all arguments such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). In PAKCS, the evaluation suspends as long as the predicate expression
contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

someSolution :: (a → Bool) → a

Returns some values satisfying a predicate, i.e., some argument such that the predicate
applied to the argument can be evaluated to True (currently, via an incomplete depth-
first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules. Thus, this operation should be
used only if the predicate has a single solution.

isFail :: a → Bool

Does the computation of the argument to a head-normal form fail? Conceptually, the
argument is evaluated on a copy, i.e., even if the computation does not fail, it has not
been evaluated.

A.2.13 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float

The number pi.

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

107

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

(^.) :: Float → Int → Float

The value of a ^. b is a raised to the power of b. Executes in O(log b) steps.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between the
argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the
argument. If the argument is equidistant between two integers, it is rounded to the
closest even integer value.

recip :: Float → Float

Reciprocal

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

logBase :: Float → Float → Float

Logarithm to arbitrary Base.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

108

Cosine.

tan :: Float → Float

Tangent.

asin :: Float → Float

Arc sine.

acos :: Float → Float

atan :: Float → Float

Arc tangent.

sinh :: Float → Float

Hyperbolic sine.

cosh :: Float → Float

tanh :: Float → Float

Hyperbolic tangent.

asinh :: Float → Float

Hyperbolic Arc sine.

acosh :: Float → Float

atanh :: Float → Float

Hyperbolic Arc tangent.

A.2.14 Library Function

This module provides some utility functions for function application.

109

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =
x.

on :: (a → a → b) → (c → a) → c → c → b

(*) ‘on‘ f = \x y -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).

first :: (a → b) → (a,c) → (b,c)

Apply a function to the first component of a tuple.

second :: (a → b) → (c,a) → (c,b)

Apply a function to the second component of a tuple.

(***) :: (a → b) → (c → d) → (a,c) → (b,d)

Apply two functions to the two components of a tuple.

(&&&) :: (a → b) → (a → c) → a → (b,c)

Apply two functions to a value and returns a tuple of the results.

both :: (a → b) → (a,a) → (b,b)

Apply a function to both components of a tuple.

A.2.15 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:

invf1 :: (a → b) → b → a

Inverts a unary function.

invf2 :: (a → b → c) → c → (a,b)

Inverts a binary function.

invf3 :: (a → b → c → d) → d → (a,b,c)

Inverts a ternary function.

invf4 :: (a → b → c → d → e) → e → (a,b,c,d)

Inverts a function of arity 4.

invf5 :: (a → b → c → d → e → f) → f → (a,b,c,d,e)

Inverts a function of arity 5.

110

A.2.16 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the
ghc-base package it has been adapted for Curry by Bjoern Peemoeller
(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License
Copyright 2004, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
this list of conditions and the following disclaimer.
this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
used to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY
OF GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW
OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

111

Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

A.2.17 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its
value can be accessed and modified by IO actions. Furthermore, global entities can be declared as
persistent so that their values are stored across different program executions.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A global entity g with an initial value v of type t must be declared by:

g :: Global t
g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the
global entity (see type GlobalSpec).

Exported types:

data Global

The abstract type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

112

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does
not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used elsewhere.
In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

safeReadGlobal :: Global a → a → IO a

Safely reads the current value of a global. If readGlobal fails (e.g., due to a corrupted
persistent storage), the global is re-initialized with the default value given as the second
argument.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term
before it is updated.

A.2.18 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on
the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

(^) :: Int → Int → Int

The value of a ^ b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0. Executes in O(log
b) steps.

ilog :: Int → Int

113

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <=
0. For positive integers, the returned value is 1 less the number of digits in the decimal
representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0. Executes
in O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0.

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <
m‘.

max3 :: Ord a ⇒ a → a → a → a

Returns the maximum of the three arguments.

min3 :: Ord a ⇒ a → a → a → a

Returns the minimum of the three arguments.

maxlist :: Ord a ⇒ [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: Ord a ⇒ [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only
the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

114

A.2.19 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

115

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available
within t milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.
Usually, the message stream comes from an external port. Thus, this operation im-
plements a committed choice over receiving input from an IO handle or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message
stream. Usually, the message stream comes from an external port. Thus, this operation
implements a committed choice over receiving input from IO handles or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

116

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of
file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has
been reached while reading the first character. If the end of file is reached later in the
line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before
returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Show a ⇒ Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

A.2.20 Library IOExts

Library with some useful extensions to the IO monad.

117

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams
of the new process (stdin,stdout,stderr) are returned as handles so that they can be
explicitly manipulated. They should be closed with IO.hClose since they are not closed
automatically when the process terminates.

evalCmd :: String → [String] → String → IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and
provides the input via the process’ stdin input stream. The exit code of the process and
the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams
of the new process is returned as one handle which is both readable and writable. Thus,
writing to the handle produces input to the process and output from the process can
be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be
used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO
"myaction.lock" act) ensures that the action "act" is not executed by two processes on
the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to
ground terms before applying this operation.

118

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an
associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial value.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

A.2.21 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: Eq a ⇒ a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: Eq a ⇒ a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise Nothing
is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: Eq a ⇒ [a] → [a]

Removes all duplicates in the argument list.

119

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: Eq a ⇒ a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: Eq a ⇒ [a] → [a] → [a]

Computes the difference of two lists.

union :: Eq a ⇒ [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the union of two lists according to the given equivalence relation

intersect :: Eq a ⇒ [a] → [a] → [a]

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the
list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

diagonal :: [[a]] → [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)
lists.

permutations :: [a] → [[a]]

120

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that satisfy
the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: Eq a ⇒ [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: Eq a ⇒ [a] → [a] → [[a]]

Breaks the second list argument into pieces separated by the first list argument, con-
suming the delimiter. An empty delimiter is invalid, and will cause an error to be
raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True
for a separator element. The resulting components do not contain the separators. Two
adjacent separators result in an empty component in the output.

split (==a) "aabbaca" == ["","","bb","c",""] split (==a) "" == [""]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits
[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]
== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is a suffix of another.

121

isInfixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: Num a ⇒ [a] → a

Returns the sum of a list of integers.

product :: Num a ⇒ [a] → a

Returns the product of a list of integers.

maximum :: Ord a ⇒ [a] → a

Returns the maximum of a non-empty list.

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: Ord a ⇒ [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]
== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

122

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a
function to each element of a list, passing an accumulating parameter from left to right,
and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a
function to each element of a list, passing an accumulating parameter from right to left,
and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

A.2.22 Library Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just _.

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is
Nothing.

fromMaybe :: a → Maybe a → a

Extract the argument from the Just constructor or return the provided default value if
the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

123

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list
of elements.

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is
interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

Monadic sequence for Maybe.

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

Monadic map for Maybe.

mplus :: Maybe a → Maybe a → Maybe a

Combine two Maybes, returning the first Just value, if any.

A.2.23 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In
contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to provide
sockets that are addressed by symbolic names rather than numbers.
In standard applications, the server side uses the operations listenOn and socketAccept to provide
some service on a named socket, and the client side uses the operation connectToSocket to request
a service.

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

124

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to
connectToSocket, this action waits until the socket has been registered with its sym-
bolic name.

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of
the connection. This action waits (possibly forever) until the socket with the symbolic
name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the
symbolic name is not registered, an error is reported.

A.2.24 Library Nat

Library defining natural numbers in Peano representation and some operations on this representa-
tion.

125

Exported types:

data Nat

Natural numbers defined in Peano representation.

Exported constructors:

• Z :: Nat

• S :: Nat → Nat

Exported functions:

fromNat :: Nat → Int

Transforms a natural number into a standard integer.

toNat :: Int → Nat

Transforms a standard integer into a natural number.

add :: Nat → Nat → Nat

Addition on natural numbers.

sub :: Nat → Nat → Nat

Subtraction defined by reversing addition.

mul :: Nat → Nat → Nat

Multiplication on natural numbers.

leq :: Nat → Nat → Bool

A.2.25 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

126

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that
the returned values are implementation dependent so that one should interpret them
with care!

Note for KiCS2 users: Since GHC version 7.x, one has to set the run-time option -T
when this operation is used. This can be done by the kics2 command

:set rts -T

127

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful
to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical
operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,
the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this
evaluation. During the evaluation, the garbage collector is turned off to get the total
space usage.

A.2.26 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a
property is defined by a line of the form prop=value where prop starts with a letter. All other lines
(e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the property
file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

128

A.2.27 Library Read

Library with some functions for reading special tokens.
This library is included for backward compatibility. You should use the library ReadNumeric which
provides a better interface for these functions.

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the
the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks
and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and
the the integer is read up to the first non-heaxdecimal digit.

