
KiCS2

The Kiel Curry System (Version 2)

User Manual

Version 0.5.0 of 2016-04-11

Michael Hanus1 [editor]

Additional Contributors:

Bernd Braßel2

Björn Peemöller3

Fabian Reck4

Jan Rasmus Tikovsky5

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de

(2) University of Kiel, Germany, bbr@informatik.uni-kiel.de

(3) University of Kiel, Germany, bjp@informatik.uni-kiel.de

(4) University of Kiel, Germany, fre@informatik.uni-kiel.de

(4) University of Kiel, Germany, jrt@informatik.uni-kiel.de

Contents

Preface 5

1 Overview of KiCS2 6

1.1 Installation . 6

1.2 General Use . 6

1.3 Restrictions . 7

1.4 Modules in KiCS2 . 8

2 Using the Interactive Environment of KiCS2 9

2.1 Invoking KiCS2 . 9

2.2 Commands of KiCS2 . 9

2.3 Options of KiCS2 . 12

2.4 Source-File Options . 15

2.5 Using KiCS2 in Batch Mode . 16

2.6 Command Line Editing . 16

2.7 Customization . 16

2.8 Emacs Interface . 16

3 Extensions 18

3.1 Narrowing on Int Literals . 18

3.2 Recursive Variable Bindings . 18

3.3 Functional Patterns . 19

3.4 Order of Pattern Matching . 20

4 Recognized Syntax of Curry 21

4.1 Notational Conventions . 21

4.2 Lexicon . 21

4.2.1 Case Mode . 21

4.2.2 Identifiers and Keywords . 21

4.2.3 Comments . 22

4.2.4 Numeric and Character Literals . 22

4.3 Layout . 23

4.4 Context Free Grammar . 24

5 Optimization of Curry Programs 28

6 CurryDoc: A Documentation Generator for Curry Programs 29

7 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 32

8 CurryCheck: A Tool for Testing Curry Programs 34

8.1 Testing Properties . 34

8.2 Generating Test Data . 37

8.3 Checking Contracts and Specifications . 40

1

8.4 Checking Usage of Specific Operations . 41

9 CurryTest: A Tool for Testing Curry Programs 43

10 CurryPP: A Preprocessor for Curry Programs 45

10.1 Integrated Code . 45

10.1.1 Regular Expressions . 46

10.1.2 Format Specifications . 46

10.1.3 HTML Code . 47

10.1.4 XML Expressions . 48

10.2 Sequential Rules . 48

10.3 Default Rules . 49

11 runcurry: Running Curry Programs 50

12 ERD2Curry: A Tool to Generate Programs from ER Specifications 52

13 Spicey: An ER-based Web Framework 53

14 Technical Problems 54

Bibliography 55

A Libraries of the KiCS2 Distribution 57

A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry 57

A.2 General Libraries . 58

A.2.1 Library AllSolutions . 58

A.2.2 Library Assertion . 59

A.2.3 Library Char . 60

A.2.4 Library Combinatorial . 62

A.2.5 Library CPNS . 62

A.2.6 Library CSV . 63

A.2.7 Library Debug . 64

A.2.8 Library Directory . 64

A.2.9 Library Distribution . 66

A.2.10 Library Either . 70

A.2.11 Library ErrorState . 71

A.2.12 Library FileGoodies . 72

A.2.13 Library FilePath . 73

A.2.14 Library Findall . 77

A.2.15 Library Float . 78

A.2.16 Library Function . 80

A.2.17 Library FunctionInversion . 81

A.2.18 Library GetOpt . 82

A.2.19 Library Global . 83

A.2.20 Library GUI . 84

2

A.2.21 Library Integer . 96

A.2.22 Library IO . 98

A.2.23 Library IOExts . 101

A.2.24 Library JavaScript . 102

A.2.25 Library KeyDatabaseSQLite . 105

A.2.26 Library List . 110

A.2.27 Library Maybe . 114

A.2.28 Library NamedSocket . 115

A.2.29 Library Parser . 116

A.2.30 Library Pretty . 117

A.2.31 Library Profile . 131

A.2.32 Library Prolog . 133

A.2.33 Library PropertyFile . 134

A.2.34 Library Read . 134

A.2.35 Library ReadNumeric . 135

A.2.36 Library ReadShowTerm . 136

A.2.37 Library SetFunctions . 137

A.2.38 Library Socket . 141

A.2.39 Library System . 142

A.2.40 Library Time . 143

A.2.41 Library Unsafe . 146

A.2.42 Library Test.EasyCheck . 146

A.3 Data Structures and Algorithms . 153

A.3.1 Library Array . 153

A.3.2 Library Dequeue . 154

A.3.3 Library FiniteMap . 155

A.3.4 Library GraphInductive . 158

A.3.5 Library Random . 165

A.3.6 Library RedBlackTree . 165

A.3.7 Library SCC . 167

A.3.8 Library SearchTree . 167

A.3.9 Library SearchTreeTraversal . 170

A.3.10 Library SetRBT . 170

A.3.11 Library Sort . 171

A.3.12 Library TableRBT . 173

A.3.13 Library Traversal . 173

A.3.14 Library UnsafeSearchTree . 175

A.3.15 Library ValueSequence . 178

A.3.16 Library Rewriting.Term . 178

A.3.17 Library Rewriting.Substitution . 179

A.3.18 Library Rewriting.Unification . 180

A.3.19 Library Rewriting.UnificationSpec . 180

A.4 Libraries for Web Applications . 181

A.4.1 Library Bootstrap3Style . 181

3

A.4.2 Library CategorizedHtmlList . 182

A.4.3 Library HTML . 182

A.4.4 Library HtmlCgi . 195

A.4.5 Library HtmlParser . 197

A.4.6 Library Mail . 197

A.4.7 Library Markdown . 198

A.4.8 Library URL . 201

A.4.9 Library WUI . 201

A.4.10 Library WUIjs . 208

A.4.11 Library XML . 216

A.4.12 Library XmlConv . 218

A.5 Libraries for Meta-Programming . 225

A.5.1 Library AbstractCurry.Types . 225

A.5.2 Library AbstractCurry.Files . 231

A.5.3 Library AbstractCurry.Select . 232

A.5.4 Library AbstractCurry.Build . 235

A.5.5 Library AbstractCurry.Pretty . 239

A.5.6 Library FlatCurry.Types . 242

A.5.7 Library FlatCurry.Files . 249

A.5.8 Library FlatCurry.Goodies . 250

A.5.9 Library FlatCurry.Pretty . 262

A.5.10 Library FlatCurry.Read . 266

A.5.11 Library FlatCurry.Show . 267

A.5.12 Library FlatCurry.XML . 267

A.5.13 Library FlatCurry.FlexRigid . 268

A.5.14 Library FlatCurry.Compact . 268

A.5.15 Library FlatCurry.Annotated.Types . 270

A.5.16 Library FlatCurry.Annotated.Pretty . 272

A.5.17 Library FlatCurry.Annotated.Goodies . 275

A.5.18 Library FlatCurry.Annotated.TypeSubst . 287

A.5.19 Library FlatCurry.Annotated.TypeInference 288

A.5.20 Library CurryStringClassifier . 290

B Markdown Syntax 293

B.1 Paragraphs and Basic Formatting . 293

B.2 Lists and Block Formatting . 294

B.3 Headers . 296

C Auxiliary Files 297

D External Operations 299

Index 302

4

Preface

This document describes KiCS2 (Kiel Curry System Version 2), an implementation of the multi-

paradigm language Curry [14, 23] that is based on compiling Curry programs into Haskell pro-

grams. Curry is a universal programming language aiming at the amalgamation of the most im-

portant declarative programming paradigms, namely functional programming and logic program-

ming. Curry combines in a seamless way features from functional programming (nested expressions,

lazy evaluation, higher-order functions), logic programming (logical variables, partial data struc-

tures, built-in search), and concurrent programming (concurrent evaluation of constraints with

synchronization on logical variables). The current KiCS2 implementation does not support con-

current constraints. Alternatively, one can write distributed applications by the use of sockets that

can be registered and accessed with symbolic names. Moreover, KiCS2 also supports the high-

level implementation of graphical user interfaces and web services (as described in more detail in

[15, 16, 17, 20]).

We assume familiarity with the ideas and features of Curry as described in the Curry language

definition [23]. Therefore, this document only explains the use of the different components of KiCS2

and the differences and restrictions of KiCS2 (see Section 1.3) compared with the language Curry

(Version 0.9.0). The basic ideas of the implementation of KiCS2 can be found in [11, 10].

Acknowledgements

This work has been supported in part by the DFG grants Ha 2457/5-1 and Ha 2457/5-2.

5

1 Overview of KiCS2

1.1 Installation

This version of KiCS2 has been developed and tested on Linux systems. In principle, it should be

also executable on other platforms on which a Haskell implementation (Glasgow Haskell Compiler

and Cabal) exists, like in many Linux distributions, Sun Solaris, or Mac OS X systems.

Installation instructions for KiCS2 can be found in the file INSTALL.txt stored in the KiCS2

installation directory. Note that there are two possibilities to install KiCS2:

Global installation: KiCS2 is installed in some global system directory where users have no write

permission. In this case, some options for experimenting with KiCS2 (like supply or ghc, see

below) are not available (since they require the recompilation of parts of the installed system).

Local installation: KiCS2 is installed in some local user directory where the user has write per-

mission and the option GLOBALINSTALL in the Makefile of the KiCS2 installation is set as

follows:

GLOBALINSTALL=no

In this case, all options of KiCS2 are available.

Furthermore, KiCS2 can be installed with experimental support for profiling of executables. To

use profiling, two requirements have to be met:

• The libraries that are shipped with the GHC that is used by KiCS2 have to be installed with

profiling enabled. This is the default for the system libraries contained in the GHC release,

but may not be the case for additional libraries.

• The Makefile of KiCS2 contains an option PROFILING which has to be set to yes to enable

profiling support. You may either change the Makefile to

PROFILING = yes

or specify this setting while starting the installation process using

make <optional target> PROFILING=yes

In the following, kics2home denotes the installation directory of the KiCS2 installation.

1.2 General Use

All executables required to use the different components of KiCS2 are stored in the direc-

tory kics2home /bin. You should add this directory to your path (e.g., by the bash command

“export PATH=kics2home /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with KiCS2 creates some auxiliary files (see Section C

for details), you need write permission in the directory where you have stored your Curry programs.

The auxiliary files for all Curry programs in the current directory can be deleted by the command

6

cleancurry

(this is a shell script stored in the bin directory of the KiCS2 installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.3 Restrictions

There are a few minor restrictions on Curry programs when they are processed with KiCS2:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted

as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical

source of programming errors.

• KiCS2 translates all local declarations into global functions with additional arguments

(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various

run-time systems, the definition of functions with local declarations look different from their

original definition (in order to see the result of this transformation, you can use the Curry-

Browser, see Section 7).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,

17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Encapsulated search: The general definition of encapsulated search of the Curry report [22] is

not supported. Thus, the corresponding prelude operations like try, solveAll, once, findall,

or best are not defined in the KiCS2 prelude. However, KiCS2 supports appropriate alterna-

tives to encapsulate non-deterministic computations:

Strong encapsulation: This means that all potential non-determinism is encapsulated.

Since this might result in dependencies on the evaluation strategy (see [8] for a de-

tailed discussion), this kind of encapsulation is only available as I/O operations. For

instance, the library AllSolutions (Section A.2.1) defines the operation

getAllValues :: a → IO [a]

to compute all values of a given argument expression. There is also the library SearchTree

(Section A.3.8) which supports user-programmable search strategies and contains some

predefined strategies like depth-first, breadth-first, iterative deepening search.

Weak encapsulation: This means that only the non-determinism defined inside an encap-

sulation operator is encapsulated. Conceptually, these operators are offered as set func-

tions [2] which compute the set of all results but do not encapsulate non-determinism

in the actual arguments. See the library SetFunctions (Section A.2.37) for more details.

• Concurrent computations based on the suspension of expressions containing free variables are

not yet supported. KiCS2 supports value generators for free variables so that a free variable

is instantiated when its value is demanded. For instance, the initial expression

x == True where x free

7

is non-deterministically evaluated to False and True by instantiating x to False and True,

respectively. Thus, a computation is never suspended due to free variables. This behavior also

applies to free variables of primitive types like integers. For instance, the initial expression

x*y=:=1 where x,y free

is non-deterministically evaluated to the two solutions

{x = -1, y = -1} True

{x = 1, y = 1} True

• Unification is performed without an occur check.

• There is currently no general connection to external constraint solvers.

1.4 Modules in KiCS2

KiCS2 searches for imported modules in various directories. By default, imported modules are

searched in the directory of the main program and the system module directory “kics2home /lib”.

This search path can be extended by setting the environment variable CURRYPATH (which can be also

set in a KiCS2 session by the option “:set path”, see below) to a list of directory names separated

by colons (“:”). In addition, a local standard search path can be defined in the “.kics2rc” file (see

Section 2.7). Thus, modules to be loaded are searched in the following directories (in this order,

i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory

“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.kics2rc” variable “libraries”.

4. The directory “kics2home /lib”.

The same strategy also applies to modules with a hierarchical module name with the only difference

that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For

instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then

the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import

path) according to the module search strategy described above.

Note that the standard prelude (kics2home /lib/Prelude.curry) will be always implicitly im-

ported to all modules if a module does not contain an explicit import declaration for the module

Prelude.

8

2 Using the Interactive Environment of KiCS2

This section describes the interactive environment KiCS2 that supports the development of appli-

cations written in Curry. The implementation of KiCS2 contains also a separate compiler which is

automatically invoked by the interactive environment.

2.1 Invoking KiCS2

To start KiCS2, execute the command “kics2” (this is a shell script stored in kics2home /bin

where kics2home is the installation directory of KiCS2). When the system is ready (i.e., when the

prompt “Prelude>” occurs), the prelude (kics2home /lib/Prelude.curry) is already loaded, i.e., all

definitions in the prelude are accessible. Now you can type various commands (see next section)

or an expression to be evaluated.

One can also invoke KiCS2 with parameters. These parameters are usual a sequence of com-

mands (see next section) that are executed before the user interaction starts. For instance, the

invocation

kics2 :load Mod :add List

starts KiCS2, loads the main module Mod, and adds the additional module List. The invocation

kics2 :load Mod :eval config

starts KiCS2, loads the main module Mod, and evaluates the operation config before the user

interaction starts. As a final example, the invocation

kics2 :load Mod :save :quit

starts KiCS2, loads the main module Mod, creates an executable, and terminates KiCS2. This

invocation could be useful in “make” files for systems implemented in Curry.

There are also some specific options that can be used when invoking KiCS2:

--noreadline (if used, this must be the first option): Do not use input line editing (see Sec-

tion 2.6).

-Dname=val (these options must come before any KiCS2 command): Overwrite values defined in

the configuration file “.kics2rc” (see Section 2.7), where name is a property defined in the

configuration file and val its new value.

2.2 Commands of KiCS2

The most important commands of KiCS2 are (it is sufficient to type a unique prefix of a

command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported

modules.

:reload Recompile all currently loaded modules.

9

:compile prog Compile and load the program stored in prog.curry, as with the command

“:load prog”, but compile also the generated Haskell modules. Usually, this is automati-

cally done when an expression is evaluated. Hence, it is not necessary to use this command.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their

exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. In the default

mode, all results of non-deterministic computations are printed. One can also print first one

result and the next result only if the user requests it. This behavior can be set by the option

interactive (see below).

Free variables in initial expressions must be declared as in Curry programs. In order to

see the results of their bindings,1 they must be introduced by a “where...free” declaration.

For instance, one can write

not b where b free

in order to obtain the following bindings and results:

{b = False} True

{b = True} False

Without these declarations, an error is reported in order to avoid the unintended introduction

of free variables in initial expressions by typos.

If the free variables in the initial goal are of a polymorphic type, as in the expression

xs++ys=:=[z] where xs,ys,z free

they are specialized to the type “()” (since the current implementation of KiCS2 does not

support computations with polymorphic logic variables).

:eval expr Same as expr. This command might be useful when putting commands as arguments

when invoking kics2.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:programs Show the list of all Curry programs that are available in the load path.

:cd dir Change the current working directory to dir.

:edit Load the source code of the current main module into a text editor. If the variable

editcommand is set in the configuration file “.kics2rc” (see Section 2.7), its value is used

as an editor command, otherwise the environment variable “EDITOR” is used as the editor

program.

1Currently, bindings are only printed if the initial expression is not an I/O action (i.e., not of type “IO...”) and

there are not more than ten free variables in the initial expression.

10

:edit m Load the source text of module m (which must be accessible via the current load path if

no path specification is given) into a text editor which is defined as in the command “:edit”.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.kics2rc” (see Section 2.7), its value is used as a command to

show the source text, otherwise the command “cat” is used.

:show m Show the source text of module m which must be accessible via the current load path

if no path specification is given.

:source f Show the source code of function f (which must be visible in the currently loaded

module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its

imported modules (see Section 7 for more details).

:interface Show the interface of the currently loaded module, i.e., show the names of all imported

modules, the fixity declarations of all exported operators, the exported datatypes declarations

and the types of all exported functions.

:interface m Similar to “:interface” but shows the interface of the module m which must be

in the load path of KiCS2.

:usedimports Show all calls to imported functions in the currently loaded module. This might

be useful to see which import declarations are really necessary.

:set option Set or turn on/off a specific option of the KiCS2 environment (see 2.3 for a description

of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options

that can only be set (e.g., path) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

:save Save the currently loaded program as an executable evaluating the main expression “main”.

The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)

will be evaluated by the executable.

:fork expr The expression expr, which is typically of type “IO ()”, is evaluated in an independent

process which runs in parallel to the current KiCS2 process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry

programs where one can start a new server process by this command. The new process will

be terminated when the evaluation of the expression expr is finished.

:!cmd Shell escape: execute cmd in a Unix shell.

11

2.3 Options of KiCS2

The following options (which can be set by the command “:set”) are currently supported:

path path Set the additional search path for loading modules to path. Note that this search path

is only used for loading modules inside this invocation of KiCS2.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home

directory as in the following example:

:set path aux:~/tests

Relative directory names are replaced by absolute ones so that the path is independent of

later changes of the current working directory.

bfs Set the search mode to evaluate non-deterministic expressions to breadth-first search. This is

the default search strategy. Usually, all non-deterministic values are enumerated and printed

with a breadth-first strategy, but one can also print only the first value or all values by

interactively requesting them (see below for these options).

dfs Similarly to bfs but use a depth-first search strategy to compute and print the values of the

initial expression.

ids Similarly to bfs but use an iterative-deepening strategy to compute and print the values of

the initial expression. The initial depth bound is 100 and the depth-bound is doubled after

each iteration.

ids n Similarly to ids but use an initial depth bound of n.

parallel Similarly to bfs but use a parallel search strategy to compute and print the values of

the initial expression. The system chooses an appropriate number of threads according the

current number of available processors.

parallel n Similarly to parallel but use n parallel threads.

prdfs Set the search mode to evaluate non-deterministic expressions to primitive depth-first

search. This is usually the fastest method to print all non-deterministic values. However, it

does not support the evaluation of values by interactively requesting them.

choices n Show the internal choice structure (according to the implementation described in [11])

resulting from the complete evaluation of the main expression in a tree-like structure. This

mode is only useful for debugging or understanding the implementation of non-deterministic

evaluations used in KiCS2. If the optional argument n is provided, the tree is shown up to

depth n.

supply i (not available in global installations, see Section 1.1) Use implementation i as the identi-

fier supply for choice structures (see [11] for a detailed explanation). Currently, the following

values for i are supported:

integer: Use unbounded integers as choice identifiers. This implementation is described in

[11].

12

ghc: Use a more sophisticated implementation of choice identifiers (based on the ideas de-

scribed in [7]) provided by the Glasgow Haskell Compiler.

pureio: Use IO references (i.e., memory cells) for choice identifiers. This is the most efficient

implementation for top-level depth-first search but cannot be used for more sophisticated

search methods like encapsulated search.

ioref (default): Use a mixture of ghc and pureio. IO references are used for top-level

depth-first search and ghc identifiers are used for encapsulated search methods.

vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like compilation messages from the Haskell com-

piler.

n = 3: Show also intermediate messages and commands of the compilation process.

n = 4: Show also all intermediate results of the compilation process.

prompt p Sets the user prompt which is shown when KiCS2 is waiting for input. If the parameter

p starts with a letter or a percent sign, the prompt is printed as the given parameter, where

the sequence “%s” is expanded to the list of currently loaded modules and “%%” is expanded to

a percent sign. If the prompt starts with a double quote, it is read as a string and, therefore,

also supports the normal escape sequences that can occur in Curry programs. The default

setting is

:set prompt "%s> "

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-

deterministic value is only computed when the user requests it. Thus, one has also the

possibility to terminate the enumeration of all values after having seen some values.