A.2.28 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. If the string does not
start with an integer token, Nothing is returned, otherwise the result is Just (v, s),
where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. If the string does not start with
a natural number token, Nothing is returned, otherwise the result is Just (v, s) where
v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain
leadings blanks and the number is read up to the first non-hexadecimal digit. If the
string does not start with a hexadecimal number token, Nothing is returned, otherwise
the result is Just (v, s) where v is the value of the number and s is the remaing string
without the number token.

129

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. If the string does not
start with an octal number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

readBin :: String → Maybe (Int,String)

Read a binary number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-binary digit. If the string does not
start with a binary number token, Nothing is returned, otherwise the result is Just (v,
s) where v is the value of the number and s is the remaing string without the number
token.

A.2.29 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. This function is similar to
the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. Note that this function differs
from the prelude function show since it prefixes constructors with their module name in
order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!). In case of a successful parse,
the result is a one element list containing a pair of the data term and the remaining
unparsed string.

readUnqualifiedTerm :: [String] → String → a

130

Transforms a string containing a term in standard prefix notation without module quali-
fiers into the corresponding data term. The first argument is a non-empty list of module
qualifiers that are tried to prefix the constructor in the string in order to get the qualified
constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. In case of a successful parse, the result
is a one element list containing a pair of the data term and the remaining unparsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and
returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and
returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which
might be useful to modify the file with a standard text editor.

131

A.2.30 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is
described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-
national Conference on Principles and Practice of Declarative Programming (PPDP’09),
pp. 73-82, ACM Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-
determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.
Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are
values of the arguments a1,...,an (i.e., the arguments are evaluated "outside" this capsule so that
the non-determinism caused by evaluating these arguments is not captured in this capsule but yields
several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound inside
this capsule (in PAKCS they cause a suspension until they are bound).
The set of values returned by a set function is represented by an abstract type Values on which
several operations are defined in this module. Actually, it is a multiset of values, i.e., duplicates are
not removed.
The handling of failures and nested occurrences of set functions is not specified in the previous
paper. Thus, a detailed description of the semantics of set functions as implemented in this library
can be found in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated
Search in Functional Logic Programs Proc. 15th International Conference on Principles
and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Restrictions of the PAKCS implementation of set functions:

1. The set is a multiset, i.e., it might contain multiple values.

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its
evaluation will not terminate even if only some elements (e.g., for a containment test) are
demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be
evaluated.

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

132

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set0With :: (SearchTree a → ValueSequence a) → a → Values a

Combinator to transform a 0-ary function into a corresponding set function that uses a
given strategy to compute its values.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set1With :: (SearchTree a → ValueSequence a) → (b → a) → b → Values a

Combinator to transform a unary function into a corresponding set function that uses
a given strategy to compute its values.

set2 :: (a → b → c) → a → b → Values c

Combinator to transform a binary function into a corresponding set function.

set2With :: (SearchTree a → ValueSequence a) → (b → c → a) → b → c → Values

a

Combinator to transform a binary function into a corresponding set function that uses
a given strategy to compute its values.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set3With :: (SearchTree a → ValueSequence a) → (b → c → d → a) → b → c → d

→ Values a

Combinator to transform a function of arity 3 into a corresponding set function that
uses a given strategy to compute its values.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

Combinator to transform a function of arity 4 into a corresponding set function.

set4With :: (SearchTree a → ValueSequence a) → (b → c → d → e → a) → b → c

→ d → e → Values a

Combinator to transform a function of arity 4 into a corresponding set function that
uses a given strategy to compute its values.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

133

set5With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → a) → b

→ c → d → e → f → Values a

Combinator to transform a function of arity 5 into a corresponding set function that
uses a given strategy to compute its values.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set6With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → g → a)

→ b → c → d → e → f → g → Values a

Combinator to transform a function of arity 6 into a corresponding set function that
uses a given strategy to compute its values.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

Combinator to transform a function of arity 7 into a corresponding set function.

set7With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → g → h

→ a) → b → c → d → e → f → g → h → Values a

Combinator to transform a function of arity 7 into a corresponding set function that
uses a given strategy to compute its values.

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: Eq a ⇒ a → Values a → Bool

Is some value an element of a multiset of values?

choose :: Eq a ⇒ Values a → (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the cho-
sen value and the remaining multiset of values. Thus, if we consider the operation
chooseValue by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)
contains the same elements as the value set s.

chooseValue :: Eq a ⇒ Values a → a

134

Chooses (non-deterministically) some value in a multiset of values and returns the chosen
value. Thus, (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue
s) contains the same elements as the value set s.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value.
It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected
value. Thus, selectValue has always at most one value. It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

mapValues :: (a → b) → Values a → Values b

Maps a function to all elements of a multiset of values.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

filterValues :: (a → Bool) → Values a → Values a

Keeps all elements of a multiset of values that satisfy a predicate.

minValue :: Ord a ⇒ Values a → a

Returns the minimum of a non-empty multiset of values according to the given compar-
ison function on the elements.

minValueBy :: (a → a → Ordering) → Values a → a

Returns the minimum of a non-empty multiset of values according to the given compar-
ison function on the elements.

maxValue :: Ord a ⇒ Values a → a

Returns the maximum of a non-empty multiset of values according to the given com-
parison function on the elements.

maxValueBy :: (a → a → Ordering) → Values a → a

135

Returns the maximum of a non-empty multiset of values according to the given com-
parison function on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the
list might depend on the time of the computation, this operation is an I/O action.

printValues :: Show a ⇒ Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Ord a ⇒ Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a
consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As a
consequence, the multiset of values is completely evaluated. In order to ensure that the
result of this operation is independent of the evaluation order, the given ordering must
be a total order.

A.2.31 Library Socket

Library to support network programming with sockets. In standard applications, the server side
uses the operations listenOn and socketAccept to provide some service on a socket, and the client
side uses the operation connectToSocket to request a service.

Exported types:

data Socket

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is
returned.

socketAccept :: Socket → IO (String,Handle)

136

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is both
readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.32 Library State

This library provides an implementation of the state monad.

Exported types:

type State a b = a → (b,a)

Exported functions:

bindS :: (a → (b,a)) → (b → a → (c,a)) → a → (c,a)

bindS :: (a → (b,a)) → (a → (c,a)) → a → (c,a)

returnS :: a → b → (a,b)

getS :: a → (a,a)

putS :: a → a → ((),a)

modifyS :: (a → a) → a → ((),a)

137

sequenceS :: [a → (b,a)] → a → ([b],a)

sequenceS :: [a → (b,a)] → a → ((),a)

mapS :: (a → b → (c,b)) → [a] → b → ([c],b)

mapS :: (a → b → (c,b)) → [a] → b → ((),b)

runState :: (a → (b,a)) → a → (b,a)

evalState :: (a → (b,a)) → a → b

execState :: (a → (b,a)) → a → a

liftS :: (a → b) → (c → (a,c)) → c → (b,c)

liftS2 :: (a → b → c) → (d → (a,d)) → (d → (b,d)) → d → (c,d)

A.2.33 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not
supported in KiCS2 (there it always returns 0), but only included for compatibility
reasons.

getArgs :: IO [String]

138

Returns the list of the program’s command line arguments. The program name is not
included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for undefined
environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent
shell commands (see system) and visible to subsequent calls to getEnviron (but it is
not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently
executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit
status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given
by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

139

A.2.34 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day hour
minute second timezone) where timezone is an integer representing the timezone as a
difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC
time in seconds.

getClockTime :: IO ClockTime

140

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs
in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).
Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operation is
independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., "September 23, 2006".

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

141

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.35 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

A.2.36 Library Test.EasyCheck

EasyCheck is a library for automated, property-based testing of Curry programs. The ideas behind
EasyCheck are described in this paper. The CurryCheck tool automatically executes tests defined
with this library. CurryCheck supports the definition of unit tests (also for I/O operations) and
property tests parameterized over some arguments. CurryCheck is described in more detail in this
paper.
Note that this module defines the interface of EasyCheck to define properties. The operations to
actually execute the tests are contained in the accompanying library Test.EasyCheckExec.

142

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Test

Abstract type to represent a single test for a property to be checked. A test consists
of the result computed for this test, the arguments used for this test, and the labels
possibly assigned to this test by annotating properties.

Exported constructors:

data Result

Data type to represent the result of checking a property.

Exported constructors:

• Undef :: Result

• Ok :: Result

• Falsified :: [String] → Result

• Ambigious :: [Bool] → [String] → Result

data Prop

Abstract type to represent properties to be checked. Basically, it contains all tests to
be executed to check the property.

Exported constructors:

Exported functions:

returns :: Eq a ⇒ Show a ⇒ IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: Eq a ⇒ Show a ⇒ IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

143

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

ioTestOf :: PropIO → Bool → String → IO (Maybe String)

Extracts the tests of an I/O property (used by the test runner).

testsOf :: Prop → [Test]

Extracts the tests of a property (used by the test runner).

result :: Test → Result

Extracts the result of a test.

args :: Test → [String]

Extracts the arguments of a test.

stamp :: Test → [String]

Extracts the labels of a test.

updArgs :: ([String] → [String]) → Test → Test

Updates the arguments of a test.

test :: Show a ⇒ a → ([a] → Bool) → Prop

Constructs a property to be tested from an arbitrary expression (first argument) and
a predicate that is applied to the list of non-deterministic values. The given predi-
cate determines whether the constructed property is satisfied or falsified for the given
expression.

(-=-) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

144

(<~~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: Show a ⇒ a → (a → Bool) → Prop

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: Show a ⇒ a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: Show a ⇒ a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: Show a ⇒ a → Prop

The property failing x is satisfied if x has no value.

successful :: Show a ⇒ a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: Show a ⇒ a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #< n is satisfied if x has less than n values.

145

(#>) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #> n is satisfied if x has more than n values.

for :: Show a ⇒ a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: Show a ⇒ [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

forAllValues :: Show a ⇒ (b → Prop) → [a] → (a → b) → Prop

Only for internal use by the test runner.

(<=>) :: a → a → Prop

The property f <=> g is satisfied if f and g are equivalent operations, i.e., they can
be replaced in any context without changing the computed results.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

collect :: Show a ⇒ a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

collectAs :: Show a ⇒ String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOfSearchTree :: SearchTree a → [a]

Extracts values of a search tree according to a given strategy (here: randomized diago-
nalization of levels with flattening).

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

146

A.2.37 Library Test.Prop

This module defines the interface of properties that can be checked with the CurryCheck tool,
an automatic property-based test tool based on the EasyCheck library. The ideas behind Easy-
Check are described in this paper. CurryCheck automatically tests properties defined with this
library. CurryCheck supports the definition of unit tests (also for I/O operations) and property
tests parameterized over some arguments. CurryCheck is described in more detail in this paper.
Basically, this module is a stub clone of the EasyCheck library which contains only the interface
of the operations used to specify properties. Hence, this library does not import any other library.
This supports the definition of properties in any other module (execept for the prelude).

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Prop

Abstract type to represent properties to be checked. Basically, it contains all tests to
be executed to check the property.

Exported constructors:

Exported functions:

returns :: Eq a ⇒ Show a ⇒ IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: Eq a ⇒ Show a ⇒ IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

(-=-) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x -=- y is satisfied if x and y have deterministic values that are equal.

147

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html

(<~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

(<~~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: Show a ⇒ a → (a → Bool) → Prop

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: Show a ⇒ a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: Show a ⇒ a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: Show a ⇒ a → Prop

The property failing x is satisfied if x has no value.

148

successful :: Show a ⇒ a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: Show a ⇒ a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #< n is satisfied if x has less than n values.

(#>) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #> n is satisfied if x has more than n values.

for :: Show a ⇒ a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: Show a ⇒ [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

(<=>) :: a → a → Prop

The property f <=> g is satisfied if f and g are equivalent operations, i.e., they can
be replaced in any context without changing the computed results.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

collect :: Show a ⇒ a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

collectAs :: Show a ⇒ String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

149

A.3 Data Structures and Algorithms

A.3.1 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized
time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

Exported functions:

empty :: Queue a

The empty queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqLength :: Queue a → Int

Returns the number of elements in the queue.

deqHead :: Queue a → a

The first element of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

deqLast :: Queue a → a

The last element of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

150

Reverses a double ended queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then
Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then Nothing
else Just (deqLast q,deqInit q) but more efficient.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

A.3.2 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.
In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the
order predicate le should not satisfy (le x x) for some key x.
Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like
(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: Eq a ⇒ (a → a → Bool) → [(a,b)] → FM a b

151

Builts a finite map from given list of tuples (key,element). For multiple occurences of
key, the last corresponding element of the list is taken.

addToFM :: Eq a ⇒ FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: Eq a ⇒ FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added
starting with the first one in the list

addToFM C :: Eq a ⇒ (b → b → b) → FM a b → a → b → FM a b

Instead of throwing away the old binding, addToFM_C combines the new element with
the old one.

addListToFM C :: Eq a ⇒ (b → b → b) → FM a b → [(a,b)] → FM a b

Combine with a list of tuples (key,element), cf. addToFM_C

delFromFM :: Eq a ⇒ FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something
which isn’t there

delListFromFM :: Eq a ⇒ FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete
something which isn’t there

updFM :: Eq a ⇒ FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: Eq a ⇒ FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: Eq a ⇒ FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right
argument shadow those in the left

plusFM C :: Eq a ⇒ (b → b → b) → FM a b → FM a b → FM a b

Efficiently combine key/element mappings of two maps into a single one, cf. ad-
dToFM_C

minusFM :: Eq a ⇒ FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: Eq a ⇒ FM a b → FM a b → FM a b

152

Filters only those keys that are bound in both of the given maps. The elements will be
taken from the second map.

intersectFM C :: Eq a ⇒ (b → c → d) → FM a b → FM a c → FM a d

Filters only those keys that are bound in both of the given maps and combines the
elements as in addToFM_C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: Eq a ⇒ (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: Eq a ⇒ Eq b ⇒ FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: Eq a ⇒ a → FM a b → Bool

Does given map contain given key?

lookupFM :: Eq a ⇒ FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: Eq a ⇒ FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return
default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key
ordering.

maxFM :: FM a b → Maybe (a,b)

153

Retrieves the greatest key/element pair in the finite map according to the basic key
ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive
order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given
irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially
given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that
will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: Eq a ⇒ (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown
which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two provide
the same ordering predicate as used in the original finite map.

A.3.3 Library Random

Library for pseudo-random number generation in Curry.
This library provides operations for generating pseudo-random number sequences. For any given
seed, the sequences generated by the operations in this module should be identical to the sequences
generated by the java.util.Random package.
The KiCS2 implementation is based on an algorithm taken from http://en.wikipedia.org/wiki/
Random_number_generation. There is an assumption that all operations are implicitly executed
mod 2^32 (unsigned 32-bit integers) !!! GHC computes between -2^29 and 2^29-1, thus the sequence
is NOT as random as one would like.

m_w = <choose-initializer>; /* must not be zero */
m_z = <choose-initializer>; /* must not be zero */

154

http://en.wikipedia.org/wiki/Random_number_generation
http://en.wikipedia.org/wiki/Random_number_generation

uint get_random()
{

m_z = 36969 * (m_z & 65535) + (m_z >> 16);
m_w = 18000 * (m_w & 65535) + (m_w >> 16);
return (m_z << 16) + m_w; /* 32-bit result */

}

The PAKCS implementation is a linear congruential pseudo-random number generator described
in Donald E. Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms,
section 3.2.1.

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, integer values.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom sequence of values between 0 (inclusive) and the specified value
(exclusive).

nextBoolean :: Int → [Bool]

Returns a pseudorandom sequence of boolean values.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should
only be used as a seed for pseudorandom number sequence and not as a random number
since the precision is limited to milliseconds

shuffle :: Int → [a] → [a]

Computes a random permutation of the given list.

A.3.4 Library RedBlackTree

Library with an implementation of red-black trees:
Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e., one
has to provide two explicit order predicates ("lessThan" and "eq"below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates
generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is
((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a
multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for
the binary search tree

155

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty
tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sortBy :: Eq a ⇒ (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

A.3.5 Library SearchTree

This library defines a representation of a search space as a tree and various search strategies on this
tree. This module implements strong encapsulation as discussed in the JFLP’04 paper.

156

http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html

Exported types:

type Strategy a = SearchTree a → ValueSequence a

A search strategy maps a search tree into some sequence of values. Using the abtract
type of sequence of values (rather than list of values) enables the use of search strategies
for encapsulated search with search trees (strong encapsulation) as well as with set
functions (weak encapsulation).

data SearchTree

A search tree is a value, a failure, or a choice between two search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: Int → SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

Exported functions:

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

Internal operation to return the search tree for some expression. Note that this operation
is not purely declarative since the ordering in the resulting search tree depends on the
ordering of the program rules.

Note that in PAKCS the search tree is just a degenerated tree representing all values of
the argument expression and it is computed at once (i.e., not lazily!).

isDefined :: a → Bool

Returns True iff the argument is defined, i.e., has a value.

showSearchTree :: Show a ⇒ SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Returns the size (number of Value/Fail/Or nodes) of the search tree.

limitSearchTree :: Int → SearchTree a → SearchTree a

Limit the depth of a search tree. Branches which a depth larger than the first argument
are replace by Fail (-1).

dfsStrategy :: SearchTree a → ValueSequence a

157

Depth-first search strategy.

bfsStrategy :: SearchTree a → ValueSequence a

Breadth-first search strategy.

idsStrategy :: SearchTree a → ValueSequence a

Iterative-deepening search strategy.

idsStrategyWith :: Int → (Int → Int) → SearchTree a → ValueSequence a

Parameterized iterative-deepening search strategy. The first argument is the initial
depth bound and the second argument is a function to increase the depth in each itera-
tion.

diagStrategy :: SearchTree a → ValueSequence a

Diagonalization search strategy.

allValuesWith :: (SearchTree a → ValueSequence a) → SearchTree a → [a]

Return all values in a search tree via some given search strategy.