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main

expression is printed (instead of all values).

+/-optimize Turn on/off the optimization of the target program.

+/-bindings Turn on/off the binding mode. If the binding mode is on (default), then the bindings

of the free variables of the initial expression are printed together with the result of the

expression.

+/-time Turn on/off the time mode. If the time mode is on, the cpu time and the elapsed time

of the computation is always printed together with the result of an evaluation.

+/-trace Turn on/off the trace mode. If the trace mode is on, it is possible to trace the sources

of failing computations.

13

+/-profile (only available when configured during installation, see Section 1.1) Turn on/off the

profile mode. If the profile mode is on, expressions as well as programs are compiled with

GHC’s profiling capabilities enabled. For expressions, evaluation will automatically generate

a file Main.prof containing the profiling information of the evaluation. For compiled programs,

the profiling has to be manually activated using runtime options when executed:

kics2 :set +profile :load MyProgram.curry :save :quit

./MyProgram +RTS -p -RTS [additional arguments]

+/-ghci Turn on/off the ghci mode. In the ghci mode, the initial goal is send to the interactive

version of the Glasgow Haskell Compiler. This might result in a slower execution but in a

faster startup time since the linker to create the main executable is not used.

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed

to be of type IO and the program should not import the module Unsafe. Furthermore, the

allowed commands are eval, load, quit, and reload. This mode is useful to use KiCS2 in

uncontrolled environments, like a computation service in a web page, where KiCS2 could be

invoked by

kics2 :set safe

parser opts Define additional options passed to the KiCS2 front end, i.e., the parser program

kics2home /bin/cymake. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor

command transcurry into a new Curry program which is actually compiled.

cmp opts Define additional options passed to the KiCS2 compiler. For instance, setting the option

:set cmp -O 0

has the effect that all optimizations performed by the KiCS2 compiler are turned off.

ghc opts Define additional options passed to the Glasgow Haskell Compiler (GHC) when the

generated Haskell programs are compiled. Many options necessary to compile Curry programs

are already set (you can see them by setting the verbosity level to 2 or greater). One has to

be careful when providing additional options. For instance, in a global installation of KiCS2

(see Section 1.1), libraries are pre-compiled so that inconsistencies might occur if compilation

options might be changed.

It is safe to pass specific GHC linking options. For instance, to enforce the static linking of

libraries in order to generate an executable (see command “:save”) that can be executed in

another environment, one could set the options

:set ghc -static -optl-static -optl-pthread

14

Other options are useful for experimental purposes, but those should be used only in local

installations (see Section 1.1) to avoid inconsistent target codes for different libraries. For

instance, setting the option

:set ghc -DDISABLE_CS

has the effect that the constraint store used to enable an efficient access to complex bindings

is disabled. Similarly,

:set ghc -DSTRICT_VAL_BIND

has the effect that expressions in a unification constraint (=:=) are always fully evaluated

(instead of the evaluation to a head normal form only) before unifying both sides. Since

these options influence the compilation of the run-time system, one should also enforce the

recompilation of Haskell programs by the GHC option “-fforce-recomp”, e.g., one should set

:set ghc -DDISABLE_CS -fforce-recomp

rts opts Define additional run-time options passed to the executable generated by the Glasgow

Haskell Compiler, i.e., the parameters “+RTS o -RTS” are passed to the executable. For in-

stance, setting the option

:set rts -H512m

has the effect that the minimum heap size is set to 512 megabytes.

args arguments Define run-time arguments passed to the executable generated by the Glasgow

Haskell Compiler. For instance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.39) returns the

value ["first","second"].

2.4 Source-File Options

If the evaluation of operations in some main module loaded into KiCS2 requires specific options,

like an iterative-deepening search strategy, one can also put these options into the source code of

this module in order to avoid setting these options every time when this module is loaded. Such

source-file options must occur before the module header, i.e., before the first declaration (module

header, imports, fixity declaration, defining rules, etc) occurring in the module. Each source file

option must be in a line of the form

{-# KiCS2_OPTION opt #-}

where opt is an option that can occur in a “:set” command (compare Section 2.3). Such a line

in the source code (which is a comment according to the syntax of Curry) has the effect that this

option is set by the KiCS2 command “:set opt” whenever this module is loaded (not reloaded!) as

a main module. For instance, if a module starts with the lines

{-# KiCS2_OPTION ids #-}

15

{-# KiCS2_OPTION +ghci #-}

{-# KiCS2_OPTION v2 #-}

module M where

. . .

then the load command “:load M” will also set the options for iterative deepening, using ghci and

verbosity level 2.

2.5 Using KiCS2 in Batch Mode

Although KiCS2 is primarily designed as an interactive system, it can also be used to process data

in batch mode. For example, consider a Curry program, say myprocessor, that reads argument

strings from the command line and processes them. Suppose the entry point is a function called

just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

> kics2 :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid KiCS2 going into interactive mode after the excution

of the expression being evaluated. The actual run-time arguments (string1, string2) are defined

by setting the option args (see above).

Here is an example to use KiCS2 in this way:

> kics2 :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit

Hello World

>

2.6 Command Line Editing

In order to have support for line editing or history functionality in the command line of KiCS2 (as

often supported by the readline library), you should have the Unix command rlwrap installed on

your local machine. If rlwrap is installed, it is used by KiCS2 if called on a terminal. If it should

not be used (e.g., because it is executed in an editor with readline functionality), one can call

KiCS2 with the parameter “--noreadline” (which must occur as the first parameter).

2.7 Customization

In order to customize the behavior of KiCS2 to your own preferences, there is a configuration file

which is read by KiCS2 when it is invoked. When you start KiCS2 for the first time, a standard

version of this configuration file is copied with the name “.kics2rc” into your home directory. The

file contains definitions of various settings, e.g., about showing warnings, using Curry extensions,

programs etc. After you have started KiCS2 for the first time, look into this file and adapt it to

your own preferences.

2.8 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available

for many platforms (see http://www.emacs.org). The distribution of KiCS2 contains also a special

Curry mode that supports the development of Curry programs in the Emacs environment. This

16

http://www.emacs.org

mode includes support for syntax highlighting, finding declarations in the current buffer, and

loading Curry programs into KiCS2 in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is

described in the file README in directory “kics2home /tools/emacs” which also contains the sources

of the Curry mode and a short description about the use of this mode.

17

3 Extensions

KiCS2 supports some extensions in Curry programs that are not (yet) part of the definition of

Curry. These extensions are described below.

3.1 Narrowing on Int Literals

In addition to narrowing on algebraic data types, KiCS2 also implements narrowing on values of

the primitive type Int. For example, the goal “x == 3 where x free” is evaluated to the solutions

Prelude> x == 3 where x free

{x = (-_x2) } False

{x = 0 } False

{x = 1 } False

{x = (2 * _x3) } False

{x = 3 } True

{x = (4 * _x4 + 1)} False

{x = (4 * _x4 + 3)} False

Note that the free variables occuring in the binding are restricted to positive numbers greater than

0 (the output has been indented to increase readability). This feature is implemented by an internal

binary representation of integer numbers. If necessary, this representation can be exposed to the

user by setting the flag BinaryInt during installation:

make [kernel|install] RUNTIMEFLAGS=BinaryInt

In an experimental (local) installation, the flag can also be set in the interpreter:

:set ghc -DBinaryInt

The example above will then be evaluated (without indentation) to:

Prelude> x == 3 where x free

{x = (Neg _x2) } False

{x = 0 } False

{x = 1 } False

{x = (Pos (O _x3)) } False

{x = 3 } True

{x = (Pos (I (O _x4)))} False

{x = (Pos (I (I _x4)))} False

In this output, values without free variables are presented as before. For values containing a free

variable, the constructors Neg and Pos denote negative and positive numbers (without 0), while

the constructors O and I denote a 0– and 1–bit where the least significant bit comes first. That is,

(Pos (I (O _x4))) = +(I (O _x4)) = +(2 ∗ (O _x4)) + 1 = +(4 ∗ _x4) + 1 which meets the output

above.

3.2 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in KiCS2. For

instance, the declaration

18

ones5 = let ones = 1 : ones

in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list

of 1’s. Similarly, the definition

onetwo n = take n one2

where

one2 = 1 : two1

two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.3 Functional Patterns

Functional patterns [1] are a useful extension to code operations in a more readable way. Fur-

thermore, defining operations with functional patterns avoids problems caused by strict equality

(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the

prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the

list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is

a function call at a pattern position. With functional patterns, we can define the operation last

as follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:

since a functional pattern is considered as an abbreviation for the set of constructor terms obtained

by all evaluations of the functional pattern to normal form (see [1] for an exact definition), the

previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

. . .

which shows that the evaluation of the list elements is not demanded by the functional pattern.

In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a functional pattern if f

is not a visible constructor but a defined function that is visible in the scope of the pattern.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of

as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as

a sequence of pattern matching where the variable of the as-pattern is matched before the given

pattern is matched. This process can be described by introducing an auxiliary operation for this

two-level pattern matching process. For instance, the definition

19

f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x

where

f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary

operations.

3.4 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-

ation of equational constraints between pattern variables. Functional patterns might also contain

multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.

If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.

In the current implementation, the order is as follows:

1. Standard pattern matching: First, it is checked whether the constructor patterns match.

Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-

rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational

constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have

some influence on the termination behavior of programs, i.e., a program might not terminate

instead of finitely failing. In such cases, it could be necessary to consider the influence of the order

of pattern matching. Note that other orders of pattern matching can be obtained using auxiliary

operations.

20

4 Recognized Syntax of Curry

The KiCS2 Curry compiler accepts a slightly extended version of the grammar specified in the Curry

Report [23]. Furthermore, the syntax recognized by KiCS2 differs from that specified in the Curry

Report regarding numeric or character literals. We therefore present the complete description of

the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production

NonTerm nonterminal symbol

Term terminal symbol

[α] optional

{α} zero or more repetitions

(α) grouping

α | β alternative

α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF8. However, source programs are biased

towards ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Case Mode

Although the Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the

KiCS2 only supports the free mode which puts no constraints on the case of identifiers.

4.2.2 Identifiers and Keywords

Letter ::= any ASCII letter

Dashes ::= -- {-}

Ident ::= Letter {Letter | Digit | _ | ’}
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident

TypeConstrID ::= Ident

DataConstrID ::= Ident

TypeVarID ::= Ident | _
InfixOpID ::= (Symbol {Symbol})〈Dashes〉

FunctionID ::= Ident

VariableID ::= Ident

LabelID ::= Ident

21

QTypeConstrID ::= [ModuleID .] TypeConstrID

QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID

QFunctionID ::= [ModuleID .] FunctionID

QVariableID ::= [ModuleID .] VariableID

QLabelID ::= [ModuleID .] LabelID

The following identifiers are recognized as keywords and cannot be used as an identifier:

case data do else external fcase foreign

free if import in infix infixl infixr

let module newtype of then type where

Note that the symbols as, hiding and qualified are not keywords. They have only a special

meaning in module headers and can be used as ordinary identifiers.

The following symbols also have a special meaning and cannot be used as an infix operator

identifier:

.. : :: = \ | <- -> @ ~

4.2.3 Comments

Comments begin either with “--” and terminate at the end of the line or with “{-” and terminate

with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be nested.

4.2.4 Numeric and Character Literals

Contrasting to the Curry Report, KiCS2 adopts Haskell’s notation of literals, for both numeric

literals as well as Char and String literals. The precise syntax for both kinds is given below.

Int ::= Decimal

| 0b Binary | 0B Binary

| 0o Octal | 0O Octal

| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent]

| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit [Decimal]

Binary ::= Binit [Binary]

Octal ::= Octit [Octal]

Hexadecimal ::= Hexit [Hexadecimal]

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

Char ::= ’(Graphic〈\〉 | Space | Escape〈\&〉)’

String ::= "{Graphic〈"| \〉 | Space | Escape | Gap}"

22

Escape ::= \ (CharEsc | Ascii | Decimal | o Octal | x Hexadecimal)

CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
Ascii ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= AsciiLarge | @ | [| \ |] | ^ | _
AsciiLarge ::= A | . . . | Z

Gap ::= \ WhiteChar {WhiteChar} \

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of

blocks. For this purpose, we define the indentation of a symbol as the column number indicating

the start of this symbol. The indentation of a line is the indentation of its first symbol.2

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,

do, or of. In the subsequent context-free syntax, these lists are enclosed with curly brackets ({ })
and the single entities are separated by semicolons (;). Instead of using the curly brackets and

semicolons of the context-free syntax, a Curry programmer must specify these lists by indentation:

the indentation of a list of syntactic entities after let, where, do, or of is the indentation of the

next symbol following the let, where, do, of. Any item of this list start with the same indentation

as the list. Lines with only whitespaces or an indentation greater than the indentation of the list

continue the item in its previous line. Lines with an indentation less than the indentation of the list

terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,

the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, is written with the layout rules as

f x = h x

where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where

g y = y + 1

h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are

assumed to start in column 0.

2In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

23

4.4 Context Free Grammar

Module ::= module ModuleID [Exports] where Block

| Block

ModuleID ::= see lexicon

Exports ::= (Export1 , . . . , Exportn) (n ≥ 0)

Export ::= QFunctionName

| QTypeConstrID [(ConsLabelName1 , . . . , ConsLabelNamen)] (n ≥ 0)

| QTypeConstrID (..)

| module ModuleID

ConsLabelName ::= LabelID | DataConstr

Block ::= { [ImportDecl1 ; . . . ; ImportDeclk ;] (no fixity declarations here)

BlockDeclaration1 ; . . . ; BlockDeclarationn } (k, n ≥ 0)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportRestr]

ImportRestr ::= (Import1 , . . . , Importn) (n ≥ 0)

| hiding (Import1 , . . . , Importn) (n ≥ 0)

Import ::= FunctionName

| TypeConstrID [(ConsLabelName1 , . . . , ConsLabelNamen)] (n ≥ 0)

| TypeConstrID (..)

BlockDeclaration ::= TypeSynonymDecl

| DataDeclaration

| FixityDeclaration

| FunctionDeclaration

TypeSynonymDecl ::= type SimpleType = TypeExpr

SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

TypeConstrID ::= see lexicon

DataDeclaration ::= data SimpleType (external data type)

| data SimpleType = ConstrDecl1 | . . . | ConstrDecln (n > 0)

ConstrDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| SimpleTypeExpr ConsOp TypeConsExpr (infix data constructor)

| DataConstr { FieldDeclaration1 , . . . , FieldDeclarationn } (n ≥ 0)

FieldDeclaration ::= LabelID1 , . . . , LabelIDn :: TypeExpr (n > 0)

LabelID ::= see lexicon

TypeExpr ::= TypeConsExpr [-> TypeExpr]

TypeConsExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n > 0)

| SimpleTypeExpr

SimpleTypeExpr ::= TypeVarID

| QTypeConstrID

| () (unit type)

| (TypeExpr1 , . . . , TypeExprn) (tuple type, n > 1)

| [TypeExpr] (list type)

| (TypeExpr) (parenthesized type)

24

TypeVarID ::= see lexicon

FixityDeclaration ::= FixityKeyword Digit InfixOpID1 , . . . , InfixOpIDn (n > 0)

FixityKeyword ::= infixl | infixr | infix
InfixOpID ::= see lexicon

FunctionDeclaration ::= Signature | External | Equat

External ::= FunctionNames external (externally defined functions)

Signature ::= FunctionNames :: TypeExpr

FunctionNames ::= FunctionName1 , . . . , FunctionNamen (n > 0)

Equat ::= FunLHS = Expr [where LocalDefs]

| FunLHS CondExprs [where LocalDefs]

FunLHS ::= FunctionName SimplePat1 . . . SimplePatn (n ≥ 0)

| SimplePat InfixOpID SimplePat

CondExprs ::= | InfixExpr = Expr [CondExprs]

Pattern ::= ConsPattern [QConsOp Pattern] (infix constructor pattern)

ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern)

| SimplePat

SimplePat ::= Variable

| _ (wildcard)

| QDataConstr

| Literal

| - Int (negative pattern)

| -. Float (negative float pattern)

| () (empty tuple pattern)

| (Pattern1 , . . . , Patternn) (n > 1)

| (Pattern) (parenthesized pattern)

| [Pattern1 , . . . , Patternn] (n ≥ 0)

| Variable @ SimplePat (as-pattern)

| ~ SimplePat (irrefutable pattern)

| (SimplePat QFunOp SimplePat) (infix functional pattern)

| (QFunctionName SimplePat1 . . . SimplePatn) (functional pattern, n > 0)

| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabelID = Pattern

QLabelID ::= see lexicon

LocalDefs ::= {ValueDeclaration1 ; . . . ; ValueDeclarationn } (n > 0)

ValueDeclaration ::= FunctionDeclaration

| PatternDeclaration

| VariableID1 , . . . , VariableIDn free (n > 0)

| FixityDeclaration

PatternDeclaration ::= Pattern = Expr [where LocalDefs]

Expr ::= InfixExpr :: TypeExpr (expression type signature)

25

| InfixExpr

InfixExpr ::= NoOpExpr QOp InfixExpr (infix operator application)

| - InfixExpr (unary int minus)

| -. InfixExpr (unary float minus)

| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (lambda expression, n > 0)

| let LocalDefs in Expr (let expression)

| if Expr then Expr else Expr (conditional)

| case Expr of {Alt1 ; . . . ; Altn } (case expression, n ≥ 0)

| fcase Expr of {Alt1 ; . . . ; Altn } (fcase expression, n ≥ 0)

| do { Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n ≥ 0)

| FunctExpr

FunctExpr ::= [FunctExpr] BasicExpr (function application)

BasicExpr ::= QVariableID (variable)

| _ (anonymous free variable)

| QFunctionName (qualified function)

| GDataConstr (general constructor)

| Literal

| (Expr) (parenthesized expression)

| (Expr1 , . . . , Exprn) (tuple, n > 1)

| [Expr1 , . . . , Exprn] (finite list, n > 0)

| [Expr [, Expr] .. [Expr]] (arithmetic sequence)

| [Expr | Qual1 , . . . , Qualn] (list comprehension, n ≥ 1)

| (InfixExpr QOp) (left section)

| (QOp〈-,-.〉 InfixExpr) (right section)

| QDataConstr { FBind1 , . . . , FBindn } (labeled construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (labeled update, n > 0)

Alt ::= Pattern -> Expr [where LocalDefs]

| Pattern GdAlts [where LocalDefs]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

FBind ::= QLabelID = Expr

Qual ::= Expr

| let LocalDefs

| Pattern <- Expr

Stmt ::= Expr

| let LocalDefs

| Pattern <- Expr

Literal ::= Int | Char | String | Float

GDataConstr ::= ()

| []

| (,{,})
| QDataConstr

FunctionName ::= FunctionID | (InfixOpID) (function)

QFunctionName ::= QFunctionID | (QInfixOpID) (qualified function)

26

Variable ::= VariableID | (InfixOpID) (variable)

DataConstr ::= DataConstrID | (InfixOpID) (constructor)

QDataConstr ::= QDataConstrID | (QConsOp) (qualified constructor)

QFunOp ::= QInfixOpID | ‘QFunctionID‘ (qualified function operator)

ConsOp ::= InfixOpID | ‘DataConstrID‘ (constructor operator)

QOp ::= QFunOp | QConsOp (qualified operator)

QConsOp ::= GConSym | ‘QDataConstrID‘ (qualified constructor operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

27

5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into

the intermediate FlatCurry representation, KiCS2 applies a transformation to optimize Boolean

equalities occurring in the Curry program. The ideas and details of this optimization are described

in [5]. Therefore, we sketch only some basic ideas and options to influence this optimization.

Consider the following definition of the operation last to extract the last element in list:

last xs | xs == _++[x]

= x

where x free

In order to evaluate the condition “xs == _++[x]”, the Boolean equality is evaluated to True or

False by instantiating the free variables _ and x. However, since we know that a condition must

be evaluated to True only and all evaluations to False can be ignored, we can use the constrained

equality to obtain a more efficient program:

last xs | xs =:= _++[x]

= x

where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, KiCS2

encourages programmers to use only the Boolean equality operator “==” in programs. The con-

straint equality operator “=:=” can be considered as an optimization of “==” if it is ensured that

only positive results are required, e.g., in conditions of program rules.

To support this programming style, KiCS2 has a built-in optimization phase on FlatCurry

files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “==” and

replaces them by “=:=” whenever the result False is not required. The usage of the optimizer can

be influenced by setting the property flag bindingoptimization in the configuration file .kics2rc.

The following values are recognized for this flag:

no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude

operations in order to decide whether the value False is not required as a result of a Boolean

equality. Hence, the transformation can be efficiently performed without any complex anal-

ysis.

full: Perform a complete “required values” analysis of the program (see [5]) and use this informa-

tion to optimize programs. In most cases, this does not yield better results so that the fast

mode is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the

configuration file .kics2rc or dynamically pass this change to the invocation of KiCS2 by

. . . -Dbindingoptimization=no . . .

28

6 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the KiCS2 distribution that generates the documentation for a Curry program

(i.e., the main module and all its imported modules) in HTML format. The generated HTML

pages contain information about all data types and functions exported by a module as well as

links between the different entities. Furthermore, some information about the definitional status

of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and

combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate pro-

grams!). All documentation comments immediately before a definition of a datatype or (top-level)

function are kept together.3 The documentation comments for the complete module occur before

the first “module” or “import” line in the module. The comments can also contain several special

tags. These tags must be the first thing on its line (in the documentation comment) and continues

until the next tag is encountered or until the end of the comment. The following tags are recognized:

@author comment

Specifies the author of a module (only reasonable in module comments).

@version comment

Specifies the version of a module (only reasonable in module comments).

@cons id comment

A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment

A comment for function parameter id (only reasonable in function comments). Due to pattern

matching, this need not be the name of a parameter given in the declaration of the function

but all parameters for this functions must be commented in left-to-right order (if they are

commented at all).

@return comment

A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-

ported set of elements is described in detail in the appendix). For instance, it can contain Markdown

annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code

elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed

by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines

prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the

Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<”

must be quoted (e.g., “<”). However, header tags like <h1> should not be used since the struc-

turing is generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark

references to names of operations or data types in Curry programs which are translated into links

3The documentation tool recognizes this association from the first identifier in a program line. If one wants to

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition, otherwise the documentation comment is not recognized.

29

http://en.wikipedia.org/wiki/Markdown

inside the generated HTML documentation. Such references have to be enclosed in single quotes.

For instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas

the text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants

to write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single

words, i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted,

as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an

--- example module.

--- @author Michael Hanus

--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.

--- @param xs - the first list

--- @param ys - the second list

--- @return a list containing all elements of ‘xs‘ and ‘ys‘

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.

--- It is based on the operation ’conc’ to concatenate two lists.

--- @param xs - the given input list

--- @return last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

--- @cons Leaf - a leaf of the tree

--- @cons Node - an inner node of the tree

data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc Example

(currydoc is a command usually stored in kics2home /bin (where kics2home is the installation

directory of KiCS2; see Section 1.2). This command creates the directory DOC_Example (if it does

not exist) and puts all HTML documentation files for the main program module Example and all

its imported modules in this directory together with a main index file index.html. If one prefers

another directory for the documentation files, one can also execute the command

currydoc docdir Example

30

where docdir is the directory for the documentation files.

In order to generate the common documentation for large collections of Curry modules (e.g.,

the libraries contained in the KiCS2 distribution), one can call currydoc with the following options:

currydoc --noindexhtml docdir Mod : This command generates the documentation for module Mod

in the directory docdir without the index pages (i.e., main index page and index pages for

all functions and constructors defined in Mod and its imported modules).

currydoc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index

pages (i.e., a main index page and index pages for all functions and constructors defined in

the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

31

7 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show

them in various formats, and analyze their properties.4 Moreover, it is constructed in a way so

that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas

behind this tool can be found in [18, 19].

CurryBrowser is part of the KiCS2 distribution and can be started in two ways:

• In the command shell via the command: kics2home /bin/currybrowser mod

• In the KiCS2 environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser

loads the interfaces of the main module and all imported modules before a GUI is created for

interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a

particular application (here: the implementation of CurryBrowser). The upper list box in the

left column shows the modules and their imports in order to browse through the modules of an

application. Similarly to directory browsers, the list of imported modules of a module can be opened

or closed by clicking. After selecting a module in the list of modules, its source code, interface, or

various other formats of the module can be shown in the main (right) text area. For instance, one

can show pretty-printed versions of the intermediate flat programs (see below) in order to see how

local function definitions are translated by lambda lifting [24] or pattern matching is translated

into case expressions [14, 25]. Since Curry is a language with parametric polymorphism and type

inference, programmers often omit the type signatures when defining functions. Therefore, one can

also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze

all functions of the currently selected module at once. This is useful to spot some functions of a

module that could be problematic in some application contexts, like functions that are impure (i.e.,

the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground

terms). If such an analysis is selected, the names of all functions are shown in the lower list box

of the left column (the “function list”) with prefixes indicating the properties of the individual

functions.

The function list box can be also filled with functions via the menu “Select functions”. For

instance, all functions or only the exported functions defined in the currently selected module can

be shown there, or all functions from different modules that are directly or indirectly called from a

currently selected function. This list box is central to focus on a function in the source code of some

module or to analyze some function, i.e., showing their properties. In order to focus on a function,

it is sufficient to check the “focus on code” button. To analyze an individually selected function,

one can select an analysis from the list of available program analyses (through the menu “Select

analysis”). In this case, the analysis results are either shown in the text box below the main text

area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

4Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

32

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they

consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends

on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into

CurryBrowser, for instance, to visualize the import relation between all modules as a dependency

graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the

“Help” menu of CurryBrowser.

33

8 CurryCheck: A Tool for Testing Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be

executed can be unit tests as well as property tests parameterized over some arguments. The

tests can be part of any Curry source program and, thus, they are also useful to document the

code. CurryCheck is based on EasyCheck [12]. Actually, the properties to be tested are written

by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [13] but

extended to the demands of functional logic programming.

8.1 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] → [a]

rev [] = []

rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- []

rev123 = rev [1,2,3] -=- [3,2,1]

The operator “-=-” specifies a test where both sides must have a single identical value. Since this

operator (as many more, see below) are defined in the library Test.EasyCheck, we also have to

import this library. Apart from unit tests, which are often tedious to write, we can also write a

property, i.e., a test parameterized over some arguments. For instance, an interesting property of

reversing a list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- xs

Note that each property is defined as a Curry operation where the arguments are the parameters

of the property. Altogether, our program is as follows:

module Rev(rev) where

import Test.EasyCheck

rev :: [a] → [a]

rev [] = []

rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []

rev123 = rev [1,2,3] -=- [3,2,1]

revRevIsId xs = rev (rev xs) -=- xs

Now we can run all tests by invoking the CurryCheck executable “currycheck”, which is stored in

the directory kics2home /bin. If our program is stored in the file Rev.curry, we can execute the

tests as follows:

> currycheck Rev

...

34

Executing all tests...

revNull (module Rev, line 7):

Passed 1 test.

rev123 (module Rev, line 8):

Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):

OK, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.

In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests

by defaulting the type variable to prelude type Ordering (the actual default type can also be set

by a command-line flag). If we want to test this property on integers numbers, we can explicitly

provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] → Prop

revRevIsId xs = rev (rev xs) -=- xs

The command currycheck has some options to influence the output, like “-q” for a quiet execution

(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test

cases are shown. Moreover, the return code of currycheck is 0 in case of successful tests, otherwise,

it is 1. Hence, currycheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the

properties do not have to be exported, as show in the module Rev above. Hence, one can add

properties to any library and export only library-relevant operations. To test these properties,

CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires

write permission on the directory where the source code is stored.

The library Test.EasyCheck defines many combinators to construct properties. In particular,

there are a couple of combinators for dealing with non-deterministic operations (note that this list

is incomplete):

• The combinator “<~>” is satisfied if the set of values of both sides are equal.

• The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of

y must be a subset of the set of values of x.

• The property x <~y is satisfied if y evaluates to every value of x, i.e., the set of values of x

must be a subset of the set of values of y.

• The combinator “<~~>” is satisfied if the multi-set of values of both sides are equal. Hence,

this operator can be used to compare the number of computed solutions of two expressions.

• The property always x is satisfied if all values of x are true.

• The property eventually x is satisfied if some value of x is true.

• The property failing x is satisfied if x has no value, i.e., its evaluation fails.

• The property x # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

35

insert :: a → [a] → [a]

insert x xs = x : xs

insert x (y:ys) = y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of

the list:

insertAsFirstOrLast :: Int → [Int] → Prop

insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] → [a]

perm [] = []

perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] → Prop

permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left

argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since

we know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] → Prop

permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].

Actually, this list has only one permuted value since the two possible permutations are identical

and the combinator “#” counts the number of different values. The property would be correct if

all elements in the input list xs are different. This can be expressed by a conditional property: the

property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if

we define a predicate allDifferent by

allDifferent [] = True

allDifferent (x:xs) = x ‘notElem‘ xs && allDifferent xs

then we can reformulate our property as follows:

permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] → Bool

sorted [] = True

sorted [_] = True

sorted (x:y:zs) = x<=y && sorted (y:zs)

This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] → Prop

permIsEventuallySorted xs = eventually $ sorted (perm xs)

36

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] → [Int}

psort xs | sorted ys = ys

where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <~> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used

as an oracle to test more efficient sorting algorithms like quicksort:

qsort :: [Int] → [Int]

qsort [] = []

qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>x) l)

The following property specifies the correctness of quicksort:

qsortIsSorting xs = qsort xs <~> psort xs

Actually, if we test this property, we obtain a failure:

> currycheck ExampleTests

...

qsortIsSorting (module ExampleTests, line 53) failed

Falsified by third test.

Arguments:

[1,1]

Results:

[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.

Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful

test execution.

For I/O operations, it is difficult to execute them with random data. Hence, CurryCheck only

supports specific I/O unit tests:

• a ‘returns‘ x is satisfied if the I/O action a returns the value x.

• a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can

write several I/O tests that are executed in a well-defined order.

8.2 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these

values. Since these values are generated in a systematic way, one can even prove a property if the

number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or b1 b2 = not (b1 || b2) -=- not b1 && not b2

37

This property is validated by checking it with all possible values:

> currycheck -v ExampleTests

...

0:

False

False

1:

False

True

2:

True

False

3:

True

True

neg_or (module ExampleTests, line 67):

Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given

limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line

flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> currycheck -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for the type

Float). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply

collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy (in the

current implementation: randomized level diagonalization [12]). For instance, we can get 20 values

for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))

[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],[2],

[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

Since the features of PAKCS for search space exploration are more limited, PAKCS uses in

CurryCheck explicit generators for search tree structures which are defined in the module

SearchTreeGenerators. For instance, the operations

genInt :: SearchTree Int

genList :: SearchTree a → SearchTree [a]

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library

Test.EasyCheck also defines an operation

valuesOfSearchTree :: SearchTree a → [a]

so that we obtain 20 values for a list of integers in PAKCS by

38

...> take 20 (valuesOfSearchTree (genList genInt))

[[],[1],[1,1],[1,-1],[2],[6],[3],[5],[0],[0,1],[0,0],[-1],[-1,0],[-2],

[-3],[1,5],[1,0],[2,-1],[4],[3,-1]]

Apart from the different implementations, CurryCheck can test properties on predefined types,

as already shown, as well as on user-defined types. For instance, we can define our own Peano

representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat → Nat → Nat

add Z n = n

add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-

phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:

data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]

leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x

mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are

not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced

trees). Of course, one could drop undesired values by an explicit condition. For instance, consider

the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)

Since there is also a simple formula to compute this sum, we can check it:

sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests

this property by enumerating integers, i.e., also many negative numbers which are dropped for

the tests. In order to generate only valid test data, we define our own generator for a search tree

containing only valid data:

genInt = genCons0 0 ||| genCons1 (+1) genInt

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1

constructs from a given search tree a new tree where the function given in the first argument is

applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than

one argument. The combinator “|||” combines two search trees.

39

If the Curry program containing properties defines a generator operation with the name genτ ,

then CurryCheck uses this generator to test properties with argument type τ . Hence, if we put

the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check

this property are only non-negative integers. Since these integers are slowly increasing, i.e., the

search tree is actually degenerated to a list, we can also use the following definition to obtain a

more balanced search tree:

genInt = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genInt

||| genCons1 (\n → 2*n+1) genInt

The library SearchTree defines the structure of search trees as well as operations on search trees,

like limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).

For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a

new data type and defining a generator for this data type. For instance, to test only the operation

sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define

a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genCons1 NonNeg genNN

where

genNN = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genNN

||| genCons1 (\n → 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type

sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+1) ‘div‘ 2

or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

8.3 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-

plementations for a given problem in the same programming language, as discussed in [3]. If a

specification or contract is provided for some function, then CurryCheck automatically generates

properties to test this specification or contract.

Following the notation proposed in [3], a specification for an operation f is an operation f’spec

of the same type as f . A contract consists of a pre- and a postcondition, where the precondition

could be omitted. A precondition for an operation f of type τ → τ ′ is an operation

f’pre :: τ → Bool

whereas a postcondition for f is an operation

f’post :: τ → τ ′ → Bool

40

which relates input and output values (the generalization to operations with more than one argu-

ment is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition

and a specification for a sort operation sort and an implementation via quicksort as follows (where

sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length

sort’post xs ys = length xs == length ys

-- Specification:

-- A correct result is a permutation of the input which is sorted.

sort’spec :: [Int] → [Int]

sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- An implementation of sort with quicksort:

sort :: [Int] → [Int]

sort [] = []

sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondition

are automatically generated. For instance, a specification is satisfied if it yields the same values as

the implementation, and a postcondition is satisfied if each value computed for some input satisfies

the postcondition relation between input and output. For our example, CurryCheck generates the

following properties (if there are also preconditions for some operation, these preconditions are used

to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] → Prop

sortSatisfiesPostCondition x =

let r = sort x

in (r == r) ==> always (sort’post x r)

sortSatisfiesSpecification :: [Int] → Prop

sortSatisfiesSpecification x = sort x <~> sort’spec x

8.4 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code

of the given program for unintended uses of specific operations (these checks can be omitted via

the option “--nosource”). Currently, the following source code checks are performed:

• The prelude operation “=:<=” is used to implement functional patterns [1]. It should not

be used in source programs to avoid unintended uses. Hence, CurryCheck reports such

unintended uses.

• Set functions [2] are used to encapsulate all non-deterministic results of some function in a set

structure. Hence, for each top-level function f of arity n, the corresponding set function can

be expressed in Curry (via operations defined in the module SetFunctions, see Section A.2.37)

by the application “setn f” (this application is used in order to extend the syntax of Curry

41

with a specific notation for set functions). However, it is not intended to apply the operator

“setn” to lambda abstractions, locally defined operations or operations with an arity different

from n. Hence, CurryCheck reports such unintended uses of set functions.

42

9 CurryTest: A Tool for Testing Curry Programs

General remark: The CurryTest tool described in this section has been replaced by the more

advanced tool CurryCheck (see Section 8). CurryTest is still available in KiCS2 but is no more

supported. Hence, it is recommended to use CurryCheck for writing test cases.

CurryTest is a simple tool in the KiCS2 distribution to write and run repeatable tests. CurryTest

simplifies the task of writing test cases for a module and executing them. The tool is easy to

use. Assume one has implemented a module MyMod and wants to write some test cases to test its

functionality, making regression tests in future versions, etc. For this purpose, there is a system

library Assertion (Section A.2.2) which contains the necessary definitions for writing tests. In

particular, it exports an abstract polymorphic type “Assertion a” together with the following

operations:

assertTrue :: String → Bool → Assertion ()

assertEqual :: String → a → a → Assertion a

assertValues :: String → a → [a] → Assertion a

assertSolutions :: String → (a → Bool) → [a] → Assertion a

assertIO :: String → IO a → a → Assertion a

assertEqualIO :: String → IO a → IO a → Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value True.

Similarly, the expression “assertEqual s e1 e2” asserts that the expressions e1 and e2 must be equal

(i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the multiset of all

values of e, and the expression “assertSolutions s c vs” asserts that the constraint abstraction c

has the multiset of solutions vs. Furthermore, the expression “assertIO s a v” asserts that the I/O

action a yields the value v whenever it is executed, and the expression “assertEqualIO s a1 a2”

asserts that the I/O actions a1 and a2 yield equal values. The name s provided as a first argument

in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module

Assertion and defining top-level functions of type Assertion in this module (which must also be

exported). As an example, consider the following program that can be used to test some list

processing functions:

import List

import Assertion

test1 = assertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = assertTrue "all" (all (<5) [1,2,3,4])

test3 = assertSolutions "prefix" (\x → x++_ =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal to

[1,2,3,4].

We can execute a test suite by the command

currytest TestList

43

Figure 2: Snapshot of CurryTest’s graphical interface

(currytest is a program stored in kics2home /bin where kics2home is the installation directory of

KiCS2; see Section 1.2). In our example, “TestList.curry” is the program containing the definition

of all assertions. This has the effect that all exported top-level functions of type Assertion are

tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are reported

together with the name of each assertion. For our example above, we obtain the following successful

protocol:

==

Testing module "TestList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely. In order to start this

interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

currytest --window TestList

or

currytest -w TestList

A snapshot of the interface is shown in Figure 2.

44

10 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp” implements various transformations on Curry source programs.

It supports some experimental language extensions that might become part of the standard parser

of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below

in more detail:

Integrated code: This extension allows to integrate code written in some other language into

Curry programs, like regular expressions, format specifications (“printf”), HTML and XML

code.

Sequential rules: If this feature is used, all rules in a Curry module are interpreted as sequential,

i.e., a rule is applied only if all previous rules defining the same operation are not applicable.

The idea of sequential rules are described in [4].

Default rules: If this feature is used, one can add a default rule to operations defined in a Curry

module. This provides a similar power than sequential rules but with a better operational

behavior. The idea of default rules are described in [6].

The preprocessor is an executable named “currypp”, which is stored in the directory kics2home /bin.

In order to apply the preprocessor when loading a Curry source program into KiCS2, one has to

add an option line at the beginning of the source program. For instance, in order to use default

rules in a Curry program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the KiCS2 front end to process the Curry source

program with currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “seqrules” if the sequential rule matching

should be replaced. To support integrated code, one has to set the option “foreigncode” (which can

also be combined with either “defaultrules” or “seqrules”. If one wants to see the result of the

transformation, one can also set the option “-o”. This has the effect that the transformed source

program is stored in the file Prog.curry.CURRYPP if the name of the original program is Prog.curry.

For instance, in order to use integrated code and default rules in a module and store the

transformed program, one has to put the line

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program.

10.1 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number

of starting back ticks and ending ticks must be always identical. After the initial back ticks, there

must be an identifier specifying the kind of integrated code, e.g., regexp or html (see below). For

instance, if one uses regular expressions (see below for more details), the following expressions are

valid in source programs:

45

s ‘‘regex (a|(bc*))+’’

s ‘‘‘‘regex aba*c’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. The next

sections describe the currently supported foreign languages.

10.1.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained

in the language generated by a regular expression, one can specify regular expression similar to

POSIX. The foreign regular expression code must be marked by “regexp”. Since this code is

transformed into operations of the KiCS2 library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid

identifier:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import RegExp

isID :: String → Bool

isID s = s ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

10.1.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with

foreign code marked by “format”. In this case, one can write a format specification, similarly to the

printf statement of C, followed by a comma-separated list of arguments. This format specification

is transformed into operations of the KiCS2 library Format so that it must be imported. For

instance, the following program defines an operation that formats a string, an integer (with leading

sign and zeros), and a float with leading sign and precision 3:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import Format

showSIF :: String → Int → Float → String

showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159

Thus, the execution of main will print the line

Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the

formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String → Int → Float → IO ()

showSIF s i f = ‘‘printf "Name: %s | %+.5i | %+6.3f\n",s,i,f’’

46

main = showSIF "Curry" 42 3.14159

10.1.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see KiCS2 library

HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.