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search.

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search.

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return all values in a search tree via iterative-deepening search. The first argument is
the initial depth bound and the second argument is a function to increase the depth in
each iteration.

allValuesDiag :: SearchTree a → [a]

Return all values in a search tree via diagonalization search strategy.

getAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO [a]

Gets all values of an expression w.r.t. a search strategy. A search strategy is an operation
to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all values are computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results.

printAllValuesWith :: Show a ⇒ (SearchTree a → ValueSequence a) → a → IO ()

158

Prints all values of an expression w.r.t. a search strategy. A search strategy is an opera-
tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.
Conceptually, all printed values are computed on a copy of the expression, i.e., the
evaluation of the expression does not share any results.

printValuesWith :: Show a ⇒ (SearchTree a → ValueSequence a) → a → IO ()

Prints the values of an expression w.r.t. a search strategy on demand by the user. Thus,
the user must type <enter></enter> before another value is computed and printed.
A search strategy is an operation to traverse a search tree and collect all values, e.g.,
dfsStrategy or bfsStrategy. Conceptually, all printed values are computed on a copy
of the expression, i.e., the evaluation of the expression does not share any results.

someValue :: a → a

Returns some value for an expression.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

someValueWith :: (SearchTree a → ValueSequence a) → a → a

Returns some value for an expression w.r.t. a search strategy. A search strategy
is an operation to traverse a search tree and collect all values, e.g., dfsStrategy or
bfsStrategy.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value. It fails if the expression has no value.

A.3.6 Library SearchTreeTraversal

Implements additional traversals on search trees.

Exported functions:

depthDiag :: SearchTree a → [a]

diagonalized depth first search.

rndDepthDiag :: Int → SearchTree a → [a]

randomized variant of diagonalized depth first search.

levelDiag :: SearchTree a → [a]

diagonalization of devels.

rndLevelDiag :: Int → SearchTree a → [a]

randomized diagonalization of levels.

rndLevelDiagFlat :: Int → Int → SearchTree a → [a]

randomized diagonalization of levels with flattening.

159

A.3.7 Library SetRBT

Library with an implementation of sets as red-black trees.
All the operations on sets are generic, i.e., one has to provide an explicit order predicate (<)
(less-than) on elements.

Exported types:

type SetRBT a = RedBlackTree a

Exported functions:

emptySetRBT :: Eq a ⇒ (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

isEmptySetRBT :: RedBlackTree a → Bool

Test for an empty set.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: Eq a ⇒ a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences
in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements
of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all
elements of the first set contained in the second set into a new set, which order is taken
from the first set.

sortRBT :: Eq a ⇒ (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

160

A.3.8 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

Exported functions:

sort :: Ord a ⇒ [a] → [a]

The default sorting operation, mergeSort, with standard ordering <=.

sortBy :: (a → a → Bool) → [a] → [a]

The default sorting operation: mergeSort

sorted :: Ord a ⇒ [a] → Bool

sorted xs is satisfied if the elements xs are in ascending order.

sortedBy :: (a → a → Bool) → [a] → Bool

sortedBy leq xs is satisfied if all adjacent elements of the list xs satisfy the ordering
predicate leq.

permSort :: Ord a ⇒ [a] → [a]

Permutation sort with standard ordering <=. Sorts a list by finding a sorted permutation
of the input. This is not a usable way to sort a list but it can be used as a specification
of other sorting algorithms.

permSortBy :: Eq a ⇒ (a → a → Bool) → [a] → [a]

Permutation sort with ordering as first parameter. Sorts a list by finding a sorted
permutation of the input. This is not a usable way to sort a list but it can be used as a
specification of other sorting algorithms.

insertionSort :: Ord a ⇒ [a] → [a]

Insertion sort with standard ordering <=. The list is sorted by repeated sorted insertion
of the elements into the already sorted part of the list.

insertionSortBy :: (a → a → Bool) → [a] → [a]

Insertion sort with ordering as first parameter. The list is sorted by repeated sorted
insertion of the elements into the already sorted part of the list.

quickSort :: Ord a ⇒ [a] → [a]

Quicksort with standard ordering <=. The classical quicksort algorithm on lists.

quickSortBy :: (a → a → Bool) → [a] → [a]

Quicksort with ordering as first parameter. The classical quicksort algorithm on lists.

mergeSort :: Ord a ⇒ [a] → [a]

161

Bottom-up mergesort with standard ordering <=.

mergeSortBy :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort with ordering as first parameter.

leqList :: Eq a ⇒ (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-
guished and Umlauts are sorted as vocals.

A.3.9 Library TableRBT

Library with an implementation of tables as red-black trees:
A table is a finite mapping from keys to values. All the operations on tables are generic, i.e., one has
to provide an explicit order predicate ("cmp" below) on elements. Each inner node in the red-black
tree contains a key-value association.

Exported types:

type TableRBT a b = RedBlackTree (a,b)

162

Exported functions:

emptyTableRBT :: Eq a ⇒ (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.10 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here13 for a
description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into a list
of children of the same type and recombine new children to a new value of the original
type.

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.
13http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

163

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children
can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.
The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible. On
each member of the family of the result the given function will yield Nothing. Proceeds
bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as
long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

164

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.3.11 Library ValueSequence

This library defines a data structure for sequence of values. It is used in search trees (module
SearchTree) as well as in set functions (module SetFunctions). Using sequence of values (rather
than standard lists of values) is necessary to get the behavior of set functions w.r.t. finite failures
right, as described in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated
Search in Functional Logic Programs Proc. 15th International Conference on Principles
and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Note that the implementation for PAKCS is simplified in order to provide some functionality used
by other modules. In particular, the intended semantics of failures is not provided in the PAKCS
implementation.

Exported types:

data ValueSequence

A value sequence is an abstract sequence of values. It also contains failure elements in
order to implement the semantics of set functions w.r.t. failures in the intended manner
(only in KiCS2).

Exported constructors:

Exported functions:

emptyVS :: ValueSequence a

An empty sequence of values.

addVS :: a → ValueSequence a → ValueSequence a

Adds a value to a sequence of values.

165

failVS :: Int → ValueSequence a

Adds a failure to a sequence of values. The argument is the encapsulation level of the
failure.

(|++|) :: ValueSequence a → ValueSequence a → ValueSequence a

Concatenates two sequences of values.

vsToList :: ValueSequence a → [a]

Transforms a sequence of values into a list of values.

166

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax
is intended to simplify the writing of texts whose source is readable and can be easily formatted,
e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only
internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.
Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two _ or * characters:

emphasize
emphasize
__strong__
strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).
If one wants to put a link under a text, one can put the text in square brackets directly followed by
the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or
_, in the output document, it should be escaped with a backslash, i.e., a backslash followed by a
special character in the source text is translated into the given character (this also holds for program
code, see below). For instance, the input text

word

produces the output "_word_". The following backslash escapes are recognized:

\ backslash
‘ backtick
* asterisk
_ underscore
{} curly braces
[] square brackets

167

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses
hash symbol
+ plus symbol
- minus symbol (dash)
. dot

blank
! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list
elements (where the star can be preceded by blanks). The individual list elements must contain the
same indentation, as in

* First list element
with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one
could nest lists. Thus, the input text

- Color:
+ Yellow
+ Read
+ Blue

- BW:
+ Black
+ White

is formatted as

• Color:

168

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by
a dot and at least one blank. All following lines belonging to the same numbered item must have
the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second
element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is
> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input
line by at least four spaces where all following lines must have at least the same indentation as the
first non-blank character of the first line:

f x y = let z = (x,y)
in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)
in (z,z)

To visualize the structure of a document, one can also put a line containing only blanks and at least
three dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

169

B.3 Headers

The are two forms to mark headers. In the first form, one can "underline" the main header in the
source text by equal signs and the second-level header by dashes:

First-level header
==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,
where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

170

C SQL Syntax Supported by CurryPP

This section contains a grammar in EBNF which specifies the SQL syntax recognized by the Curry
preprocessor in integrated SQL code (see Sect. 12.4). The grammar satisfies the LL(1) property
and is influenced by the SQLite dialect.14

--------------type of statements--------------------------------

statement ::= queryStatement | transactionStatement
queryStatement ::= (deleteStatement

| insertStatement
| selectStatement
| updateStatement)
’;’