In order to include strings computed by Curry expressions into these HTML syntax, these Curry

expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

htmlPage :: String → [HtmlExp]

htmlPage name = ‘‘html

<html>

<head>

<title>Simple Test

<body>

<h1>Hello {name}!</h1>

<p>

Bye!

<p>Bye!

<h2>{reverse name}

Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type HtmlExp instead of String, it

can be integrated into the HTML syntax by double curly brackets. The following simple example,

taken from [17], shows the use of this feature:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

main :: IO HtmlForm

main = return $ form "Question" $

‘‘html

Enter a string: {{textfield tref ""}}

<hr>

{{button "Reverse string" revhandler}}

{{button "Duplicate string" duphandler}}’’

where

tref free

revhandler env = return $ form "Answer"

‘‘html <h1>Reversed input: {reverse (env tref)}’’

47

duphandler env = return $ form "Answer"

‘‘html

<h1>

Duplicated input:

{env tref ++ env tref}’’

10.1.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see KiCS2 library XML).

The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing

tags and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be

included by enclosing them in curly and double curly brackets, respectively. The following example

program shows its use:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=foreigncode #-}

import HTML

import XML

main :: IO ()

main = putStrLn $ showXmlDoc $ head ‘‘xml

<contact>

<entry>

<phone>+49-431-8807271

<name>Hanus

<first>Michael

<email>mh@informatik.uni-kiel.de

<email>hanus@email.uni-kiel.de

<entry>

<name>Smith

<first>Bill

<phone>+1-987-742-9388

’’

10.2 Sequential Rules

If the Curry preprocessor is called with the option “seqrules”, then all rules in the Curry module

are interpreted in a sequential manner, i.e., a rule is applied only if all previous rules defining the

same operation are not applicable, either because the left-hand side’s pattern does not match or

the condition is not satisfiable. The idea and detailed semantics of sequential rules are described

in [4]. Sequential rules are useful and preferable over rules with multiple guards if the patterns are

non-trivial (e.g., functional patterns) or the condition involve complex constraints.

As a simple example, the following module defines a lookup operation in association lists by a

functional pattern. Due to the sequential rule strategy, the second rule is applied only if there is

no appropriate key in the association list:

48

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=seqrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value

mlookup _ _ = Nothing

10.3 Default Rules

An alternative to sequential rules are default rules, i.e., these two options cannot be simultaneously

used. Default rules are activated by the preprocessor option “defaultrules”. In this case, one can

add to each operation a default rule. A default rule for a function f is defined as a rule defining the

operation “f’default” (this mechanism avoids any language extension for default rules). A default

rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern

do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules

are described in [6].

Default rules are preferable over the sequential rule selection strategy since they have a better

operational behavior. This is due to the fact that the test for the application of default rules is

done with the same (sometimes optimal) strategy than the selection of standard rules. Moreover,

default rules provide a similar power than sequential rules, i.e., they can be applied if the standard

rules have complex (functional) patterns or complex conditions.

As a simple example, we show the implementation of the previous example for sequential rules

with a default rule:

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value

mlookup’default _ _ = Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming.

For instance, the following program defines a solution to the n-queens puzzle, where the default

rule is useful since it is easier to characterize the unsafe positions of the queens on the chessboard

(see the first rule of safe):

{-# OPTIONS_CYMAKE -F --pgmF=currypp --optF=defaultrules #-}

import Combinatorial(permute)

import Integer(abs)

-- A placement is safe if two queens are not in a same diagonal:

safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed

safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:

queens :: Int → [Int]

queens n = safe (permute [1..n])

49

11 runcurry: Running Curry Programs

runcurry is a command usually stored in kics2home /bin (where kics2home is the installation direc-

tory of KiCS2; see Section 1.2). This command supports the execution of Curry programs without

explicitly invoking the interactive environment. Hence, it can be useful to write short scripts in

Curry intended for direct execution. The Curry program must always contain the definition of

an operation main of type IO (). The execution of the program consists of the evaluation of this

operation.

Basically, the command runcurry supports three modes of operation:

• One can execute a Curry program whose file name is provided as an argument when runcurry

is called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be

dropped. One can write additional commands for the interactive environment, typically

settings of some options, before the Curry program name. All arguments after the Curry

program name are passed as run-time arguments. For instance, consider the following program

stored in the file ShowArgs.curry:

import System(getArgs)

main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

• One can also execute a Curry program whose program text comes from the standard input.

Thus, one can either “pipe” the program text into this command or type the program text

on the keyboard. For instance, if we type

> runcurry

main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

1

2

3

4

5

6

7

8

is produced.

• One can also write the program text in a script file to be executed like a shell script. In this

case, the script must start with the line

50

#!/usr/bin/env runcurry

followed by the source text of the Curry program. For instance, we can write a simple Curry

script to count the number of code lines in a Curry program by removing all blank and

comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char(isSpace)

import System(getArgs)

-- count number of program lines in a file:

countCLines :: String → IO Int

countCLines f =

readFile f >>=

return . length . filter (not . isEmptyLine) . map stripSpaces . lines

where

stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] = True

isEmptyLine [_] = False

isEmptyLine (c1:c2:_) = c1==’-’ && c2==’-’

-- The main program reads Curry file names from arguments:

main = do

args <- getArgs

mapIO_ (\f → do ls <- countCLines f

putStrLn $ "Stripped lines of file "++f++": " ++ show ls)

args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of

the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

When this command is executed, the command runcurry compiles the program and evaluates

the expression main. Since the compilation might take some time in more complex scripts,

one can also save the result of the compilation in a binary file. To obtain this behavior, one

has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program

is saved (in the same directory as the script). Now, when the same script is executed the

next time, the stored binary file is executed (provided that it is still newer than the script

file itself, otherwise it will be recompiled). This feature combines easy scripting with Curry

together with fast execution.

51

12 ERD2Curry: A Tool to Generate Programs from ER Specifi-

cations

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored from

entity relationship diagrams. The idea of this tool is described in detail in [9]. Thus, we describe

only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has

to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.

This description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

(erd2curry is a program stored in kics2home /bin where kics2home is the installation directory of

KiCS2; see Section 1.2). If MyData is the name of the ERD, the Curry program file “MyData.curry”

is generated containing all the necessary database access code as described in [9]. In addition to the

generated Curry program file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry

are created in the same directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method

since the interface to the Umbrello UML Modeller is no longer actively supported, one can also

create a textual description of the ERD as a Curry term of type ERD (w.r.t. the type definition given

in module kics2home /currytools/erd2curry/ERD.curry) and store it in some file, e.g., “myerd.term”.

This description can be compiled into a Curry program by the command

erd2curry -t myerd.term

The directory kics2home /currytools/erd2curry/ contains two examples for such ERD term files:

Blog.erdterm: This is a simple ERD model for a blog with entries, comments, and tags.

Uni.erdterm: This is an ERD model for university lectures as presented in the paper [9].

There is also the possibility to visualize an ERD term as a graph with the graph visualization

program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand

in your “.kics2rc” file, see Section 2.7, according to your local environment). The visualization

can be performed by the command

erd2curry -v myerd.term

52

13 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey

generates an initial implementation from an entity-relationship (ER) description of the underlying

data. The generated implementation contains operations to create and manipulate entities of

the data model, supports authentication, authorization, session handling, and the composition of

individual operations to user processes. Furthermore, the implementation ensures the consistency

of the database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by

the user cannot lead to an inconsistent state of the database.

The idea of this tool, which is part of the distribution of KiCS2, is described in detail in [21].

Thus, we describe only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model as a Curry term of

type ERD (w.r.t. the type definitions given in module kics2home /currytools/erd2curry/ERD.curry)

and store it in some file, e.g., “mymodel.erdterm”. The directory kics2home /currytools/spicey/

contains two examples for such ERD term files:

Blog.erdterm: This is a simple ER model for a blog with entries, comments, and tags, as presented

in the paper [21].

Uni.erdterm: This is an ER model for university lectures as presented in the paper [9].

Then change to the directory in which you want to create the project sources. Execute the command

spiceup .../mymodel.erdterm

with the path to the ERD term file as a parameter (spiceup is a program stored in kics2home /bin

where kics2home is the installation directory of KiCS2; see Section 1.2). You can also provide a

path name, i.e., the name of a directory, where the database files should be stored, e.g.,

spiceup --dbpath DBDIR .../mymodel.erdterm

If the parameter “--dbpath DBDIR” is not provided, then DBDIR is set to the current directory

(“.”). Since this specification will be used in the generated web programs, a relative database

directory name will be relative to the place where the web programs are stored. In order to avoid

such confusion, it might be better to specify an absolute path name for the database directory.

After the generation of this project (see the generated file README.txt for information about the

generated project structure), one can compile the generated programs by

make compile

In order to generate the executable web application, configure the generated Makefile by adapting

the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and

run

make deploy

After the successful compilation and deployment of all files, the application is executable in a web

browser by selecting the URL <URL of web dir>/spicey.cgi.

53

14 Technical Problems

One can implement distributed systems with KiCS2 by the use of the library NamedSocket (Sec-

tion A.2.28) that supports a socket communication with symbolic names rather than natural num-

bers. For instance, this library is the basis of programming dynamic web pages with the libraries

HTML (Section A.4.3) or WUI (Section A.4.9). However, it might be possible that some technical

problems arise due to the use of named sockets. Therefore, this section gives some information

about the technical requirements of KiCS2 and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of KiCS2:

Port 8767: This port is used by the Curry Port Name Server (CPNS) to implement symbolic

names for named sockets in Curry. If some other process uses this port on the machine, the

distribution facilities defined in the module NamedSocket cannot be used.

If these features do not work, you can try to find out whether this port is in use by the shell

command “netstat -a | fgrep 8767” (or similar).

The CPNS is implemented as a demon listening on its port 8767 in order to serve requests

about registering a new symbolic name for a named socket or asking the physical port number

of an registered named socket. The demon will be automatically started for the first time on a

machine when a user runs a program using named sockets. It can also be manually started and

terminated by the scripts kics2home /cpns/start and kics2home /cpns/stop. If the demon is already

running, the command kics2home /cpns/start does nothing (so it can be always executed before

invoking a Curry program using named sockets).

If you detect any further technical problem, please write to

kics2@curry-language.org

54

References

[1] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’05), pages 6–22. Springer LNCS 3901, 2005.

[2] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of

the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative

Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[3] S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.

of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL

2012), pages 33–47. Springer LNCS 7149, 2012.

[4] S. Antoy and M. Hanus. Curry without Success. In Proc. of the 23rd International Workshop

on Functional and (Constraint) Logic Programming (WFLP 2014), volume 1335 of CEUR

Workshop Proceedings, pages 140–154. CEUR-WS.org, 2014.

[5] S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th

International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR

2015), pages 73–88. Springer LNCS 9527, 2015.

[6] S. Antoy and M. Hanus. Default rules for Curry. In Proc. of the 18th International Symposium

on Practical Aspects of Declarative Languages (PADL 2016), pages 65–82. Springer LNCS

9585, 2016.

[7] L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal of Functional

Programming, 4(1):117–123, 1994.

[8] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic com-

putations. Journal of Functional and Logic Programming, 2004(6), 2004.

[9] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of

the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),

pages 316–332. Springer LNCS 4902, 2008.

[10] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. Implementing equational constraints in a

functional language. In Proc. of the 19th International Conference on Applications of Declara-

tive Programming and Knowledge Management (INAP 2011) and the 25th Workshop on Logic

Programming (WLP 2011), pages 22–33. INFSYS Research Report 1843-11-06 (TU Wien),

2011.

[11] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to

Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic

Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

[12] J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International

Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer

LNCS 4989, 2008.

55

[13] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell

programs. In International Conference on Functional Programming (ICFP’00), pages 268–

279. ACM Press, 2000.

[14] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the

24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[15] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the

International Conference on Principles and Practice of Declarative Programming (PPDP’99),

pages 376–395. Springer LNCS 1702, 1999.

[16] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-

national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.

Springer LNCS 1753, 2000.

[17] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International

Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer

LNCS 1990, 2001.

[18] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-

PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages

43–48. ACM Press, 2005.

[19] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of

the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages

61–74, 2006.

[20] M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of the 8th ACM

SIGPLAN International Conference on Principles and Practice of Declarative Programming

(PPDP’06), pages 27–38. ACM Press, 2006.

[21] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.

Theory and Practice of Logic Programming, 14(3):269–291, 2014.

[22] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-

ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.

Springer LNCS 1490, 1998.

[23] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at

http://www.curry-language.org, 2016.

[24] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional

Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[25] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The

Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

56

http://www.curry-language.org

A Libraries of the KiCS2 Distribution

The KiCS2 distribution comes with an extensive collection of libraries for application program-

ming. The libraries for meta-programming by representing Curry programs as datatypes in Curry

are described in the following subsection in more detail. The complete set of libraries with all

exported types and functions are described in the further subsections. For a more detailed online

documentation of all libraries of KiCS2, see http://www-ps.informatik.uni-kiel.de/kics2/

lib/index.html.

A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are system

modules FlatCurry.Types (Section A.5.6) and AbstractCurry.Types (Section A.5.1) which define

datatypes for the representation of Curry programs. AbstractCurry.Types is a more direct repre-

sentation of a Curry program, whereas FlatCurry.Types is a simplified representation where local

function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and

pattern matching is translated into explicit case/or expressions. Thus, FlatCurry.Types can be

used for more back-end oriented program manipulations (or, for writing new back ends for Curry),

whereas AbstractCurry.Types is intended for manipulations of programs that are more oriented

towards the source program.

There are predefined I/O actions to read AbstractCurry and FlatCurry programs:

AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the

corresponding source program and return a data term representing this program (according to the

definitions in the modules AbstractCurry.Types and FlatCurry.Types).

Since all datatypes are explained in detail in these modules, we refer to the online documentation5

of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

(Prog "test"

["Prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])

(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])

(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])

(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],

5http://www-ps.informatik.uni-kiel.de/kics2/lib/FlatCurry.Types.html and http://www-ps.

informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html

57

http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/FlatCurry.Types.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/AbstractCurry.Types.html

Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]

])

]))]

[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These

operations are useful to encapsulate non-deterministic operations between I/O actions in order to

connect the worlds of logic and functional programming and to avoid non-determinism failures on

the I/O level.

In contrast the ”old” concept of encapsulated search (which could be applied to any subexpression

in a computation), the operations to encapsulate search in this module are I/O actions in order to

avoid some anomalities in the old concept.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllSolutions :: (a → Bool) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right

strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,

the evaluation of the constraint does not share any results. Moreover, this evaluation

suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getOneSolution :: (a → Bool) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Bool) → IO [a]

Returns a list of values that do not satisfy a given constraint.

58

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.

==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of

e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Bool) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has

the multiset of solutions vs. The solutions of c are compared with the elements in vs

w.r.t. ==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

59

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield

equal (w.r.t. ==) results.

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the

currytest tool.

writeAssertResult :: (String,Bool) → IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.

Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest

tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the

currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

60

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

isControl :: Char → Bool

Returns true if the argument is a control character.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

61

A.2.4 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are

intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-

sented as lists. Ideally these lists contains no duplicate elements and the order of their elements

cannot be observed. In practice, these conditions are not enforced.

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list

in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],

[1,3], [1], [2,3], [2], [3], or [].

splitSet :: [a] → ([a],[a])

Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the

result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their

concatenation is a permutation of the input list. No guarantee is made on the order of

the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]

gives [[1,2,3]], [[2,3],[1]], [[1,3],[2]], [[3],[1,2]], or [[3],[2],[1]].

A.2.5 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the

library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: IO ()

Starts the ”Curry Port Name Server” (CPNS) running on the local machine. The CPNS

is responsible to resolve symbolic names for ports into physical socket numbers so that

a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()

Shows all registered ports at the local CPNS demon (in its logfile).

62

cpnsStop :: IO ()

Terminates the local CPNS demon

registerPort :: String → Int → Int → IO ()

Registers a symbolic port at the local host.

getPortInfo :: String → String → IO (Int,Int)

Gets the information about a symbolic port at some host.

unregisterPort :: String → IO ()

Unregisters a symbolic port at the local host.

cpnsAlive :: Int → String → IO Bool

Tests whether the CPNS demon at a host is alive.

main :: IO ()

Main function for CPNS demon. Check arguments and execute command.

A.2.6 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format

can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

63

A.2.7 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

traceShow :: a → b → b

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the

given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not

met it fails with the given error message.

A.2.8 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

64

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

createDirectoryIfMissing :: Bool → String → IO ()

Creates a new directory with the given name if it does not already exist. If the first

parameter is True it will also create all missing parent directories.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameDirectory :: String → String → IO ()

Renames a directory.

getHomeDirectory :: IO String

Returns the home directory of the current user.

getTemporaryDirectory :: IO String

Returns the temporary directory of the operating system.

getAbsolutePath :: String → IO String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the

current home directory.

removeFile :: String → IO ()

Deletes a file from the file system.

renameFile :: String → String → IO ()

Renames a file.

copyFile :: String → String → IO ()

Copy the contents from one file to another file

65

A.2.9 Library Distribution

This module contains functions to obtain information concerning the current distribution of the

Curry implementation, e.g., compiler version, load paths, front end.

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front

end of the Curry compiler.

Exported constructors:

• FCY :: FrontendTarget

FCY

– FlatCurry file ending with .fcy

• FINT :: FrontendTarget

FINT

– FlatCurry interface file ending with .fint

• ACY :: FrontendTarget

ACY

– AbstractCurry file ending with .acy

• UACY :: FrontendTarget

UACY

– Untyped (without type checking) AbstractCurry file ending with .uacy

• HTML :: FrontendTarget

HTML

– colored HTML representation of source program

• CY :: FrontendTarget

CY

– source representation employed by the frontend

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry

compiler.

Exported constructors:

66

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., ”pakcs” or ”kics2”).

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

curryRuntime :: String

The name of the run-time environment (e.g., ”sicstus”, ”swi”, or ”ghc”)

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution.

This file must have the usual format of property files (see description in module Prop-

ertyFile).

rcFileContents :: IO [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the

list of pairs (var,val).

getRcVar :: String → IO (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-

case/lowercase is ignored for the variable names.

getRcVars :: [String] → IO [Maybe String]

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase

is ignored for the variable names.

splitModuleFileName :: String → String → (String,String)

67

Split the FilePath of a module into the directory prefix and the FilePath correspond-

ing to the module name. For instance, the call splitModuleFileName "Data.Set"

"lib/Data/Set.curry" evaluates to ("lib", "Data/Set.curry"). This can be useful

to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String → [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers

"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] → String

Join the components of a module identifier. For instance, joinModuleIdentifiers

["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String → String

Strips the suffix ”.curry” or ”.lcurry” from a file name.

modNameToPath :: String → String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the

name by directory separator chars.

currySubdir :: String

Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.

inCurrySubdir :: String → String

Transforms a path to a module name into a file name by adding the currySubDir

to the path and transforming a hierarchical module name into a path. For instance,

inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String → String → String

Transforms a file name by adding the currySubDir to the file name. This version respects

hierarchical module names.

addCurrySubdir :: String → String

Transforms a directory name into the name of the corresponding sub directory contain-

ing auxiliary files.

getLoadPathForModule :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.

a given module path. The directory prefix of the module path (or ”.” if there is no such

prefix) is the first element of the load path and the remaining elements are determined

by the environment variable CURRYRPATH and the entry ”libraries” of the system’s

rc file.

68

lookupModuleSourceInLoadPath :: String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up the

module source in the current load path. If the module is hierarchical, the directory is

the top directory of the hierarchy. Returns Nothing if there is no corresponding source

file.

defaultParams :: FrontendParams

The default parameters of the front end.

rcParams :: IO FrontendParams

The default parameters of the front end as configured by the compiler specific resource

configuration file.

setQuiet :: Bool → FrontendParams → FrontendParams

Set quiet mode of the front end.

setExtended :: Bool → FrontendParams → FrontendParams

Set extended mode of the front end.

setOverlapWarn :: Bool → FrontendParams → FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] → FrontendParams → FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all

modules in this path (instead of using the default path).

setHtmlDir :: String → FrontendParams → FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

setLogfile :: String → FrontendParams → FrontendParams

Set the logfile parameter of the front end. If this parameter is set, all messages produced

by the front end are stored in this file.

setSpecials :: String → FrontendParams → FrontendParams

Set additional specials parameters of the front end. These parameters are specific for

the current front end and should be used with care, since their form might change in

the future.

quiet :: FrontendParams → Bool

Returns the value of the ”quiet” parameter.

extended :: FrontendParams → Bool

69

Returns the value of the ”extended” parameter.

overlapWarn :: FrontendParams → Bool

Returns the value of the ”overlapWarn” parameter.

fullPath :: FrontendParams → Maybe [String]

Returns the full path parameter of the front end.

htmldir :: FrontendParams → Maybe String

Returns the htmldir parameter of the front end.

logfile :: FrontendParams → Maybe String

Returns the logfile parameter of the front end.

specials :: FrontendParams → String

Returns the special parameters of the front end.

callFrontend :: FrontendTarget → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,

one can call the front end of the Curry compiler with this action. If the front end

returns with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget → FrontendParams → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to

date, one can call the front end of the Curry compiler with this action where various

parameters can be set. If the front end returns with an error, an exception is raised.

A.2.10 Library Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either a b] → [a]

Extracts from a list of Either all the Left elements in order.

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

70

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either a b → a

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either a b] → ([a],[b])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,

to the first component of the output. Similarly the Right elements are extracted to the

second component of the output.

A.2.11 Library ErrorState

A combination of Error and state monad like ErrorT State in Haskell.

Exported types:

type ES a b c = b → Either a (c,b)

Error state monad.

Exported functions:

evalES :: (a → Either b (c,a)) → a → Either b c

Evaluate an ES monad

returnES :: a → b → Either c (a,b)

Lift a value into the ES monad

failES :: a → b → Either a (c,b)

Failing computation in the ES monad

(>+=) :: (a → Either b (c,a)) → (c → a → Either b (d,a)) → a → Either b

(d,a)

Bind of the ES monad

(>+) :: (a → Either b (c,a)) → (a → Either b (d,a)) → a → Either b (d,a)

Sequence operator of the ES monad

(<$>) :: (a → b) → (c → Either d (a,c)) → c → Either d (b,c)

Apply a pure function onto a monadic value.

71

(<*>) :: (a → Either b (c → d,a)) → (a → Either b (c,a)) → a → Either b

(d,a)

Apply a function yielded by a monadic action to a monadic value.

gets :: a → Either b (a,a)

Retrieve the current state

puts :: a → a → Either b ((),a)

Replace the current state

modify :: (a → a) → a → Either b ((),a)

Modify the current state

mapES :: (a → b → Either c (d,b)) → [a] → b → Either c ([d],b)

Map a monadic function on all elements of a list by sequencing the effects.

concatMapES :: (a → b → Either c ([d],b)) → [a] → b → Either c ([d],b)

Same as concatMap, but for a monadic function.

mapAccumES :: (a → b → c → Either d ((a,e),c)) → a → [b] → c → Either d

((a,[e]),c)

Same as mapES but with an additional accumulator threaded through.

A.2.12 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is

/.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is

:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

72

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory

prefix is ”.” if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if

such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is

delivered if there is no such file.

A.2.13 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

73

Exported functions:

pathSeparator :: Char

pathSeparators :: String

isPathSeparator :: Char → Bool

searchPathSeparator :: Char

isSearchPathSeparator :: Char → Bool

extSeparator :: Char

isExtSeparator :: Char → Bool

splitSearchPath :: String → [String]

getSearchPath :: IO [String]

splitExtension :: String → (String,String)

takeExtension :: String → String

replaceExtension :: String → String → String

(<.>) :: String → String → String

dropExtension :: String → String

74

addExtension :: String → String → String

hasExtension :: String → Bool

splitExtensions :: String → (String,String)

dropExtensions :: String → String

takeExtensions :: String → String

splitDrive :: String → (String,String)

joinDrive :: String → String → String

takeDrive :: String → String

dropDrive :: String → String

hasDrive :: String → Bool

isDrive :: String → Bool

splitFileName :: String → (String,String)

replaceFileName :: String → String → String

dropFileName :: String → String

75

takeFileName :: String → String

takeBaseName :: String → String

replaceBaseName :: String → String → String

hasTrailingPathSeparator :: String → Bool

addTrailingPathSeparator :: String → String

dropTrailingPathSeparator :: String → String

takeDirectory :: String → String

replaceDirectory :: String → String → String

combine :: String → String → String

(</>) :: String → String → String

splitPath :: String → [String]

splitDirectories :: String → [String]

joinPath :: [String] → String

equalFilePath :: String → String → Bool

76

makeRelative :: String → String → String

normalise :: String → String

isValid :: String → Bool

makeValid :: String → String

isRelative :: String → Bool

isAbsolute :: String → Bool

A.2.14 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are

not fully declarative, i.e., the results depend on the order of evaluation and program rules. There

are newer and better approaches the encpasulate search, in particular, set functions (see module

SetFunctions), which should be used.

This library is included only for compatibility with PAKCS.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables. Similar to Prolog’s findall.

getSomeValue :: a → IO a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The

expression must have a value, otherwise the computation fails. Conceptually, the value

is computed on a copy of the expression, i.e., the evaluation of the expression does not

share any results. Moreover, the evaluation suspends as long as the expression contains

unbound variables.

allValues :: a → [a]

77

Returns all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results.

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules.

someValue :: a → a

Returns some value for an expression (currently, via an incomplete depth-first strat-

egy). If the expression has no value, the computation fails. Conceptually, the value is

computed on a copy of the expression, i.e., the evaluation of the expression does not

share any results.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value.

allSolutions :: (a → Bool) → [a]

Returns all values satisfying a predicate, i.e., all arguments such that the predicate

applied to the argument can be evaluated to True (currently, via an incomplete depth-

first strategy).

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules.

someSolution :: (a → Bool) → a

Returns some values satisfying a predicate, i.e., some argument such that the predicate

applied to the argument can be evaluated to True (currently, via an incomplete depth-

first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules. Thus, this operation should be

used only if the predicate has a single solution.

A.2.15 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float

The number pi.

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

78

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

(^.) :: Float → Int → Float

The value of a ^. b is a raised to the power of b. Executes in O(log b) steps.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between

the argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the

argument. If the argument is equidistant between two integers, it is rounded to the

closest even integer value.

recip :: Float → Float

Reciprocal

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

logBase :: Float → Float → Float

Logarithm to arbitrary Base.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

79

Cosine.

tan :: Float → Float

Tangent.

asin :: Float → Float

Arc sine.

acos :: Float → Float

atan :: Float → Float

Arc tangent.

sinh :: Float → Float

Hyperbolic sine.

cosh :: Float → Float

tanh :: Float → Float

Hyperbolic tangent.

asinh :: Float → Float

Hyperbolic Arc sine.

acosh :: Float → Float

atanh :: Float → Float

Hyperbolic Arc tangent.

A.2.16 Library Function

This module provides some utility functions for function application.

80

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =

x.

on :: (a → a → b) → (c → a) → c → c → b

(*) ‘on‘ f = \x y -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).

first :: (a → b) → (a,c) → (b,c)

Apply a function to the first component of a tuple.

second :: (a → b) → (c,a) → (c,b)

Apply a function to the second component of a tuple.

(***) :: (a → b) → (c → d) → (a,c) → (b,d)

Apply two functions to the two components of a tuple.

(&&&) :: (a → b) → (a → c) → a → (b,c)

Apply two functions to a value and returns a tuple of the results.

both :: (a → b) → (a,a) → (b,b)

Apply a function to both components of a tuple.

A.2.17 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:

invf1 :: (a → b) → b → a

Inverts a unary function.

invf2 :: (a → b → c) → c → (a,b)

Inverts a binary function.

invf3 :: (a → b → c → d) → d → (a,b,c)

Inverts a ternary function.

invf4 :: (a → b → c → d → e) → e → (a,b,c,d)

Inverts a function of arity 4.

invf5 :: (a → b → c → d → e → f) → f → (a,b,c,d,e)

Inverts a function of arity 5.

81

A.2.18 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the

ghc-base package it has been adapted for Curry by Bjoern Peemoeller

(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License

Copyright 2004, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

this list of conditions and the following disclaimer.

this list of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

used to endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY

OF GLASGOW AND THE CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW

OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-

CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-

WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

82

Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

A.2.19 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its

value can be accessed and modified by IO actions. Furthermore, global entities can be declared as

persistent so that their values are stored across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global entity g with an initial value v of type t must be declared by:

g :: Global t

g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the

global entity (see type GlobalSpec).

Exported types:

data Global

The abstract type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

83

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does

not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used else-

where. In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term

before it is updated.

A.2.20 Library GUI

This library contains definitions and functions to implement graphical user interfaces for Curry

programs. It is based on Tcl/Tk and its basic ideas are described in detail in this paper

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication

is done.

Exported constructors:

data Widget

The type of possible widgets in a GUI.

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton

84

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

– a button in a GUI whose event handler is activated if the user presses the button

• Canvas :: [ConfItem] → Widget

Canvas

– a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton

– a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

• Entry :: [ConfItem] → Widget

Entry

– an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label

– a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox

– a widget containing a list of items for selection

• Message :: [ConfItem] → Widget

Message

– a message for showing simple string values

• MenuButton :: [ConfItem] → Widget

MenuButton

– a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale

– a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH

– a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV

85

– a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit

– a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row

– a horizontal alignment of widgets

• Col :: [ConfCollection] → [Widget] → Widget

Col

– a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix

– a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

Exported constructors:

• Active :: Bool → ConfItem

Active

– define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor

– alignment of information inside a widget where the argument must be: n, ne, e, se, s,

sw, w, nw, or center

• Background :: String → ConfItem

Background

– the background color

• Foreground :: String → ConfItem

Foreground

– the foreground color

86

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler

– an event handler associated to a widget. The event handler returns a list of widget

ref/configuration pairs that are applied after the handler in order to configure GUI

widgets

• Height :: Int → ConfItem

Height

– the height of a widget (chars for text, pixels for graphics)

• CheckInit :: String → ConfItem

CheckInit

– initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems

– list of items contained in a canvas

• List :: [String] → ConfItem

List

– list of values shown in a listbox

• Menu :: [MenuItem] → ConfItem

Menu

– the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef

– a reference to this widget

• Text :: String → ConfItem

Text

– an initial text contents

• Width :: Int → ConfItem

Width

– the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill

87

– fill widget in both directions

• FillX :: ConfItem

FillX

– fill widget in horizontal direction

• FillY :: ConfItem

FillY

– fill widget in vertical direction

• TclOption :: String → ConfItem

TclOption

– further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some

event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf

– reconfigure the widget referred by wref with configuration item conf

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler

– add a new handler to the GUI that processes inputs on an input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl

– remove a handler for an input stream referred by hdl from the GUI (usually used to

remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete

and might be extended or restructured in future releases of this library.

Exported constructors:

88

• DefaultEvent :: Event

DefaultEvent

– the default event of the widget

• MouseButton1 :: Event

MouseButton1

– left mouse button pressed

• MouseButton2 :: Event

MouseButton2

– middle mouse button pressed

• MouseButton3 :: Event

MouseButton3

– right mouse button pressed

• KeyPress :: Event

KeyPress

– any key is pressed

• Return :: Event

Return

– return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign

– centered alignment

• LeftAlign :: ConfCollection

LeftAlign

– left alignment

• RightAlign :: ConfCollection

RightAlign

89

– right alignment

• TopAlign :: ConfCollection

TopAlign

– top alignment

• BottomAlign :: ConfCollection

BottomAlign

– bottom alignment

data MenuItem

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton

– a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator

– a separator between menu entries

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton

– a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk

(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

90

The (hidden) data type of references to a widget in a GUI window. Note that the

constructor WRefLabel will not be exported so that values can only be created inside

this module.

Exported constructors:

data Style

The data type of possible text styles.

Exported constructors:

• Bold :: Style

Bold

– text in bold font

• Italic :: Style

Italic

– text in italic font

• Underline :: Style

Underline

– underline text

• Fg :: Color → Style

Fg

– foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg

– background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

• Blue :: Color

• Brown :: Color

• Cyan :: Color

91

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

• Pink :: Color

• Purple :: Color

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI

events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

92

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO [ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO

[ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runControlledGUI :: String → (Widget,String → GuiPort → IO ()) → Handle → IO

()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external stream identified

by a handle (third argument). This operation is useful to run a GUI that should react

on user events as well as messages written to the given handle.

runConfigControlledGUI :: String → (Widget,String → GuiPort → IO

[ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external stream identified

by a handle (third argument). This operation is useful to run a GUI that should react

on user events as well as messages written to the given handle.

runInitControlledGUI :: String → (Widget,String → GuiPort → IO ()) → (GuiPort

→ IO [ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, an event handler is provided that process

messages received from an external message stream. This operation is useful to run a

GUI that should react on user events as well as messages written to the given handle.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of

event handlers is provided that process inputs received from a corresponding list of

handles to input streams. Thus, if the i-th handle has some data available, the i-th

event handler is executed with the i-th handle as a parameter. This operation is useful

to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → (GuiPort → IO [ReconfigureItem]) → [Handle] → IO ()

93

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, a list of event handlers is provided that process

inputs received from a corresponding list of handles to input streams. Thus, if the i-th

handle has some data available, the i-th event handler is executed with the i-th handle

as a parameter. This operation is useful to run a GUI that should react on inputs

provided by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for

backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the

end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust

the view to the end of the TextEdit widget. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and

end position similarly to getCursorPosition. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

94

Removes a style value in a region of a TextEdit widget. The region is specified a start

and end position similarly to getCursorPosition. This is an experimental function

and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are

numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is

visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is

useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popupMessage :: String → IO ()

A simple popup message.

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a

GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI

port as parameter (in order to read or write values from/into the GUI) and returns a

list of widget reference/configuration pairs which is applied after the handler in order

to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

The event handler is a configuration handler (see Command) that allows the configura-

tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

95

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration

options for the entry widget.

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be

returned (or ”” if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types

that could be selected. A file type pair consists of a name and an extension for that

file type. The file with its full path name will be returned (or ”” if the user cancels the

selection).

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing

file, she/he will asked to confirm to overwrite it. The file with its full path name will

be returned (or ”” if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of

file types that could be selected. A file type pair consists of a name and an extension

for that file type. If the user chooses an existing file, she/he will asked to confirm to

overwrite it. The file with its full path name will be returned (or ”” if the user cancels

the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or

”” if the user cancels the selection).

A.2.21 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on

the precision of integers. Operation bitNot is necessarily an exception.

96

Exported functions:

(^) :: Int → Int → Int

The value of a ^ b is a raised to the power of b. Fails if b < 0. Executes in O(log

b) steps.

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0. Executes in

O(log b) steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <=

0. For positive integers, the returned value is 1 less the number of digits in the decimal

representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0. Executes

in O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0.

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <

m‘.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

97

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only

the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

A.2.22 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

98

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument

is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the

beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t

milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available

within t milliseconds, it returns -1, otherwise it returns the index of the corresponding

handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

99

Waits until input is available on a given handles or a message in the message stream.

Usually, the message stream comes from an external port. Thus, this operation im-

plements a committed choice over receiving input from an IO handle or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message

stream. Usually, the message stream comes from an external port. Thus, this operation

implements a committed choice over receiving input from IO handles or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of

file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has

been reached while reading the first character. If the end of file is reached later in the

line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before

returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

100

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

A.2.23 Library IOExts

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when

they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams

of the new process (stdin,stdout,stderr) are returned as handles so that they can be

explicitly manipulated. They should be closed with IO.hClose since they are not closed

automatically when the process terminates.

evalCmd :: String → [String] → String → IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and

provides the input via the process’ stdin input stream. The exit code of the process

and the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams

of the new process is returned as one handle which is both readable and writable. Thus,

writing to the handle produces input to the process and output from the process can

be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

101

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be

used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO

”myaction.lock” act) ensures that the action ”act” is not executed by two processes on

the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to

ground terms before applying this operation.

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an

associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial value.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

A.2.24 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

102

• JSString :: String → JSExp

JSString

– string constant

• JSInt :: Int → JSExp

JSInt

– integer constant

• JSBool :: Bool → JSExp

JSBool

– Boolean constant

• JSIVar :: Int → JSExp

JSIVar

– indexed variable

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx

– array access to index array variable

• JSOp :: String → JSExp → JSExp → JSExp

JSOp

– infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall

– function call

• JSApply :: JSExp → JSExp → JSExp

JSApply

– function call where the function is an expression

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda

– (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

103

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign

– assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf

– conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch

– switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall

– procedure call

• JSReturn :: JSExp → JSStat

JSReturn

– return statement

• JSVarDecl :: Int → JSStat

JSVarDecl

– local variable declaration

data JSBranch

Exported constructors:

• JSCase :: String → [JSStat] → JSBranch

JSCase

– case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault

– default branch

data JSFDecl

104

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

A.2.25 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

This module reimplements the interface of the module KeyDatabase based on the SQLite database

engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust

the value of the constant path<code>to</code>sqlite3.

Programs that use the KeyDatabase module can be adjusted to use this module instead by re-

placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the

declarations of database predicates to use the function persistentSQLite instead of dynamic or

persistent. This module redefines the types Dynamic, Query, and Transaction and although

both implementations can be used in the same program (by importing modules qualified) they

cannot be mixed.

Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,

groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

Exported types:

type Key = Int

type KeyPred a = Int → a → Dynamic

105

http://sqlite.org/

data Query

Queries can read but not write to the database.

Exported constructors:

data Transaction

Transactions can modify the database and are executed atomically.

Exported constructors:

data Dynamic

Result type of database predicates.

Exported constructors:

data ColVal

Abstract type for value restrictions

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

106

Exported functions:

runQ :: Query a → IO a

Runs a database query in the IO monad.

transformQ :: (a → b) → Query a → Query b

Applies a function to the result of a database query.

runT :: Transaction a → IO (Either a TError)

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as

soon as the transaction is started. After one transaction is started, no other database

connection will be able to write to the database or start a transaction. Other connections

can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might

also be possible to allow multiple simultaneous transactions that lock tables on the first

database access (which is the default in SQLite). However this leads to unpredictable

order in which locks are taken when multiple databases are involved. The current

implementation fixes the locking order by sorting databases by their name and locking

them in order immediately when a transaction begins.

More information on 6 transaction.html”>transactions in SQLite is available online.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similar to runT but a run-time error is raised if the execution

of the transaction fails.

getDB :: Query a → Transaction a

Lifts a database query to the transaction type such that it can be composed with other

transactions. Run-time errors that occur during the execution of the given query are

transformed into transaction errors.

returnT :: a → Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to

ignore results when composing transactions.

errorT :: TError → Transaction a

Aborts a transaction with an error.
6http://sqlite.org/lang

107

failT :: String → Transaction a

Aborts a transaction with a user-defined error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Combines two transactions into a single transaction that executes both in sequence.

The first transaction is executed, its result passed to the function which computes the

second transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.

(|>>) :: Transaction a → Transaction b → Transaction b

Combines two transactions to execute them in sequence. The result of the first trans-

action is ignored.

sequenceT :: [Transaction a] → Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.

sequenceT :: [Transaction a] → Transaction ()

Executes a list of transactions sequentially, ignoring their results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-

action sequentially, and collects their results.

mapT :: (a → Transaction b) → [a] → Transaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-

actions sequentially, and ignores their results.

persistentSQLite :: String → String → [String] → Int → a → Dynamic

This function is used instead of dynamic or persistent to declare predicates whose

facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when

the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a

tuple with a matching arity. Other record types are not supported. If no column names

are provided a table with a single column called info is created. Columns of name

rowid are not supported and lead to a run-time error.

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int → a → Dynamic) → Query [Int]

108

Returns a list of all stored keys. Do not use this function unless the database is small.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Returns a list of all info parts of stored entries. Do not use this function unless the

database is small.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.