------------- transaction -------------------------------------

transactionStatement ::= (BEGIN
|IN TRANSACTION ’(’ queryStatement

{ queryStatement }’)’
|COMMIT
|ROLLBACK) ’;’

-------------- delete --

deleteStatement ::= DELETE FROM tableSpecification
[WHERE condition]

-------------insert ---

insertStatement ::= INSERT INTO tableSpecification
insertSpecification

insertSpecification ::= [’(’ columnNameList ’)’] valuesClause

valuesClause ::= VALUES valueList

------------update--

updateStatement ::= UPDATE tableSpecification
SET (columnAssignment {’,’ columnAssignment}

[WHERE condition]
| embeddedCurryExpression)

columnAssignment ::= columnName ’=’ literal

-------------select statement ---------------------------------

14https://sqlite.org/lang.html

171

https://sqlite.org/lang.html

selectStatement ::= selectHead { setOperator selectHead }
[orderByClause]
[limitClause]

selectHead ::= selectClause fromClause
[WHERE condition]
[groupByClause [havingClause]]

setOperator ::= UNION | INTERSECT | EXCEPT

selectClause ::= SELECT [(DISTINCT | ALL)]
(selectElementList | ’*’)

selectElementList ::= selectElement { ’,’ selectElement }

selectElement ::= [tableIdentifier’.’] columnName
| aggregation
| caseExpression

aggregation ::= function ’(’ [DISTINCT] columnReference ’)’

caseExpression ::= CASE WHEN condition THEN operand
ELSE operand END

function ::= COUNT | MIN | MAX | AVG | SUM

fromClause ::= FROM tableReference { ’,’ tableReference }

groupByClause ::= GROUP BY columnList

havingClause ::= HAVING conditionWithAggregation

orderByClause ::= ORDER BY columnReference [sortDirection]
{’,’ columnReference

[sortDirection] }

sortDirection ::= ASC | DESC

limitClause = LIMIT integerExpression

-------------common elements-----------------------------------

columnList ::= columnReference { ’,’ columnReference }

columnReference ::= [tableIdentifier’.’] columnName

columnNameList ::= columnName { ’,’ columnName}

tableReference ::= tableSpecification [AS tablePseudonym]

172

[joinSpecification]
tableSpecification ::= tableName

condition ::= operand operatorExpression
[logicalOperator condition]

| EXISTS subquery [logicalOperator condition]
| NOT condition
| ’(’ condition ’)’
| satConstraint [logicalOperator condition]

operand ::= columnReference
| literal

subquery ::= ’(’ selectStatement ’)’

operatorExpression ::= IS NULL
| NOT NULL
| binaryOperator operand
| IN setSpecification
| BETWEEN operand operand
| LIKE quotes pattern quotes

setSpecification ::= literalList

binaryOperator ::= ’>’| ’<’ | ’>=’ | ’<=’ | ’=’ | ’!=’

logicalOperator ::= AND | OR

conditionWithAggregation ::=
aggregation [logicalOperator disaggregation]

| ’(’ conditionWithAggregation ’)’
| operand operatorExpression

[logicalOperator conditionWithAggregation]
| NOT conditionWithAggregation
| EXISTS subquery

[logicalOperator conditionWithAggregation]
| satConstraint

[logicalOperator conditionWithAggregation]

aggregation ::= function ’(’(ALL | DISTINCT) columnReference’)’
binaryOperator
operand

satConstraint ::= SATISFIES tablePseudonym
relation
tablePseudonym

joinSpecification ::= joinType tableSpecification

173

[AS tablePseudonym]
[joinCondition]
[joinSpecification]

joinType ::= CROSS JOIN | INNER JOIN

joinCondition ::= ON condition

-------------identifier and datatypes-------------------------

valueList ::= (embeddedCurryExpression | literalList)
{’,’ (embeddedCurryExpression | literalList)}

literalList ::= ’(’ literal { ’,’ literal } ’)’

literal ::= numericalLiteral
| quotes alphaNumericalLiteral quotes
| dateLiteral
| booleanLiteral
| embeddedCurryExpression
| NULL

numericalLiteral ::= integerExpression
|floatExpression

integerExpression ::= [-] digit { digit }

floatExpression := [-] digit { digit } ’.’ digit { digit }

alphaNumericalLiteral ::= character { character }
character ::= digit | letter

dateLiteral ::= year ’:’ month ’:’ day ’:’
hours ’:’ minutes ’:’ seconds

month ::= digit digit
day ::= digit digit
hours ::= digit digit
minutes ::= digit digit
seconds ::= digit digit
year ::= digit digit digit digit

booleanLiteral ::= TRUE | FALSE

embeddedCurryExpression ::= ’{’ curryExpression ’}’

pattern ::= (character | specialCharacter)
{(character | specialCharacter)}

specialCharacter ::= ’%’ | ’_’

174

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

letter ::= (a...z) | (A...Z)

tableIdentifier ::= tablePseudonym | tableName
columnName ::= letter [alphanumericalLiteral]
tableName ::= letter [alphanumericalLiteral]
tablePseudonym ::= letter
relation ::= letter [[alphanumericalLiteral] | ’_’]
quotes ::= (’"’|’’’)

175

D Auxiliary Files

During the translation and execution of a Curry program with KiCS2, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you use KiCS2, it is not necessary to know about these auxiliary files because they
are automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.2) to clean up your directories.

The various components of KiCS2 create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Appendix A.1). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is compiled with
KiCS2. It can be also explicitly generated by the front end of KiCS2:

kics2 frontend --flat -ikics2home /lib prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

If the Curry module M is stored in the directory dir, the corresponding FlatCurry pro-
gram is stored in the directory “dir/.curry”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding FlatCurry program is stored in
“dir/.curry/D1/D2/M.fcy”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” representa-
tion, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access to
module interfaces. This file is implicitly generated when a program is compiled with KiCS2
and stored in the same directory as prog.fcy.

Curry_prog.hs: This file contains a Haskell program as the result of translating the Curry program
with the KiCS2 compiler.

If the Curry module M is stored in the directory dir, the corresponding Haskell program
is stored in the directory “dir/.curry/kics2”. This is also the case for hierarchical module
names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-
ally stored in dir/D1/D2/M.curry), then the corresponding Haskell program is stored in
“dir/.curry/kics2/D1/D2/Curry_prog.hs”.

Curry_prog.hi: This file contains the interface of the Haskell program Curry_prog.hs when the
latter program is compiled in order to execute it. This file is stored in the same directory as
Curry_prog.hs.

Curry_prog.o: This file contains the object code of the Haskell program Curry_prog.hs when the
latter program is compiled in order to execute it. This file is stored in the same directory as
Curry_prog.hs.

176

Curry_prog.nda: This file contains some information about the determinism behavior of operations
that is used by the KiCS2 compiler (see [11] for more details about the use of this information).
This file is stored in the same directory as Curry_prog.hs.

Curry_prog.info: This file contains some information about the top-level functions of module prog

that are used by the interactive environment, like determinism behavior or IO status. This
file is stored in the same directory as Curry_prog.hs.

prog: This file contains the executable after compiling and saving a program with KiCS2 (see
command “:save” in Section 2.2).

177

E External Operations

Currently, KiCS2 has no general interface to external operations, i.e., operations whose semantics is
not defined by program rules in a Curry program but by some code written in another programming
language. Thus, if an external operation should be added to the system, this operation must be
declared as external in the Curry source code and an implementation for this external operation
must be provided for the run-time system. An external operation is defined as follows in the Curry
source code:

1. Add a type declaration for the external operation somewhere in a module defining this oper-
ation (usually, the prelude or some system module).

2. For external operations it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, you have to write

f external

below the type declaration for the external operation f.

Furthermore, an implementation of the external operation must be provided in the target language
of the KiCS2 compiler, i.e., in Haskell, and inserted in the compiled code. In order to simplify this
task, KiCS2 follows some code conventions that are described in the following.

Assume you want to implement your own concatenation for strings in a module String. The
name and type of this string concatenation should be

sconc :: String → String → String

Since the primitive Haskell implementation of this operation does not now anything about the op-
erational mechanism of Curry (e.g., needed narrowing, non-deterministic rewriting), the arguments
need to be completely evaluated before the primitive implementation is called. This can be eas-
ily obtained by the prelude operation ($##) that applies an operation to the normal form of the
given argument, i.e., this operation evaluates the argument to its normal form before applying the
operation to it.15 Thus, we define sconc by

sconc :: String → String → String
sconc s1 s2 = (prim_sconc $## s1) $## s2

prim_sconc :: String → String → String
prim_sconc external

so that it is ensured that the external operation prim_sconc is always called with complete evaluated
arguments.

In order to define the Haskell code implementing prim_sconc, one has to satisfy the naming
conventions of KiCS2. The KiCS2 compiler generates the following code for the external opera-
tion prim_sconc (note that the generated Haskell code for the module String is stored in the file
.curry/kics2/Curry_String.hs):

15There is also a similar prelude operation ($#) which evaluates the argument only to head-normal form. This is
a bit more efficient and can be used for unstructured types like Bool.

178

d_C_prim_sconc :: Curry_Prelude.OP_List Curry_Prelude.C_Char
→ Curry_Prelude.OP_List Curry_Prelude.C_Char
→ ConstStore
→ Curry_Prelude.OP_List Curry_Prelude.C_Char

d_C_prim_sconc x1 x2 x3500 = external_d_C_prim_sconc x1 x2 x3500

The type constructors OP_List and C_Char of the prelude Curry_Prelude16 correspond to the Curry
type constructors for lists and characters. The Haskell operation external_d_C_prim_sconc is the
external operation to be implemented in Haskell by the programmer. The additional argument
of type ConstStore represents the current set of constraints when this operation is called. This
argument is intended to provide a more efficient access to binding constraints and can be ignored
in standard operations.

If String.curry contains the code of the Curry function sconc described above, the Haskell
code implementing the external operations occurring in the module String must be in the file
External_String.hs which is located in the same directory as the file String.curry. The KiCS2
compiler appends the code contained in External_String.hs to the generated code stored in the file
.curry/kics2/Curry_String.hs.17

In order to complete our example, we have to write into the file External_String.hs a definition
of the Haskell function external_d_C_prim_sconc. Thus, we start with the following definitions:

import qualified Curry_Prelude as CP

external_d_C_prim_sconc :: CP.OP_List CP.C_Char → CP.OP_List CP.C_Char
→ ConstStore → CP.OP_List CP.C_Char

First, we import the standard prelude with the name CP in order to shorten the writing of type decla-
rations. In order to write the final code of this operation, we have to convert the Curry-related types
(like C_Char) into the corresponding Haskell types (like Char). Note that the Curry-related types
contain information about non-deterministic or constrained values (see [11, 12]) that are meaning-
less in Haskell. To solve this conversion problem, the implementation of KiCS2 provides a family of
operations to perform these conversions for the predefined types occurring in the standard prelude.
For instance, fromCurry converts a Curry type into the corresponding Haskell type, and toCurry

converts the Haskell type into the corresponding Curry type. Thus, we complete our example with
the definition (note that we simply ignore the final argument representing the constraint store)

external_d_C_prim_sconc s1 s2 _ =
toCurry ((fromCurry s1 ++ fromCurry s2) :: String)

Here, we use Haskell’s concatenation operation “++” to concatenate the string arguments. The
type annotation “:: String” is necessary because “++” is a polymorphic function so that the type
inference system of Haskell has problems to determine the right instance of the conversion function.

The conversion between Curry types and Haskell types, i.e., the family of conversion operation
fromCurry and toCurry, is defined in the KiCS2 implementation for all standard data types. In
particular, it is also defined on function types so that one can easily implement external Curry I/O

16Note that all translated Curry modules are imported in the Haskell code fully qualified in order to avoid name
conflicts.

17If the file External_String.hs contains also some import declarations at the beginning, these import declara-
tions are put after the generated import declarations.

179

actions by using Haskell I/O actions. For instance, if we want to implement an external operation
to print some string as an output line, we start by declaring the external operations in the Curry
module String:

printString :: String → IO ()
printString s = prim_printString $## s

prim_printString :: String → IO ()
prim_printString external

Next we add the corresponding implementation in the file External_String.hs (where C_IO and
OP_Unit are the names of the Haskell representation of the Curry type constructor IO and the Curry
data type “()”, respectively):

external_d_C_prim_printString :: CP.OP_List CP.C_Char → ConstStore
→ CP.C_IO CP.OP_Unit

external_d_C_prim_printString s _ = toCurry putStrLn s

Here, Haskell’s I/O action putStrLn of type “String -> IO ()” is transformed into a Curry I/O
action “toCurry putStrLn” which has the type

CP.OP_List CP.C_Char → CP.C_IO CP.OP_Unit

When we compile the Curry module String, KiCS2 combines these definitions in the target program
so that we can immediately use the externally defined operation printString in Curry programs.

As we have seen, KiCS2 transforms a name like primOP of an external operation into the name
external_d_C_primOP for the Haskell operation to be implemented, i.e., only a specific prefix is
added. However, this is only valid if no special characters occur in the Curry names. Otherwise (in
order to generate a correct Haskell program), special characters are translated into specific names
prefixed by “OP_”. For instance, if we declare the external operation

(<&>) :: Int → Int → Int
(<&>) external

the generated Haskell module contains the code

d_OP_lt_ampersand_gt :: Curry_Prelude.C_Int → Curry_Prelude.C_Int
→ ConstStore → Curry_Prelude.C_Int

d_OP_lt_ampersand_gt x1 x2 x3500 = external_d_OP_lt_ampersand_gt x1 x2 x3500

so that one has to implement the operation external_d_OP_lt_ampersand_gt in Haskell. If in doubt,
one should look into the generated Haskell code about the names and types of the operations to be
implemented.

Finally, note that this method to connect functions implemented in Haskell to Curry programs
provides the opportunity to connect also operations written in other programming languages to
Curry via Haskell’s foreign function interface.

180

Index
***, 110
*., 108
+., 107
---, 45
-., 107
-=-, 144, 147
.kics2rc, 17
/., 108
:!, 12
:add, 10
:browse, 11
:cd, 11
:compile, 10
:edit, 11
:eval, 11
:fork, 12
:help, 10
:interface, 11
:load, 10
:programs, 11
:quit, 11
:reload, 10
:save, 12
:set, 11, 12
:set path, 8
:show, 11
:source, 11
:type, 11
:usedimports, 11
==>, 145, 148
@, 20
@author, 45
@cons, 45
@param, 45
@return, 46
@version, 45
#, 145, 149
#<, 145, 149
#>, 146, 149
&&&, 110
KiCS2, 9

<*>, 100
<.>, 103
</>, 105
<=>, 146, 149
<$>, 100
<~, 144, 148
<~>, 144, 148
<~~>, 145, 148
>+, 100
>+=, 100
>>-, 124
~>, 144, 148
\\, 120
^, 113
^., 108

AbstractCurry, 87
acos, 109
acosh, 109
add, 126
addCurrySubdir, 96
addDays, 141
addDefinition, 97
addExtension, 103
addHours, 141
addListToFM, 152
addListToFM C, 152
addMinutes, 141
addMonths, 141
addSeconds, 141
addTarget, 98
addToFM, 152
addToFM C, 152
addTrailingPathSeparator, 104
addVS, 165
addYears, 142
AllSolutions, 7
allSolutions, 107
allSubsets, 90
allValues, 106
allValuesBFS, 158
allValuesDFS, 158

181

allValuesDiag, 158
allValuesIDS, 158
allValuesIDSwith, 158
allValuesWith, 158
always, 145, 148
analyzing programs, 68
ArgDescr, 111
ArgOrder, 111
args, 16, 144
as-pattern, 20
asin, 109
asinh, 109
assert, 92
assertIO, 92
atan, 109
atanh, 109

baseName, 101
baseVersion, 95
best, 7
bfs, 12
bfsStrategy, 158
bindings, 14
bindS, 137
bindS , 137
binomial, 114
bitAnd, 114
bitNot, 114
bitOr, 114
bitTrunc, 114
bitXor, 114
both, 110

CalendarTime, 140
calendarTimeToString, 141
callFrontend, 99
callFrontendWithParams, 99
CASC, 48
CASS, 68
catMaybes, 124
childFamilies, 164
children, 163
choices, 13
choose, 134

chooseValue, 134
classify, 146, 149
cleancurry, 6
ClockTime, 140
clockTimeToInt, 141
cmp, 15
cmpChar, 162
cmpList, 162
cmpString, 162
collect, 146, 149
collectAs, 146, 149
combine, 105
comment

documentation, 45
compareCalendarTime, 142
compareClockTime, 142
compareDate, 142
concatMapES, 101
concurrency, 7
connectToCommand, 118
connectToSocket, 125, 137
connectToSocketRepeat, 125
connectToSocketWait, 125
cons, 150
constract, 39
copyFile, 93
cos, 108
cosh, 109
cpnsAlive, 91
cpnsShow, 91
cpnsStart, 91
cpnsStop, 91
cpp, 98
createDirectory, 93
createDirectoryIfMissing, 93
ctDay, 140
ctHour, 140
ctMin, 140
ctMonth, 140
ctSec, 140
ctTZ, 140
ctYear, 140
curry, 9
curry erd2curry, 75