(@=) :: Int → a → ColVal

Constructs a value restriction for the column given as first argument

someDBKeys :: (Int → a → Dynamic) → [ColVal] → Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven

value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int → a → Dynamic) → [ColVal] → Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions

for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int → a → Dynamic) → [ColVal] → Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe

to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int → a → Dynamic) → [Int] → [ColVal] → Query

[(Int,b)]

Returns a list of column projections on those entries that match the given value re-

strictions for columns. Safe to use even on large databases if the number of results is

small.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is

not present.

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is

not present.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes the information stored under the given key. If the given key does not exist this

transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

109

Deletes the information stored under the given keys. No error is raised if (some of) the

keys do not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Updates the information stored under the given key. The transaction is aborted with a

KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores new information in the database and yields the newly generated key.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries from the database associated with a predicate.

closeDBHandles :: IO ()

Closes all database connections. Should be called when no more database access will

be necessary.

showTError :: TError → String

Transforms a transaction error into a string.

A.2.26 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise

Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise

Nothing is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as

(Just i), otherwise Nothing is returned.

110

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the union of two lists according to the given equivalence relation

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the

list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

111

diagonal :: [[a]] → [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)

lists.

permutations :: [a] → [[a]]

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that

satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: [a] → [a] → [[a]]

Breaks the second list argument into pieces separated by the first list argument, con-

suming the delimiter. An empty delimiter is invalid, and will cause an error to be

raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True

for a separator element. The resulting components do not contain the separators. Two

adjacent separators result in an empty component in the output.

split (==a) ”aabbaca” == [””,””,”bb”,”c”,””] split (==a) ”” == [””]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits

[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]

== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

112

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: [Int] → Int

Returns the sum of a list of integers.

product :: [Int] → Int

Returns the product of a list of integers.

maximum :: [a] → a

Returns the maximum of a non-empty list.

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

113

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]

== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a

function to each element of a list, passing an accumulating parameter from left to right,

and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a

function to each element of a list, passing an accumulating parameter from right to left,

and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

A.2.27 Library Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just .

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is

Nothing.

fromMaybe :: a → Maybe a → a

114

Extract the argument from the Just constructor or return the provided default value

if the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list

of elements.

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is

interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

Monadic sequence for Maybe.

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

Monadic map for Maybe.

mplus :: Maybe a → Maybe a → Maybe a

Combine two Maybes, returning the first Just value, if any.

A.2.28 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In

contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to

provide sockets that are addressed by symbolic names rather than numbers.

In standard applications, the server side uses the operations listenOn and socketAccept to provide

some service on a named socket, and the client side uses the operation connectToSocket to request

a service.

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

115

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to

connectToSocket, this action waits until the socket has been registered with its sym-

bolic name.

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of

the connection. This action waits (possibly forever) until the socket with the symbolic

name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the

symbolic name is not registered, an error is reported.

A.2.29 Library Parser

Library with functional logic parser combinators.

Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective

of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

116

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser

p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with

representation) at least once.

A.2.30 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library

linear-time, bounded implementation by Olaf Chitil. Note that the implementation of fill and

fillBreak is not linear-time bounded Support of ANSI escape codes for formatting and colorisation

of documents in text terminals (see https://en.wikipedia.org/wiki/ANSIescapecode)

117

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

pPrint :: Doc → String

Standard printing with a column length of 80.

empty :: Doc

The empty document

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any

newline (\n) characters. If the string contains newline characters, the function string

should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting

level. Document (linesep s) behaves like (text s) if the line break is undone by

group.

hardline :: Doc

The document hardline advances to the next line and indents to the current nesting

level. hardline cannot be undone by group.

line :: Doc

The document line advances to the next line and indents to the current nesting level.

Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The document linebreak advances to the next line and indents to the current nesting

level. Document linebreak behaves like (text "") if the line break is undone by

group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, oth-

erwise it behaves like line. softline = group line

118

softbreak :: Doc

The document softbreak behaves like (text "") if the resulting output fits the page,

otherwise it behaves like line. softbreak = group linebreak

group :: Doc → Doc

The combinator group is used to specify alternative layouts. The document (group x)

undoes all line breaks in document x. The resulting line is added to the current line if

that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-

creased by i (See also hang, align and indent).

nest 2 (text "hello" $$ text "world") $$ text "!"

outputs as:

hello

world

!

hang :: Int → Doc → Doc

The combinator hang implements hanging indentation. The document (hang i d)

renders document d with a nesting level set to the current column plus i. The following

example uses hanging indentation for some text:

test = hang 4

(fillSep

(map text

(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator

indents these

words !

The hang combinator is implemented as:

hang i x = align (nest i x)

align :: Doc → Doc

119

The document (align d) renders document d with the nesting level set to the

current column. It is used for example to implement hang‘.

As an example, we will put a document right above another one, regardless of the

current nesting level:

x $$ y = align (x $$ y)

test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice

world

indent :: Int → Doc → Doc

The document (indent i d) indents document d with i spaces.

test = indent 4 (fillSep (map text

(words "the indent combinator indents these words !")))

Which lays out with a page width of 20 as:

the indent

combinator

indents these

words !

combine :: Doc → Doc → Doc → Doc

The document (combine c d1 d2) combines document d1 and d2 with document c in

between using (<>) with identity empty. Thus, the following equations hold.

combine c d1 empty == d1

combine c empty d2 == d2

combine c d1 d2 == d1 <> c <> d2 if neither d1 nor d2 are empty

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative

operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between

with identity empty.

120

($$) :: Doc → Doc → Doc

The document (x $$ y) concatenates document x and y with a line in between with

identity empty.

(<$+$>) :: Doc → Doc → Doc

The document (x <$+$> y) concatenates document x and y with a blank line in

between with identity empty.

(</>) :: Doc → Doc → Doc

The document (x </> y) concatenates document x and y with a softline in between

with identity empty. This effectively puts x and y either next to each other (with a

space in between) or underneath each other.

(<$$>) :: Doc → Doc → Doc

The document (x <$$> y) concatenates document x and y with a linebreak in be-

tween with identity empty.

(<//>) :: Doc → Doc → Doc

The document (x <//> y) concatenates document x and y with a softbreak in be-

tween with identity empty. This effectively puts x and y either right next to each other

or underneath each other.

(<$!$>) :: Doc → Doc → Doc

The document (x <$!$> y) concatenates document x and y with a hardline in be-

tween with identity empty. This effectively puts x and y underneath each other.

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Func-

tion f should be like (<+>), ($$) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with ($$). If a

group undoes the line breaks inserted by vsep, all documents are separated with a

space.

someText = map text (words ("text to lay out"))

test = text "some" <+> vsep someText

This is layed out as:

121

some text

to

lay

out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

some text

to

lay

out

vsepBlank :: [Doc] → Doc

The document vsep xs concatenates all documents xs vertically with (<$+$>). If a

group undoes the line breaks inserted by vsepBlank, all documents are separated with

a space.

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (</>) as

long as its fits the page, than inserts a line and continues doing that for all documents

in xs. fillSep xs = foldr (</>) empty xs

sep :: [Doc] → Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),

if it fits the page, or vertically with ($$). sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a

group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<//>)

as long as its fits the page, than inserts a linebreak and continues doing that for all

documents in xs. fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

122

The document (cat xs) concatenates all documents xs either horizontally with (<>),

if it fits the page, or vertically with (<$$>). cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last

document.

someText = map text ["words","in","a","tuple"]

test = parens (align (cat (punctuate comma someText)))

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

(words,

in,

a,

tuple)

(If you want put the commas in front of their elements instead of at the end, you should

use tupled or, in general, encloseSep.)

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSep l r s xs) concatenates the documents xs seperated by

s and encloses the resulting document by l and r. The documents are rendered hori-

zontally if that fits the page. Otherwise they are aligned vertically. All seperators are

put in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs

test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10

,200

,3000]

123

encloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSepSpaced l r s xs) concatenates the documents xs seper-

ated by s and encloses the resulting document by l and r. In addition, after each

occurrence of s, after l, and before r, a space is inserted. The documents are rendered

horizontally if that fits the page. Otherwise they are aligned vertically. All seperators

are put in front of the elements.

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r s xs) concatenates the documents xs seperated by

s and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSep l r s xs) concatenates the documents xs seperated

by s and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

fillEncloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSepSpaced l r s xs) concatenates the documents xs

seperated by s and encloses the resulting document by l and r. In addition, after each

occurrence of s, after l, and before r, a space is inserted.

The documents are rendered horizontally if that fits the page. Otherwise, they are

aligned vertically. All seperators are put in front of the elements.

list :: [Doc] → Doc

The document (list xs) comma seperates the documents xs and encloses them in

square brackets. The documents are rendered horizontally if that fits the page. Other-

wise they are aligned vertically. All comma seperators are put in front of the elements.

listSpaced :: [Doc] → Doc

Spaced version of list

set :: [Doc] → Doc

The document (set xs) comma seperates the documents xs and encloses them in

braces. The documents are rendered horizontally if that fits the page. Otherwise they

are aligned vertically. All comma seperators are put in front of the elements.

setSpaced :: [Doc] → Doc

Spaced version of set

tupled :: [Doc] → Doc

124

The document (tupled xs) comma seperates the documents xs and encloses them in

parenthesis. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All comma seperators are put in front of the elements.

tupledSpaced :: [Doc] → Doc

Spaced version of tupled

semiBraces :: [Doc] → Doc

The document (semiBraces xs) seperates the documents xs with semi colons and

encloses them in braces. The documents are rendered horizontally if that fits the page.

Otherwise they are aligned vertically. All semi colons are put in front of the elements.

semiBracesSpaced :: [Doc] → Doc

Spaced version of semiBraces

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using

(<>). enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes.

bquotes :: Doc → Doc

Document (bquotes x) encloses document x with back quotes "‘".

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

parensIf :: Bool → Doc → Doc

Document (parensIf x) encloses document x in parenthesis,"(" and ")", iff the con-

dition is true.

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

125

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character should not be

a newline (\n), the function line should be used for line breaks.

string :: String → Doc

The document (string s) concatenates all characters in s using line for newline

characters and char for all other characters. It is used instead of text whenever the

text contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

126

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote.

semi :: Doc

The document semi contains a semi colon, ";".

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

larrow :: Doc

The document larrow contains a left arrow sign, "<-".

rarrow :: Doc

The document rarrow contains a right arrow sign, "->".

doubleArrow :: Doc

The document doubleArrow contains an double arrow sign, "=>".

doubleColon :: Doc

The document doubleColon contains a double colon sign, "::".

bar :: Doc

The document bar contains a vertical bar sign, "|".

127

at :: Doc

The document at contains an at sign, "@".

tilde :: Doc

The document tilde contains a tilde sign, "~".

fill :: Int → Doc → Doc

The document (fill i d) renders document d. It than appends spaces until the width

is equal to i. If the width of d is already larger, nothing is appended. This combinator is

quite useful in practice to output a list of bindings. The following example demonstrates

this.

types = [("empty","Doc")

,("nest","Int -> Doc -> Doc")

,("linebreak","Doc")]

ptype (name,tp)

= fill 6 (text name) <+> text "::" <+> text tp

test = text "let" <+> align (vcat (map ptype types))

Which is layed out as:

let empty :: Doc

nest :: Int -> Doc -> Doc

linebreak :: Doc

Note that fill is not guaranteed to be linear-time bounded since it has to compute the

width of a document before pretty printing it

fillBreak :: Int → Doc → Doc

The document (fillBreak i d) first renders document d. It than appends spaces

until the width is equal to i. If the width of d is already larger than i, the nesting

level is increased by i and a line is appended. When we redefine ptype in the previous

example to use fillBreak, we get a useful variation of the previous output:

ptype (name,tp)

= fillBreak 6 (text name) <+> text "::" <+> text tp

The output will now be:

128

let empty :: Doc

nest :: Int -> Doc -> Doc

linebreak

:: Doc

Note that fillBreak is not guaranteed to be linear-time bounded since it has to com-

pute the width of a document before pretty printing it

bold :: Doc → Doc

The document (bold d) displays document d with bold text

faint :: Doc → Doc

The document (faint d) displays document d with faint text

blinkSlow :: Doc → Doc

The document (blinkSlow d) displays document d with slowly blinking text (rarely

supported)

blinkRapid :: Doc → Doc

The document (blinkRapid d) displays document d with rapidly blinking text (rarely

supported)

italic :: Doc → Doc

The document (italic d) displays document d with italicized text (rarely supported)

underline :: Doc → Doc

The document (underline d) displays document d with underlined text

crossout :: Doc → Doc

The document (crossout d) displays document d with crossed out text

inverse :: Doc → Doc

The document (inverse d) displays document d with inversed coloring, i.e. use text

color of d as background color and background color of d as text color

black :: Doc → Doc

The document (black d) displays document d with black text color

red :: Doc → Doc

The document (red d) displays document d with red text color

green :: Doc → Doc

The document (green d) displays document d with green text color

129

yellow :: Doc → Doc

The document (yellow d) displays document d with yellow text color

blue :: Doc → Doc

The document (blue d) displays document d with blue text color

magenta :: Doc → Doc

The document (magenta d) displays document d with magenta text color

cyan :: Doc → Doc

The document (cyan d) displays document d with cyan text color

white :: Doc → Doc

The document (white d) displays document d with white text color

bgBlack :: Doc → Doc

The document (bgBlack d) displays document d with black background color

bgRed :: Doc → Doc

The document (bgRed d) displays document d with red background color

bgGreen :: Doc → Doc

The document (bgGreen d) displays document d with green background color

bgYellow :: Doc → Doc

The document (bgYellow d) displays document d with yellow background color

bgBlue :: Doc → Doc

The document (bgBlue d) displays document d with blue background color

bgMagenta :: Doc → Doc

The document (bgMagenta d) displays document d with magenta background color

bgCyan :: Doc → Doc

The document (bgCyan d) displays document d with cyan background color

bgWhite :: Doc → Doc

The document (bgWhite d) displays document d with white background color

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

130

A.2.31 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

131

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that

the returned values are implementation dependent so that one should interpret them

with care!

Note for kics2 users: Since GHC version 7.x, one has to set the run-time option -T when

this operation is used. This can be done by the kics2 command

:set rts -T

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful

to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical

operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,

the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this

evaluation. During the evaluation, the garbage collector is turned off to get the total

space usage.

132

A.2.32 Library Prolog

A library defining a representation for Prolog programs together with a simple pretty printer. It

does not cover all aspects of Prolog but might be useful for applications generating Prolog programs.

Exported types:

data PlClause

A Prolog clause is either a program clause consisting of a head and a body, or a directive

or a query without a head.

Exported constructors:

• PlClause :: String → [PlTerm] → [PlGoal] → PlClause

• PlDirective :: [PlGoal] → PlClause

• PlQuery :: [PlGoal] → PlClause

data PlGoal

A Prolog goal is a literal, a negated goal, or a conditional.

Exported constructors:

• PlLit :: String → [PlTerm] → PlGoal

• PlNeg :: [PlGoal] → PlGoal

• PlCond :: [PlGoal] → [PlGoal] → [PlGoal] → PlGoal

data PlTerm

A Prolog term is a variable, atom, number, or structure.

Exported constructors:

• PlVar :: String → PlTerm

• PlAtom :: String → PlTerm

• PlInt :: Int → PlTerm

• PlFloat :: Float → PlTerm

• PlStruct :: String → [PlTerm] → PlTerm

133

Exported functions:

plList :: [PlTerm] → PlTerm

A Prolog list of Prolog terms.

showPlProg :: [PlClause] → String

Shows a Prolog program in standard Prolog syntax.

showPlClause :: PlClause → String

showPlGoals :: [PlGoal] → String

showPlGoal :: PlGoal → String

showPlTerm :: PlTerm → String

A.2.33 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a

property is defined by a line of the form prop=value where prop starts with a letter. All other

lines (e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the

property file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.34 Library Read

Library with some functions for reading special tokens.

This library is included for backward compatibility. You should use the library ReadNumeric which

provides a better interface for these functions.

134

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the

the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks

and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and

the the integer is read up to the first non-heaxdecimal digit.

A.2.35 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain

leadings blanks and the integer is read up to the first non-digit. If the string does not

start with an integer token, Nothing is returned, otherwise the result is Just (v, s),

where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-digit. If the string does not start

with a natural number token, Nothing is returned, otherwise the result is Just (v,

s) where v is the value of the number and s is the remaing string without the number

token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain

leadings blanks and the number is read up to the first non-hexadecimal digit. If the

string does not start with a hexadecimal number token, Nothing is returned, otherwise

the result is Just (v, s) where v is the value of the number and s is the remaing string

without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-octal digit. If the string does not

start with an octal number token, Nothing is returned, otherwise the result is Just (v,

s) where v is the value of the number and s is the remaing string without the number

token.

135

A.2.36 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. This function is similar to

the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. Note that this function differs

from the prelude function show since it prefixes constructors with their module name

in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!). In case of a

successful parse, the result is a one element list containing a pair of the data term and

the remaining unparsed string.

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

136

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. In case of a successful parse, the

result is a one element list containing a pair of the data term and the remaining un-

parsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and

returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and

returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which

might be useful to modify the file with a standard text editor.

A.2.37 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is

described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-

national Conference on Principles and Practice of Declarative Programming (PPDP’09),

pp. 73-82, ACM Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-

determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.

Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are

values of the arguments a1,...,an (i.e., the arguments are evaluated ”outside” this capsule so that

the non-determinism caused by evaluating these arguments is not captured in this capsule but

yields several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound

inside this capsule.

The set of values returned by a set function is represented by an abstract type Values on which

several operations are defined in this module. Actually, it is a multiset of values, i.e., duplicates

are not removed.

The handling of failures and nested occurrences of set functions is not specified in the previous

paper. Thus, a detailed description of the semantics of set functions as implemented in this library

can be found in the paper

137

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated

Search in Functional Logic Programs Proc. 15th International Conference on Principles

and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set0With :: (SearchTree a → ValueSequence a) → a → Values a

Combinator to transform a 0-ary function into a corresponding set function that uses

a given strategy to compute its values.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set1With :: (SearchTree a → ValueSequence a) → (b → a) → b → Values a

Combinator to transform a unary function into a corresponding set function that uses

a given strategy to compute its values.

set2 :: (a → b → c) → a → b → Values c

Combinator to transform a binary function into a corresponding set function.

set2With :: (SearchTree a → ValueSequence a) → (b → c → a) → b → c → Values

a

Combinator to transform a binary function into a corresponding set function that uses

a given strategy to compute its values.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set3With :: (SearchTree a → ValueSequence a) → (b → c → d → a) → b → c → d

→ Values a

Combinator to transform a function of arity 3 into a corresponding set function that

uses a given strategy to compute its values.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

138

Combinator to transform a function of arity 4 into a corresponding set function.

set4With :: (SearchTree a → ValueSequence a) → (b → c → d → e → a) → b → c

→ d → e → Values a

Combinator to transform a function of arity 4 into a corresponding set function that

uses a given strategy to compute its values.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

set5With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → a) → b

→ c → d → e → f → Values a

Combinator to transform a function of arity 5 into a corresponding set function that

uses a given strategy to compute its values.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set6With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → g → a)

→ b → c → d → e → f → g → Values a

Combinator to transform a function of arity 6 into a corresponding set function that

uses a given strategy to compute its values.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

Combinator to transform a function of arity 7 into a corresponding set function.

set7With :: (SearchTree a → ValueSequence a) → (b → c → d → e → f → g → h

→ a) → b → c → d → e → f → g → h → Values a

Combinator to transform a function of arity 7 into a corresponding set function that

uses a given strategy to compute its values.

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: a → Values a → Bool

Is some value an element of a multiset of values?

choose :: Values a → (a,Values a)

139

Chooses (non-deterministically) some value in a multiset of values and returns the

chosen value and the remaining multiset of values. Thus, if we consider the operation

chooseValue by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)

contains the same elements as the value set s.

chooseValue :: Values a → a

Chooses (non-deterministically) some value in a multiset of values and returns the

chosen value. Thus, (set1 chooseValue) is the identity on value sets, i.e., (set1

chooseValue s) contains the same elements as the value set s.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected

value and the remaining multiset of values. Thus, select has always at most one value.

It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)

if all values in the argument set are identical.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected

value. Thus, selectValue has always at most one value. It fails if the value set is

empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)

if all values in the argument set are identical.

mapValues :: (a → b) → Values a → Values b

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

minValue :: (a → a → Bool) → Values a → a

Returns the minimal element of a non-empty multiset of values with respect to a given

total ordering on the elements.

140

maxValue :: (a → a → Bool) → Values a → a

Returns the maximal element of a non-empty multiset of value with respect to a given

total ordering on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the

list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a

consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As

a consequence, the multiset of values is completely evaluated. In order to ensure that

the result of this operation is independent of the evaluation order, the given ordering

must be a total order.

A.2.38 Library Socket

Library to support network programming with sockets. In standard applications, the server side

uses the operations listenOn and socketAccept to provide some service on a socket, and the client

side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is

returned.

socketAccept :: Socket → IO (String,Handle)

141

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.39 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not

supported in KiCS2 (there it always returns 0), but only included for compatibility

reasons.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not

included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for unde-

fined environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent

shell commands (see system) and visible to subsequent calls to getEnviron (but it is

not visible in the environment of the process that started the program execution).

142

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently

executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit

status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given

by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.40 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day

hour minute second timezone) where timezone is an integer representing the timezone

as a difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

143

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC

time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs

in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).

Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is

independent on the local time.

toClockTime :: CalendarTime → ClockTime

144

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., ”September 23, 2006”.

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

145

A.2.41 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing

or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

A.2.42 Library Test.EasyCheck

EasyCheck is a library for automated, specification-based testing of Curry programs. The ideas

behind EasyCheck are described in this paper The tool currycheck automatically executes tests

defined with this library. EasyCheck supports the definition of unit tests (also for I/O operations)

and property tests parameterized over some arguments. The latter kind of tests can only be

executed with KiCS2.

Exported types:

type Prop = [Test]

Abstract type to represent properties to be checked.

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

data Test

Abstract type to a single test for a property to be checked.

Exported constructors:

data Result

Data type to represent the result of checking a property.

Exported constructors:

• Undef :: Result

• Ok :: Result

• Falsified :: [String] → Result

146

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html

• Ambigious :: [Bool] → [String] → Result

data Config

The configuration of property testing. The configuration contains

• the maximum number of tests,

• the maximum number of condition failures before giving up,

• an operation that shows the number and arguments of each test,

• a status whether it should work quietly.

Exported constructors:

Exported functions:

returns :: IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the

value x.

sameReturns :: IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and

a2 return identical values.

result :: Test → Result

Extracts the result of a single test.

test :: a → ([a] → Bool) → [Test]

Constructs a property to be tested from an arbitrary expression (first argument) and

a predicate that is applied to the list of non-deterministic values. The given predi-

cate determines whether the constructed property is satisfied or falsified for the given

expression.

(-=-) :: a → a → [Test]

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: a → a → [Test]

The property x <~> y is satisfied if the sets of the values of x and y are equal.

(~>) :: a → a → [Test]

The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of

values of y must be a subset of the set of values of x.

(<~) :: a → a → [Test]

147

The property x <~ y is satisfied if y evaluates to every value of x. Thus, the set of

values of x must be a subset of the set of values of y.

(<~~>) :: a → a → [Test]

The property x <~~> y is satisfied if the multisets of the values of x and y are equal.

(==>) :: Bool → [Test] → [Test]

A conditional property is tested if the condition evaluates to True.

solutionOf :: (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation

is useful to test solutions of predicates.

is :: a → (a → Bool) → [Test]

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: a → (a → Bool) → [Test]

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: a → (a → Bool) → [Test]

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → [Test]

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → [Test]

The property always x is satisfied if all values of x are true.

eventually :: Bool → [Test]

The property eventually x is satisfied if some value of x is true.

failing :: a → [Test]

The property failing x is satisfied if x has no value.

successful :: a → [Test]

The property successful x is satisfied if x has at least one value.

deterministic :: a → [Test]

The property deterministic x is satisfied if x has exactly one value.

(#) :: a → Int → [Test]

The property x # n is satisfied if x has n values.

148

for :: a → (a → [Test]) → [Test]

The property for x p is satisfied if all values y of x satisfy property p x.

label :: String → [Test] → [Test]

classify :: Bool → String → [Test] → [Test]

trivial :: Bool → [Test] → [Test]

collect :: a → [Test] → [Test]

collectAs :: String → a → [Test] → [Test]

setMaxTest :: Int → Config → Config

Sets the maximum number of tests in a test configuration.

setMaxFail :: Int → Config → Config

Sets the maximum number of condition failures in a test configuration.

easyConfig :: Config

The default configuration for EasyCheck shows and deletes the number for each test.

verboseConfig :: Config

A verbose configuration which shows the arguments of every test.

quietConfig :: Config

A quiet configuration which shows nothing but failed tests.

check0 :: Config → String → [Test] → IO Bool

Checks a unit test with a given configuration (first argument) and a name for the test

(second argument). Returns a flag whether the test was successful.

checkWithValues0 :: Config → String → [Test] → IO Bool

Checks a unit test with a given configuration (first argument) and a name for the test

(second argument). Returns a flag whether the test was successful.

checkWithValues1 :: Config → String → [a] → (a → [Test]) → IO Bool

149

Checks a property parameterized over a single argument with a given configuration

(first argument), a name for the test (second argument), and all values given in the

third argument. Returns a flag whether the test was successful.

checkWithValues2 :: Config → String → [a] → [b] → (a → b → [Test]) → IO

Bool

Checks a property parameterized over two arguments with a given configuration (first

argument) a name for the test (second argument), and all values given in the third and

fourth argument. Returns a flag whether the test was successful.

checkWithValues3 :: Config → String → [a] → [b] → [c] → (a → b → c →
[Test]) → IO Bool

Checks a property parameterized over three arguments with a given configuration (first

argument) a name for the test (second argument), and all values given in the third,

fourth and fifth argument. Returns a flag whether the test was successful.

checkWithValues4 :: Config → String → [a] → [b] → [c] → [d] → (a → b → c

→ d → [Test]) → IO Bool

Checks a property parameterized over four arguments with a given configuration (first

argument) a name for the test (second argument), and all values given in the further

arguments. Returns a flag whether the test was successful.

checkWithValues5 :: Config → String → [a] → [b] → [c] → [d] → [e] → (a → b

→ c → d → e → [Test]) → IO Bool

Checks a property parameterized over five arguments with a given configuration (first

argument) a name for the test (second argument), and all values given in the further

arguments. Returns a flag whether the test was successful.

check1 :: Config → String → (a → [Test]) → IO Bool

Checks a property parameterized over a single argument with a given configuration

(first argument) and a name for the test (second argument). Returns a flag whether

the test was successful.

check2 :: Config → String → (a → b → [Test]) → IO Bool

Checks a property parameterized over two arguments with a given configuration (first

argument) and a name for the test (second argument). Returns a flag whether the test

was successful.

check3 :: Config → String → (a → b → c → [Test]) → IO Bool

Checks a property parameterized over three arguments with a given configuration (first

argument) and a name for the test (second argument). Returns a flag whether the test

was successful.

150

check4 :: Config → String → (a → b → c → d → [Test]) → IO Bool

Checks a property parameterized over four arguments with a given configuration (first

argument) and a name for the test (second argument). Returns a flag whether the test

was successful.

check5 :: Config → String → (a → b → c → d → e → [Test]) → IO Bool

Checks a property parameterized over five arguments with a given configuration (first

argument) and a name for the test (second argument). Returns a flag whether the test

was successful.

easyCheck0 :: String → [Test] → IO Bool

Checks a unit test according to the default configuration and a name for the test (first

argument). Returns a flag whether the test was successful.

easyCheck1 :: String → (a → [Test]) → IO Bool

Checks a property parameterized over a single argument according to the default con-

figuration and a name for the test (first argument). Returns a flag whether the test was

successful.

easyCheck2 :: String → (a → b → [Test]) → IO Bool

Checks a property parameterized over two arguments according to the default config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

easyCheck3 :: String → (a → b → c → [Test]) → IO Bool

Checks a property parameterized over three arguments according to the default config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

easyCheck4 :: String → (a → b → c → d → [Test]) → IO Bool

Checks a property parameterized over four arguments according to the default config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

easyCheck5 :: String → (a → b → c → d → e → [Test]) → IO Bool

Checks a property parameterized over five arguments according to the default config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

verboseCheck0 :: String → [Test] → IO Bool

Checks a unit test according to the verbose configuration and a name for the test (first

argument). Returns a flag whether the test was successful.

151

verboseCheck1 :: String → (a → [Test]) → IO Bool

Checks a property parameterized over a single argument according to the verbose con-

figuration and a name for the test (first argument). Returns a flag whether the test was

successful.

verboseCheck2 :: String → (a → b → [Test]) → IO Bool

Checks a property parameterized over two arguments according to the verbose config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

verboseCheck3 :: String → (a → b → c → [Test]) → IO Bool

Checks a property parameterized over three arguments according to the verbose config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

verboseCheck4 :: String → (a → b → c → d → [Test]) → IO Bool

Checks a property parameterized over four arguments according to the verbose config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

verboseCheck5 :: String → (a → b → c → d → e → [Test]) → IO Bool

Checks a property parameterized over five arguments according to the verbose config-

uration and a name for the test (first argument). Returns a flag whether the test was

successful.

valuesOfSearchTree :: SearchTree a → [a]

Extracts values of a search tree according to a given strategy (here: randomized diago-

nalization of levels with flattening).

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy

(here: randomized diagonalization of levels with flattening).

checkPropWithMsg :: String → IO Bool → IO (Maybe String)

Safely checks a property, i.e., catch all exceptions that might occur and return appro-

priate error message in case of a failed test.

checkPropIOWithMsg :: Config → String → PropIO → IO (Maybe String)

Safely checks an IO property, i.e., catch all exceptions that might occur and return ap-

propriate error message in case of a failed test. This operation is used by the currycheck

tool.

152

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-

sequently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which

is neutral in the default can be implemented much more efficient

153

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized

time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

Exported functions:

empty :: Queue a

The empty queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqLength :: Queue a → Int

Returns the number of elements in the queue.

deqHead :: Queue a → a

The first element of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

deqLast :: Queue a → a

The last element of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

154

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then

Nothing else Just (deqLast q,deqInit q) but more efficient.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.

In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the

order predicate le should not satisfy (le x x) for some key x.

Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like

(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of

key, the last corresponding element of the list is taken.

155

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added

starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM C combines the new element with

the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something

which isn’t there

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete

something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right

argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be

taken from the second map.

156

intersectFM C :: (a → b → c) → FM d a → FM d b → FM d c

Filters only those keys that are bound in both of the given maps and combines the

elements as in addToFM C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return

default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key

ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key

ordering.

157

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive

order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given

irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially

given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that

will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown

which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two

provide the same ordering predicate as used in the original finite map.

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).

In this library, graphs are composed and decomposed in an inductive way.

The key idea is as follows:

A graph is either empty or it consists of node context and a graph g’ which are put together by a

constructor (:&).

This constructor (:&), however, is not a constructor in the sense of abstract data type, but

more basically a defined constructing funtion.

A context is a node together withe the edges to and from this node into the nodes in the graph g’.

For examples of how to use this library, cf. the module GraphAlgorithms.

158

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled

with ()).

Unlabeled node

type LNode a = (Int,a)

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,

a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges

from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that

node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

159

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation

of Graph is hidden.

Exported constructors:

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the Context for an arbitrarily-chosen Node and the remaining

Graph.

In order to use graphs as abstract data structures, we also need means to decompose a

graph. This decompostion should work as much like pattern matching as possible. The

normal matching is done by the function matchAny, which takes a graph and yields a

graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty Graph.

160

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a Graph from the list of LNodes and LEdges.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a Graph from a list of Contexts.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled Graph from the list of Nodes and Edges.

insNode :: (Int,a) → Graph a b → Graph a b

Insert a LNode into the Graph.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a LEdge into the Graph.

delNode :: Int → Graph a b → Graph a b

Remove a Node from the Graph.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an Edge from the Graph.

insNodes :: [(Int,a)] → Graph a b → Graph a b

Insert multiple LNodes into the Graph.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple LEdges into the Graph.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple Nodes from the Graph.

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple Edges from the Graph.

isEmpty :: Graph a b → Bool

test if the given Graph is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a Graph into the MContext found

for the given node and the remaining Graph.

noNodes :: Graph a b → Int

The number of Nodes in a Graph.

161

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum Node in a Graph.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given Node. In contrast to ”match”, ”context” causes an error

if the Node is not present in the Graph.

lab :: Graph a b → Int → Maybe a

Find the label for a Node.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a Node.

suc :: Graph a b → Int → [Int]

Find all Nodes that have a link from the given Node.

pre :: Graph a b → Int → [Int]

Find all Nodes that link to to the given Node.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given Node.

lpre :: Graph a b → Int → [(Int,b)]

Find all Nodes that link to the given Node and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound LEdges for the given Node.

inn :: Graph a b → Int → [(Int,Int,b)]

Find all inward-bound LEdges for the given Node.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the Node.

indeg :: Graph a b → Int → Int

The inward-bound degree of the Node.

deg :: Graph a b → Int → Int

The degree of the Node.

gelem :: Int → Graph a b → Bool

True if the Node is present in the Graph.

162

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The Node in a Context.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

The label in a Context.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The LNode from a Context.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to or from in a Context.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to in a Context.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked from in a Context.

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All outward-directed LEdges in a Context.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed LEdges in a Context.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a Context.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a Context.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a Context.

163

labNodes :: Graph a b → [(Int,a)]

A list of all LNodes in the Graph.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all LEdges in the Graph.

nodes :: Graph a b → [Int]

List all Nodes in the Graph.

edges :: Graph a b → [(Int,Int)]

List all Edges in the Graph.

newNodes :: Int → Graph a b → [Int]

List N available Nodes, ie Nodes that are not used in the Graph.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the Node labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the Edge labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

164

A.3.5 Library Random

Library for pseudo-random number generation in Curry.

This library provides operations for generating pseudo-random number sequences. For any given

seed, the sequences generated by the operations in this module should be identical to the sequences

generated by the java.util.Random package.

The algorithm is taken from http://en.wikipedia.org/wiki/Random_number_generation.

There is an assumption that all operations are implicitly executed mod 2^32 (unsigned 32-bit

integers) !!! GHC computes between -2^29 and 2^29-1, thus the sequence is NOT as random as

one would like.

m_w = <choose-initializer>; /* must not be zero */

m_z = <choose-initializer>; /* must not be zero */

uint get_random()

{

m_z = 36969 * (m_z & 65535) + (m_z >> 16);

m_w = 18000 * (m_w & 65535) + (m_w >> 16);

return (m_z << 16) + m_w; /* 32-bit result */

}

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, integer values.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom sequence of values between 0 (inclusive) and the specified

value (exclusive).

nextBoolean :: Int → [Bool]

Returns a pseudorandom sequence of boolean values.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should

only be used as a seed for pseudorandom number sequence and not as a random number

since the precision is limited to milliseconds

shuffle :: Int → [a] → [a]

Computes a random permutation of the given list.

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:

Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e.,

one has to provide two explicit order predicates (”lessThan” and ”eq”below) on elements.

165

http://en.wikipedia.org/wiki/Random_number_generation

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates

generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is

((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a

multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for

the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty

tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sort :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

166

A.3.7 Library SCC

Computing strongly connected components

Copyright (c) 2000 - 2003, Wolfgang Lux See LICENSE for the full license.

The function scc computes the strongly connected components of a list of entities in two steps.

First, the list is topologically sorted ”downwards” using the defines relation. Then the resulting list

is sorted ”upwards” using the uses relation and partitioned into the connected components. Both

relations are computed within this module using the bound and free names of each declaration.

In order to avoid useless recomputations, the code in the module first decorates the declarations

with their bound and free names and a unique number. The latter is only used to provide a trivial

ordering so that the declarations can be used as set elements.

Exported functions:

scc :: (a → [b]) → (a → [b]) → [a] → [[a]]

Computes the strongly connected components of a list of entities. To be flexible, we

distinguish the nodes and the entities defined in this node.

A.3.8 Library SearchTree

This library defines a representation of a search space as a tree and various search strategies on

this tree. This module implements strong encapsulation as discussed in the JFLP’04 paper.

Exported types:

type Strategy a = SearchTree a → ValueSequence a

A search strategy maps a search tree into some sequence of values. Using the abtract

type of sequence of values (rather than list of values) enables the use of search strategies

for encapsulated search with search trees (strong encapsulation) as well as with set

functions (weak encapsulation).

data SearchTree

A search tree is a value, a failure, or a choice between two search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: Int → SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

167

http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html

Exported functions:

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

Internal operation to return the search tree for some expression. Note that this operation

is not purely declarative since the ordering in the resulting search tree depends on the

ordering of the program rules.

isDefined :: a → Bool

Returns True iff the argument is defined, i.e., has a value.

showSearchTree :: SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Returns the size (number of Value/Fail/Or nodes) of the search tree.

limitSearchTree :: Int → SearchTree a → SearchTree a

Limit the depth of a search tree. Branches which a depth larger than the first argument

are replace by Fail (-1).

dfsStrategy :: SearchTree a → ValueSequence a

Depth-first search strategy.

bfsStrategy :: SearchTree a → ValueSequence a

Breadth-first search strategy.

idsStrategy :: SearchTree a → ValueSequence a

Iterative-deepening search strategy.

idsStrategyWith :: Int → (Int → Int) → SearchTree a → ValueSequence a

Parameterized iterative-deepening search strategy. The first argument is the initial

depth bound and the second argument is a function to increase the depth in each

iteration.

diagStrategy :: SearchTree a → ValueSequence a

Diagonalization search strategy.

allValuesWith :: (SearchTree a → ValueSequence a) → SearchTree a → [a]

Return all values in a search tree via some given search strategy.

168

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search.

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search.

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return all values in a search tree via iterative-deepening search. The first argument is

the initial depth bound and the second argument is a function to increase the depth in

each iteration.

allValuesDiag :: SearchTree a → [a]

Return all values in a search tree via diagonalization search strategy.

getAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO [a]

Gets all values of an expression w.r.t. a search strategy. A search strategy is an opera-

tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results.

printAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints all values of an expression w.r.t. a search strategy. A search strategy is an opera-

tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.

Conceptually, all printed values are computed on a copy of the expression, i.e., the

evaluation of the expression does not share any results.

printValuesWith :: (SearchTree a → ValueSequence a) → a → IO ()

Prints the values of an expression w.r.t. a search strategy on demand by the user. Thus,

the user must type <enter></enter> before another value is computed and printed.

A search strategy is an operation to traverse a search tree and collect all values, e.g.,

dfsStrategy or bfsStrategy. Conceptually, all printed values are computed on a copy

of the expression, i.e., the evaluation of the expression does not share any results.

someValue :: a → a

Returns some value for an expression.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value. It fails if the expression has no value.

169

someValueWith :: (SearchTree a → ValueSequence a) → a → a

Returns some value for an expression w.r.t. a search strategy. A search strategy

is an operation to traverse a search tree and collect all values, e.g., dfsStrategy or

bfsStrategy.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value. It fails if the expression has no value.

A.3.9 Library SearchTreeTraversal

Implements additional traversals on search trees.

Exported functions:

depthDiag :: SearchTree a → [a]

diagonalized depth first search.

rndDepthDiag :: Int → SearchTree a → [a]

randomized variant of diagonalized depth first search.

levelDiag :: SearchTree a → [a]

diagonalization of devels.

rndLevelDiag :: Int → SearchTree a → [a]

randomized diagonalization of levels.

rndLevelDiagFlat :: Int → Int → SearchTree a → [a]

randomized diagonalization of levels with flattening.

A.3.10 Library SetRBT

Library with an implementation of sets as red-black trees.

All the operations on sets are generic, i.e., one has to provide an explicit order predicate (<)

(less-than) on elements.

Exported types:

type SetRBT a = RedBlackTree a

170

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

isEmptySetRBT :: RedBlackTree a → Bool

Test for an empty set.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences

in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements

of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all

elements of the first set contained in the second set into a new set, which order is taken

from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

A.3.11 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

171

Exported functions:

sort :: (a → a → Bool) → [a] → [a]

The preferred sorting operation: mergeSort

insertionSort :: (a → a → Bool) → [a] → [a]

Insertion sort.

quickSort :: (a → a → Bool) → [a] → [a]

Quicksort.

mergeSort :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-

guished and Umlauts are sorted as vocals.