182

Curry mode, 17
Curry preprocessor, 53
curry-doc, 47
curry-peval, 79
curry-style, 48
curry-verify, 49
CurryCheck, 31
curryCompiler, 95
curryCompilerMajorVersion, 95
curryCompilerMinorVersion, 95
curryCompilerRevisionVersion, 95
CurryDoc, 45
CURRYPATH, 8
curryRuntime, 95
curryRuntimeMajorVersion, 95
curryRuntimeMinorVersion, 95
currySubdir, 96
CurryVerify, 49
cycle, 123
cyclic structure, 19

database programming, 75
daysOfMonth, 142
defaultParams, 97
definitions, 98
delete, 120, 156
deleteBy, 120
deleteRBT, 160, 163
delFromFM, 152
delListFromFM, 152
depthDiag, 159
deqHead, 150
deqInit, 150
deqLast, 150
deqLength, 150
deqReverse, 150
deqTail, 150
deqToList, 151
deterministic, 145, 149
dfs, 12
dfsStrategy, 157
diagonal, 120
diagStrategy, 158
digitToInt, 90

dirName, 101
doc, 47
documentation comment, 45
documentation generator, 45
doesDirectoryExist, 92
doesFileExist, 92
dropDrive, 104
dropExtension, 103
dropExtensions, 103
dropFileName, 104
dropTrailingPathSeparator, 104

elemFM, 153
elemIndex, 119
elemIndices, 119
elemRBT, 160
eltsFM, 154
Emacs, 17
empty, 150, 156
emptyFM, 151
emptySetRBT, 160
emptyTableRBT, 163
emptyVS, 165
encapsulated search, 7
entity relationship diagram, 75
eqFM, 153
equalFilePath, 105
ERD2Curry, 75
erd2curry, 75
ES, 100
evalChildFamilies, 164
evalChildFamiliesIO, 165
evalCmd, 118
evalES, 100
evalFamily, 164
evalFamilyIO, 165
evalState, 138
even, 114
eventually, 145, 148
exclusiveIO, 118
execCmd, 118
execState, 138
exitWith, 139
exp, 108

183

extended, 98
external operation, 178
extSeparator, 102

factorial, 114
failES, 100
failing, 145, 148
failVS, 166
family, 164
FilePath, 102
fileSize, 92
fileSuffix, 101
filterFM, 153
filterValues, 135
find, 119
findall, 7
findIndex, 119
findIndices, 119
first, 14, 110
fix, 110
FlatCurry, 87
FM, 151
fmSortBy, 154
fmToList, 154
fmToListPreOrder, 154
fold, 164
foldChildren, 164
foldFM, 153
foldValues, 135
for, 146, 149
forAll, 146, 149
forAllValues, 146
fromJust, 123
fromLeft, 99
fromMaybe, 123
fromNat, 126
fromRight, 99
FrontendParams, 95
FrontendTarget, 94
fullPath, 98
functional pattern, 19

garbageCollect, 128
garbageCollectorOff, 128

garbageCollectorOn, 128
getAbsolutePath, 93
getAllFailures, 88
getAllSolutions, 88
getAllValues, 88, 106
getAllValuesWith, 158
getArgs, 138
getAssoc, 119
getClockTime, 140
getContents, 117
getCPUTime, 138
getCurrentDirectory, 92
getDirectoryContents, 92
getElapsedTime, 138
getEnviron, 139
getFileInPath, 102
getHomeDirectory, 93
getHostname, 139
getLoadPathForModule, 97
getLocalTime, 141
getModificationTime, 92
getOneSolution, 88
getOneValue, 88
getOpt, 112
getOpt’, 112
getPID, 139
getPortInfo, 91
getProcessInfos, 127
getProgName, 139
getRandomSeed, 155
getRcVar, 96
getRcVars, 96
getS, 137
gets, 100
getSearchPath, 103
getSearchTree, 157
getSomeValue, 106
getTemporaryDirectory, 93
ghc, 13, 15
ghci, 14
Global, 112
global, 113
GlobalSpec, 112
group, 121

184

groupBy, 121

Handle, 115
hasDrive, 104
hasExtension, 103
hasTrailingPathSeparator, 104
hClose, 116
hFlush, 116
hGetChar, 117
hGetContents, 117
hGetLine, 117
hIsEOF, 116
hIsReadable, 117
hIsTerminalDevice, 117
hIsWritable, 117
hPrint, 117
hPutChar, 117
hPutStr, 117
hPutStrLn, 117
hReady, 117
hSeek, 116
htmldir, 99
hWaitForInput, 116
hWaitForInputOrMsg, 116
hWaitForInputs, 116
hWaitForInputsOrMsg, 116

i2f, 108
ids, 12
idsStrategy, 158
idsStrategyWith, 158
ilog, 113
inCurrySubdir, 96
inCurrySubdirModule, 96
init, 122
inits, 121
insertBy, 122
insertionSort, 161
insertionSortBy, 161
insertMultiRBT, 160
insertRBT, 160
installDir, 95
integer, 13
interactive, 10

interactive, 13
intercalate, 120
intersect, 120
intersectBy, 120
intersectFM, 152
intersectFM C, 153
intersectRBT, 160
intersperse, 120
intToDigit, 90
invf1, 110
invf2, 110
invf3, 110
invf4, 110
invf5, 110
IOMode, 115
IORef, 118
ioref, 13
ioTestOf, 144
is, 145, 148
isAbsolute, 101, 105
isAlpha, 89
isAlphaNum, 89
isAlways, 145, 148
isAscii, 89
isAsciiLower, 89
isAsciiUpper, 89
isBinDigit, 89
isControl, 89
isDefined, 157
isDigit, 89
isDrive, 104
isEmpty, 134, 150, 156
isEmptyFM, 153
isEmptySetRBT, 160
isEmptyTable, 163
isEOF, 116
isEventually, 145, 148
isExtSeparator, 103
isFail, 107
isHexDigit, 89
isInfixOf, 122
isJust, 123
isLatin1, 89
isLeft, 99

185

isLower, 89
isNothing, 123
isOctDigit, 89
isPathSeparator, 102
isPosix, 139
isPrefixOf, 121
isqrt, 114
isRelative, 105
isRight, 99
isSearchPathSeparator, 102
isSpace, 90
isSuffixOf, 121
isUpper, 89
isValid, 105
isWindows, 139

joinDrive, 104
joinModuleIdentifiers, 96
joinPath, 105

keyOrder, 153
keysFM, 154
kics2, 9
kics2 frontend, 176
kics2rc, 17

label, 146, 149
last, 122
lefts, 99
leq, 126
leqChar, 162
leqCharIgnoreCase, 162
leqLexGerman, 162
leqList, 162
leqString, 162
leqStringIgnoreCase, 162
let, 18
levelDiag, 159
liftS, 138
liftS2, 138
limitSearchTree, 157
listenOn, 125, 136
listenOnFresh, 136
listToDeq, 151
listToFM, 151

listToMaybe, 123
local, 14
local compilation mode, 14
log, 108
logBase, 108
logfile, 99
lookup, 156
lookupFileInPath, 102
lookupFM, 153
lookupModuleSource, 97
lookupModuleSourceInLoadPath, 97
lookupRBT, 163
lookupWithDefaultFM, 153

main, 91
makeRelative, 105
makeValid, 105
mapAccumES, 101
mapAccumL, 123
mapAccumR, 123
mapChildFamilies, 164
mapChildFamiliesIO, 165
mapChildren, 164
mapChildrenIO, 164
mapES, 100
mapFamily, 164
mapFamilyIO, 164
mapFM, 153
mapMaybe, 124
mapMMaybe, 124
mapS, 138
mapS , 138
mapValues, 135
markdown, 46
matchHead, 151
matchLast, 151
max3, 114
maxFM, 153
maximum, 122
maximumBy, 122
maxlist, 114
maxValue, 135
maxValueBy, 135
maybeToList, 124

186

mergeSort, 161
mergeSortBy, 162
min3, 114
minFM, 153
minimum, 122
minimumBy, 122
minlist, 114
minusFM, 152
minValue, 135
minValueBy, 135
modify, 100
modifyIORef, 119
modifyS, 137
modNameToPath, 96
mplus, 124
mul, 126

Nat, 126
newIORef, 119
newTreeLike, 156
nextBoolean, 155
nextInt, 155
nextIntRange, 155
noChildren, 163
noindex, 47
normalise, 105
notEmpty, 134
nub, 119
nubBy, 120

odd, 114
on, 110
once, 7
oneValue, 106
onlyindex, 47
openFile, 115
operation

external, 178
OptDescr, 111
optimize, 14
option

in source file, 16
overlapWarn, 98

parallel, 12

parser, 15
partial evaluation, 79
partition, 90, 121
partitionEithers, 99
path, 8, 12
pathSeparator, 102
pathSeparatorChar, 101
pathSeparators, 102
pattern

functional, 19
permSort, 161
permSortBy, 161
permutations, 120
permute, 90
peval, 79
peval, 79
pi, 107
plusFM, 152
plusFM C, 152
postcondition, 40
pow, 113
prdfs, 13
precondition, 39
preprocessor, 53
printAllValuesWith, 158
printMemInfo, 128
printValues, 136
printValuesWith, 159
ProcessInfo, 126
product, 122
profile, 14
profileSpace, 128
profileSpaceNF, 128
profileTime, 128
profileTimeNF, 128
profiling, 6, 14
program

analysis, 68
documentation, 45
testing, 31
verification, 49

prompt, 13
Prop, 143, 147
PropIO, 143, 147

187

pureio, 13
putS, 137
puts, 100

Queue, 150
quickSort, 161
quickSortBy, 161
quiet, 98

rcFileContents, 95
rcFileName, 95
rcParams, 97
readBin, 130
readCompleteFile, 118
readCurry, 87
readFlatCurry, 87
readFM, 154
readGlobal, 113
readHex, 129
readInt, 129
readIORef, 119
readNat, 129
readOct, 130
readPropertyFile, 128
readQTerm, 131
readQTermFile, 131
readQTermListFile, 131
readsQTerm, 131
readsTerm, 131
readsUnqualifiedTerm, 130
readTerm, 131
readUnqualifiedTerm, 130
recip, 108
RedBlackTree, 155
registerPort, 91
removeDirectory, 93
removeFile, 93
renameDirectory, 93
renameFile, 93
replace, 121
replaceBaseName, 104
replaceChildren, 163
replaceChildrenIO, 164
replaceDirectory, 105

replaceExtension, 103
replaceFileName, 104
Result, 143
result, 144
returnES, 100
returnS, 137
returns, 143, 147
rights, 99
rndDepthDiag, 159
rndLevelDiag, 159
rndLevelDiagFlat, 159
rotate, 151
round, 108
rts, 15
runcurry, 65
runState, 138

safe, 14
safeReadGlobal, 113
sameReturns, 143, 147
scanl, 122
scanl1, 122
scanr, 122
scanr1, 123
sClose, 125, 137
searchPathSeparator, 102
SearchTree, 7, 157
searchTreeSize, 157
second, 110
SeekMode, 115
select, 135
selectValue, 135
separatorChar, 101
sequenceMaybe, 124
sequenceS, 138
sequenceS , 138
set functions, 7
set0, 133
set0With, 133
set1, 133
set1With, 133
set2, 133
set2With, 133
set3, 133

188

set3With, 133
set4, 133
set4With, 133
set5, 133
set5With, 134
set6, 134
set6With, 134
set7, 134
set7With, 134
setAssoc, 118
setCpp, 97
setCurrentDirectory, 92
setDefinitions, 98
setEnviron, 139
setExtended, 97
setFullPath, 98
setHtmlDir, 98
setInsertEquivalence, 156
setLogfile, 98
setOverlapWarn, 98
setQuiet, 97
SetRBT, 160
setRBT2list, 160
setSpecials, 98
showFM, 154
showMemInfo, 128
showQTerm, 130
showSearchTree, 157
showTerm, 130
shuffle, 155
sin, 108
singleton variables, 6
sinh, 109
sizedSubset, 90
sizeFM, 153
sleep, 139
snoc, 150
Socket, 124, 136
socketAccept, 125, 136
socketName, 125
solutionOf, 145, 148
solveAll, 7
someSearchTree, 157
someSolution, 107

someValue, 106, 159
someValueWith, 159
sort, 161
sortBy, 122, 156, 161
sorted, 161
sortedBy, 161
sortRBT, 160
sortValues, 136
sortValuesBy, 136
source-file option, 16
specials, 99
specification, 39
spiceup, 77
Spicey, 77
split, 121
splitBaseName, 102
splitDirectories, 105
splitDirectoryBaseName, 101
splitDrive, 103
splitExtension, 103
splitExtensions, 103
splitFileName, 104
splitFM, 152
splitModuleFileName, 96
splitModuleIdentifiers, 96
splitOn, 121
splitPath, 102, 105
splitSearchPath, 103
splitSet, 90
sqrt, 108
stamp, 144
State, 137
stderr, 115
stdin, 115
stdout, 115
Strategy, 157
stripCurrySuffix, 96
stripSuffix, 101
style, 48
style checking, 48
sub, 126
subset, 90
successful, 145, 149
suffixSeparatorChar, 101

189

sum, 122
supply, 13
sysLibPath, 97
system, 139

TableRBT, 162
tableRBT2list, 163
tabulator stops, 7
tails, 121
takeBaseName, 104
takeDirectory, 105
takeDrive, 104
takeExtension, 103
takeExtensions, 103
takeFileName, 104
tan, 109
tanh, 109
Test, 143
test, 144
Test.EasyCheck, 31, 35
Test.Prop, 31
testing programs, 31
testsOf, 144
time, 14
toCalendarTime, 141
toClockTime, 141
toDayString, 141
toError, 143, 147
toIOError, 144, 147
toLower, 90
toNat, 126
toTimeString, 141
toUpper, 90
toUTCTime, 141
trace, 14, 91, 142
traceId, 91
traceIO, 92
traceShow, 92
traceShowId, 92
transpose, 120
Traversable, 163
tree2list, 156
trivial, 146, 149
truncate, 108

try, 7

unfoldr, 123
union, 120
unionBy, 120
unionRBT, 160
uniquely, 145, 148
unitFM, 151
unregisterPort, 91
unsafePerformIO, 142
unsetEnviron, 139
updArgs, 144
update, 156
updateFile, 118
updatePropertyFile, 128
updateRBT, 163
updFM, 152
usageInfo, 112

v, 13
validDate, 142
valueOf, 134
Values, 132
values2list, 136
ValueSequence, 165
valuesOf, 146, 149
valuesOfSearchTree, 146
variables

singleton, 6
verbosity, 13
verify, 49
verifying programs, 49
vsToList, 166

waitForSocketAccept, 125, 137
where, 18
writeGlobal, 113
writeIORef, 119
writeQTermFile, 131
writeQTermListFile, 131

190

	Title
	Contents
	Preface
	Overview of KiCS2
	Installation
	General Use
	Restrictions
	Modules in KiCS2

	Using the Interactive Environment of KiCS2
	Invoking KiCS2
	Commands of KiCS2
	Options of KiCS2
	Source-File Options
	Using KiCS2 in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Narrowing on Int Literals
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching
	Type Classes

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Comments
	Identifiers and Keywords
	Numeric and Character Literals

	Layout
	Context-Free Grammar

	Optimization of Curry Programs
	cypm: The Curry Package Manager
	curry check: A Tool for Testing Properties of Curry Programs
	Testing Properties
	Generating Test Data
	Checking Equivalence of Operations
	Checking Contracts and Specifications
	Combining Testing and Verification
	Checking Usage of Specific Operations

	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	Installation
	Basic Usage

	curry-doc: A Documentation Generator for Curry Programs
	Installation
	Documentation Comments
	Generating Documentation

	curry-style: A Style Checker for Curry Programs
	Installation
	Basic Usage
	Configuration

	CurryVerify: A Tool to Support the Verification of Curry Programs
	Installation
	Basic Usage
	Options

	CurryPP: A Preprocessor for Curry Programs
	Installation
	Basic Usage
	Integrated Code
	Regular Expressions
	Format Specifications
	HTML Code
	XML Expressions

	SQL Statements
	ER Specifications
	SQL Statements as Integrated Code

	Default Rules
	Contracts

	runcurry: Running Curry Programs
	Installation
	Using runcurry

	CASS: A Generic Curry Analysis Server System
	Installation
	Using CASS to Analyze Programs
	Batch Mode
	API Mode
	Server Mode

	Implementing Program Analyses

	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Installation
	Basic Usage

	Spicey: An ER-based Web Framework
	Installation
	Basic usage
	Further remarks

	curry-peval: A Partial Evaluator for Curry
	Installation
	Basic Usage
	Options

	Technical Problems
	Bibliography
	Libraries of the KiCS2 Distribution
	AbstractCurry and FlatCurry: Meta-Programming in Curry
	General Libraries
	Library AllSolutions
	Library Char
	Library Combinatorial
	Library CPNS
	Library Debug
	Library Directory
	Library Distribution
	Library Either
	Library ErrorState
	Library FileGoodies
	Library FilePath
	Library Findall
	Library Float
	Library Function
	Library FunctionInversion
	Library GetOpt
	Library Global
	Library Integer
	Library IO
	Library IOExts
	Library List
	Library Maybe
	Library NamedSocket
	Library Nat
	Library Profile
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library State
	Library System
	Library Time
	Library Unsafe
	Library Test.EasyCheck
	Library Test.Prop

	Data Structures and Algorithms
	Library Dequeue
	Library FiniteMap
	Library Random
	Library RedBlackTree
	Library SearchTree
	Library SearchTreeTraversal
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal
	Library ValueSequence

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	SQL Syntax Supported by CurryPP
	Auxiliary Files
	External Operations
	Index