172

A.3.12 Library TableRBT

Library with an implementation of tables as red-black trees:

A table is a finite mapping from keys to values. All the operations on tables are generic, i.e.,

one has to provide an explicit order predicate (”cmp” below) on elements. Each inner node in the

red-black tree contains a key-value association.

Exported types:

type TableRBT a b = RedBlackTree (a,b)

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.13 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here7 for a

description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into

a list of children of the same type and recombine new children to a new value of the

original type.

7http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

173

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children

can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.

The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible.

On each member of the family of the result the given function will yield Nothing.

Proceeds bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as

long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

174

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.3.14 Library UnsafeSearchTree

This library defines a representation of a search space as a tree and various search strategies on

this tree. This module implements strong encapsulation as discussed in this paper

Warning: In contrast to the SearchTree Module, free variables that are not bound in the encap-

sulated expression remain free! This may lead to non-determinism if such an escaped variable is

bound later via pattern matching.

Exported types:

type Strategy a = SearchTree a → ValueSequence a

data SearchTree

A search tree is a value, a failure, or a choice between two search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: Int → SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

175

http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html

Exported functions:

isVar :: a → Bool

Tests whether the argument is a free variable This function is only meaningful when

applied to a part of a result of an encapsulated expression if the argument stems from

a Value node of a SearchTree

identicalVars :: a → a → Bool

Tests whether both arguments are identical free variables. This function is only mean-

ingful when applied to parts of a result of an encapsulated expression if the argument

stems from a Value node of a SearchTree

varId :: a → Int

Returns the unique identifier of a free variable, if the argument was not a free variable,

otherwise an error is raised. This function is only meaningful when applied to a part

of a result of an encapsulated expression if the argument stems from a Value node of a

SearchTree

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

Internal operation to return the search tree for some expression. Note that this operation

is not purely declarative since the ordering in the resulting search tree depends on the

ordering of the program rules.

isDefined :: a → Bool

Returns True iff the argument is is defined, i.e., has a value.

showSearchTree :: SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Return the size (number of Value/Fail/Or nodes) of the search tree

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search

dfsStrategy :: SearchTree a → ValueSequence a

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search

176

bfsStrategy :: SearchTree a → ValueSequence a

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

idsStrategy :: SearchTree a → ValueSequence a

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return the list of all values in a search tree via iterative-deepening search. The first

argument is the initial depth bound and the second argument is a function to increase

the depth in each iteration.

idsStrategyWith :: Int → (Int → Int) → SearchTree a → ValueSequence a

Return all values in a search tree via iterative-deepening search. The first argument is

the initial depth bound and the second argument is a function to increase the depth in

each iteration.

getAllValuesWith :: (SearchTree a → ValueSequence a) → a → IO [a]

Gets all values of an expression w.r.t. a search strategy. A search strategy is an opera-

tion to traverse a search tree and collect all values, e.g., dfsStrategy or bfsStrategy.

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables.

someValue :: a → a

Returns some value for an expression.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value. It fails if the expression has no value.

someValueWith :: (SearchTree a → ValueSequence a) → a → a

Returns some value for an expression w.r.t. a search strategy. A search strategy

is an operation to traverse a search tree and collect all values, e.g., dfsStrategy or

bfsStrategy.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value. It fails if the expression has no value.

177

A.3.15 Library ValueSequence

This library defines a data structure for sequence of values. It is used in search trees (module

SearchTree) as well as in set functions (module SetFunctions). Using sequence of values (rather

than standard lists of values) is necessary to get the behavior of set functions w.r.t. finite failures

right, as described in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated

Search in Functional Logic Programs Proc. 15th International Conference on Principles

and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Exported types:

data ValueSequence

A value sequence is an abstract sequence of values. It also contains failure elements in

order to implement the semantics of set functions w.r.t. failures in the intended manner.

Exported constructors:

Exported functions:

emptyVS :: ValueSequence a

An empty sequence of values.

addVS :: a → ValueSequence a → ValueSequence a

Adds a value to a sequence of values.

failVS :: Int → ValueSequence a

Adds a failure to a sequence of values. The argument is the encapsulation level of the

failure.

(|++|) :: ValueSequence a → ValueSequence a → ValueSequence a

Concatenates two sequences of values.

vsToList :: ValueSequence a → [a]

Transforms a sequence of values into a list of values.

A.3.16 Library Rewriting.Term

Library for representation of first-order terms.

This library is the basis of other libraries for the manipulation of first-order terms, e.g., unification

of terms. Therefore, this library also defines other structures, like term equations or positions.

178

Exported types:

type VarIdx = Int

Variable index, identifying a variable.

type TermEq a = (Term a,Term a)

The type of an equation.

type TermEqs a = [(Term a,Term a)]

The type of multiple equations.

type Pos = [Int]

A position in a term represented as a list of integers. Arguments are enumerated from

0.

data Term

Representation of a first-order terms. It is parameterized over the kind of function

symbols, e.g., strings.

Exported constructors:

• TermVar :: Int → Term a

TermVar i

– The variable with index i

• TermCons :: a → [Term a] → Term a

TermCons name args

– The constructor with constructor name and argument terms args

A.3.17 Library Rewriting.Substitution

Library for representation of substitutions on first-order terms.

Exported types:

type Subst a = FM Int (Term a)

The (abstract) data type for substitutions.

179

Exported functions:

showSubst :: FM Int (Term a) → String

Pretty string representation of a substitution.

emptySubst :: FM Int (Term a)

The empty substitution

extendSubst :: FM Int (Term a) → Int → Term a → FM Int (Term a)

Extend the substitution with the given mapping.

lookupSubst :: FM Int (Term a) → Int → Maybe (Term a)

Searches the substitution for a mapping from the given variable index to a term.

applySubst :: FM Int (Term a) → Term a → Term a

Applies a substitution to a single term.

A.3.18 Library Rewriting.Unification

Library for unification on first-order terms.

This library implements a unification algorithm using reference tables.

Exported functions:

unify :: [(Term a,Term a)] → Either (UnificationError a) (FM Int (Term a))

Unifies the given equations.

A.3.19 Library Rewriting.UnificationSpec

Library for specifying the unification on first-order terms.

This library implements a general unification algorithm. Because the algorithm is easy to under-

stand, but rather slow, it serves as a specification for more elaborate implementations.

Exported types:

data UnificationError

The data type for the different kinds of errors that can occur during unification.

Exported constructors:

• Clash :: (Term a) → (Term a) → UnificationError a

Clash t1 t2

– Two term constructors with different names are supposed to be equal.

• OccurCheck :: Int → (Term a) → UnificationError a

OccurCheck v t

– A term is supposed to be equal to a term in which it occurs as a subterm.

180

Exported functions:

unify :: [(Term a,Term a)] → Either (UnificationError a) (FM Int (Term a))

Unifies the given equations.

A.4 Libraries for Web Applications

A.4.1 Library Bootstrap3Style

This library contains some operations to generate web pages rendered with Bootstrap

Exported functions:

bootstrapForm :: String → [String] → String → (String,[HtmlExp]) → [[HtmlExp]]

→ [[HtmlExp]] → Int → [HtmlExp] → [HtmlExp] → [HtmlExp] → [HtmlExp] →
HtmlForm

An HTML form rendered with bootstrap.

bootstrapPage :: String → [String] → String → (String,[HtmlExp]) → [[HtmlExp]]

→ [[HtmlExp]] → Int → [HtmlExp] → [HtmlExp] → [HtmlExp] → [HtmlExp] →
HtmlPage

An HTML page rendered with bootstrap.

titledSideMenu :: String → [[HtmlExp]] → [HtmlExp]

defaultButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Default input button.

smallButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Small input button.

primButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Primary input button.

hrefButton :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as a button.

hrefBlock :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as a block level button.

hrefInfoBlock :: String → [HtmlExp] → HtmlExp

Hypertext reference rendered as an info block level button.

181

http://twitter.github.com/bootstrap/

glyphicon :: String → HtmlExp

homeIcon :: HtmlExp

userIcon :: HtmlExp

loginIcon :: HtmlExp

logoutIcon :: HtmlExp

A.4.2 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index

access (e.g., ”A-Z”) to these entities.

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields

True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple

text layout.

A.4.3 Library HTML

Library for HTML and CGI programming. This paper contains a description of the basic ideas

behind this library.

The installation of a cgi script written with this library can be done by the command

makecurrycgi -m initialForm -o /home/joe/public_html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,

/home/joe/public html/prog.cgi is the desired location of the compiled cgi script, and

initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where

makecurrycgi is a shell script stored in pakcshome/bin).

182

http://www.informatik.uni-kiel.de/~mh/papers/PADL01.html

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the

corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

data HtmlExp

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s

– a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs

– a structure with a tag, attributes, and HTML expressions inside the structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref

– an input element (described by the first argument) with a cgi reference

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr

– an input element (first arg) with an associated event handler (tpyically, a submit button)

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of

HTML forms.

Exported constructors:

183

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs

– an HTML form with title t, optional parameters (e.g., cookies) ps, and contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c

– an answer in an arbitrary format where t is the content type (e.g., ”text/plain”) and c

is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)

are its name and value and optional parameters (expiration date, domain, path (e.g.,

the path ”/” makes the cookie valid for all documents on the server), security) which

are collected in a list.

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params

– a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s

– a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s

– a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s

– a JavaScript statement to be executed when the form is submitted (i.e., <form ...

onsubmit=”s”>)

• FormTarget :: String → FormParam

FormTarget s

– a name of a target frame where the output of the script should be represented (should

only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc

184

– the encoding scheme of this form

• FormMeta :: [(String,String)] → FormParam

FormMeta as

– meta information (in form of attributes) for this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he

– HTML expression to be included in form header

• MultipleHandlers :: FormParam

MultipleHandlers

– indicates that the event handlers of the form can be multiply used (i.e., are not deleted

if the form is submitted so that they are still available when going back in the browser;

but then there is a higher risk that the web server process might overflow with unused

events); the default is a single use of event handlers, i.e., one cannot use the back button

in the browser and submit the same form again (which is usually a reasonable behavior

to avoid double submissions of data).

• BodyAttr :: (String,String) → FormParam

BodyAttr ps

– optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

The data type for representing HTML pages. The constructor arguments are the title,

the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

185

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc

– the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s

– a URL for a CSS file for this page

• PageJScript :: String → PageParam

PageJScript s

– a URL for a Javascript file for this page

• PageMeta :: [(String,String)] → PageParam

PageMeta as

– meta information (in form of attributes) for this page

• PageLink :: [(String,String)] → PageParam

PageLink as

– link information (in form of attributes) for this page

• PageBodyAttr :: (String,String) → PageParam

PageBodyAttr attr

– optional attribute for the body element of the page (more than one occurrence is allowed)

Exported functions:

defaultEncoding :: String

The default encoding used in generated web pages.

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

186

A URL for a CSS file for a HTML form.

formMetaInfo :: [(String,String)] → FormParam

Meta information for a HTML form. The argument is a list of attributes included in

the meta-tag in the header for this form.

formBodyAttr :: (String,String) → FormParam

Optional attribute for the body element of the HTML form. More than one occurrence

is allowed, i.e., all such attributes are collected.

form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages with the default encoding and a default

background.

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as

the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser

together with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together

with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

answerEncText :: String → String → HtmlForm

A textual result instead of an HTML form as a result for active web pages where the

encoding is given as the first parameter.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

187

Adds sound to given HTML form. The functions adds two different declarations for

sound, one invented by Microsoft for the internet explorer, one introduced for netscape.

As neither is an official part of HTML, addsound might not work on all systems and

browsers. The greatest chance is by using sound files in MID-format.

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

pageMetaInfo :: [(String,String)] → PageParam

Meta information for a HTML page. The argument is a list of attributes included in

the meta-tag in the header for this page.

pageLinkInfo :: [(String,String)] → PageParam

Link information for a HTML page. The argument is a list of attributes included in

the link-tag in the header for this page.

pageBodyAttr :: (String,String) → PageParam

Optional attribute for the body element of the web page. More than one occurrence is

allowed, i.e., all such attributes are collected.

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page with the default encoding.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like

<,>,&,”) which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain

special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

188

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

h4 :: [HtmlExp] → HtmlExp

Header 4

h5 :: [HtmlExp] → HtmlExp

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

section :: [HtmlExp] → HtmlExp

Section

header :: [HtmlExp] → HtmlExp

Header

footer :: [HtmlExp] → HtmlExp

Footer

emphasize :: [HtmlExp] → HtmlExp

Emphasize

strong :: [HtmlExp] → HtmlExp

Strong (more emphasized) text.

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

189

nav :: [HtmlExp] → HtmlExp

Navigation

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,”) are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

anchor :: String → [HtmlExp] → HtmlExp

An anchored text with a hypertext reference inside a document.

ulist :: [[HtmlExp]] → HtmlExp

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

190

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a

table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class

defined in a style definition (see styleSheet) or in an external style sheet (see form

and page parameters FormCSS and PageCSS).

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined

in an external style sheet.

blockstyle :: String → [HtmlExp] → HtmlExp

Provides a style for a block of HTML elements. The style argument is the name of

a style class defined in an external style sheet. This element is used (in contrast to

”style”) for larger blocks of HTML elements since a line break is placed before and

after these elements.

inline :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a single HTML element. Although this construction

has no rendering, it is sometimes useful for programming when several HTML elements

must be put together.

block :: [HtmlExp] → HtmlExp

191

Joins a list of HTML elements into a block. A line break is placed before and after

these elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,

otherwise ”” is returned.

checkedbox :: CgiRef → String → HtmlExp

A checkbox that is initially checked with a reference and a value. The value is returned

if checkbox is on, otherwise ”” is returned.

radio main :: CgiRef → String → HtmlExp

A main button of a radio (initially ”on”) with a reference and a value. The value is

returned of this button is on. A complete radio button suite always consists of a main

button (radiomain) and some further buttons (radioothers) with the same reference.

Initially, the main button is selected (or nothing is selected if one uses radiomainoff

instead of radio main). The user can select another button but always at most one

button of the radio can be selected. The value corresponding to the selected button is

returned in the environment for this radio reference.

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially ”off”) with a reference and a value. The value is

returned of this button is on.

radio other :: CgiRef → String → HtmlExp

192

A further button of a radio (initially ”off”) with a reference (identical to the main

button of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are

shown in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item

in this list. The names are shown in the selection and the value is returned for the

selected name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

A selection button with a reference and a list of name/value/flag pairs. The names are

shown in the selection and the value is returned if the corresponding name is selected.

If flag is True, the corresonding name is initially selected. If more than one name has

been selected, all values are returned in one string where the values are separated by

newline (<code>\n</code>) characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be

used with care since it may cause conflicts with the CGI-based implementation of this

library.

htmlQuote :: String → String

Quotes special characters (<,>,&,", umlauts) in a string as HTML special characters.

htmlIsoUmlauts :: String → String

Translates umlauts in iso-8859-1 encoding into HTML special characters.

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

addClass :: HtmlExp → String → HtmlExp

Adds a class attribute to an HTML element.

showHtmlExps :: [HtmlExp] → String

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

193

Transforms a single HTML expression into string representation.

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script is

called with URL ”http://.../script.cgi?parameter”, then ”parameter” is returned by

this I/O action. Note that an URL parameter should be ”URL encoded” to avoid the

appearance of characters with a special meaning. Use the functions ”urlencoded2string”

and ”string2urlencoded” to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are

represented in the form of name/value pairs since no other components are important

here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

194

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

htmlSpecialChars2tex :: String → String

Convert special HTML characters into their LaTeX representation, if necessary.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-

ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-

ument. The variable ”packages” holds the packages to add to the latex document e.g.

”ngerman”

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page. The variable ”packages”

holds the packages to add to the latex document (e.g., ”ngerman”).

germanLatexDoc :: [HtmlExp] → String

show german latex document

intForm :: IO HtmlForm → IO ()

Execute an HTML form in ”interactive” mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in ”interactive” mode with various parameters.

A.4.4 Library HtmlCgi

Library to support CGI programming in the HTML library. It is only intended as an auxiliary

library to implement dynamic web pages according to the HTML library. It contains a simple script

that is installed for a dynamic web page and which sends the user input to the real application

server implementing the application.

195

Exported types:

data CgiServerMsg

The messages to comunicate between the cgi script and the server program. CgiSubmit

env cgienv nextpage - pass the environment and show next page, where env are the values

of the environment variables of the web script (e.g., QUERYSTRING, REMOTEHOST,

REMOTE ADDR), cgienv are the values in the current form submitted by the client,

and nextpage is the answer text to be shown in the next web page

Exported constructors:

• CgiSubmit :: [(String,String)] → [(String,String)] → CgiServerMsg

• GetLoad :: CgiServerMsg

GetLoad

– get info about the current load of the server process

• SketchStatus :: CgiServerMsg

SketchStatus

– get a sketch of the status of the server

• SketchHandlers :: CgiServerMsg

SketchHandlers

– get a sketch of all event handlers of the server

• ShowStatus :: CgiServerMsg

ShowStatus

– show the status of the server with all event handlers

• CleanServer :: CgiServerMsg

CleanServer

– clean up the server (with possible termination)

• StopCgiServer :: CgiServerMsg

StopCgiServer

– stop the server

196

Exported functions:

readCgiServerMsg :: Handle → IO (Maybe CgiServerMsg)

Reads a line from a handle and check whether it is a syntactically correct cgi server

message.

submitForm :: IO ()

runCgiServerCmd :: String → CgiServerMsg → IO ()

Executes a specific command for a cgi server.

noHandlerPage :: String → String → String

cgiServerRegistry :: String

The name of the file to register all cgi servers.

registerCgiServer :: String → String → IO ()

unregisterCgiServer :: String → IO ()

A.4.5 Library HtmlParser

This module contains a very simple parser for HTML documents.

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is

a well structured document, the list of HTML expressions should contain exactly one

element.

A.4.6 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted

to the local environment.

197

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC

– recipient of a carbon copy

• BCC :: String → MailOption

BCC

– recipient of a blind carbon copy

• TO :: String → MailOption

TO

– recipient of the email

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are

allowed, e.g., more than one CC option for multiple recipient of carbon copies.

Important note: The implementation of this operation is based on the command ”mailx”

and must be adapted according to your local environment!

A.4.7 Library Markdown

Library to translate markdown documents into HTML or LaTeX. The slightly restricted subset of

the markdown syntax recognized by this implementation is documented in this page.

Exported types:

type MarkdownDoc = [MarkdownElem]

A markdown document is a list of markdown elements.

data MarkdownElem

The data type for representing the different elements occurring in a markdown docu-

ment.

198

http://en.wikipedia.org/wiki/Markdown
http://www.informatik.uni-kiel.de/~pakcs/markdown_syntax.html

Exported constructors:

• Text :: String → MarkdownElem

Text s

– a simple text in a markdown document

• Emph :: String → MarkdownElem

Emph s

– an emphasized text in a markdown document

• Strong :: String → MarkdownElem

Strong s

– a strongly emphaszed text in a markdown document

• Code :: String → MarkdownElem

Code s

– a code string in a markdown document

• HRef :: String → String → MarkdownElem

HRef s u

– a reference to URL u with text s in a markdown document

• Par :: [MarkdownElem] → MarkdownElem

Par md

– a paragraph in a markdown document

• CodeBlock :: String → MarkdownElem

CodeBlock s

– a code block in a markdown document

• UList :: [[MarkdownElem]] → MarkdownElem

UList mds

– an unordered list in a markdown document

• OList :: [[MarkdownElem]] → MarkdownElem

OList mds

– an ordered list in a markdown document

• Quote :: [MarkdownElem] → MarkdownElem

Quote md

199

– a quoted paragraph in a markdown document

• HRule :: MarkdownElem

HRule

– a hoirzontal rule in a markdown document

• Header :: Int → String → MarkdownElem

Header l s

– a level l header with title s in a markdown document

Exported functions:

fromMarkdownText :: String → [MarkdownElem]

Parse markdown document from its textual representation.

removeEscapes :: String → String

Remove the backlash of escaped markdown characters in a string.

markdownEscapeChars :: String

Escape characters supported by markdown.

markdownText2HTML :: String → [HtmlExp]

Translate a markdown text into a (partial) HTML document.

markdownText2CompleteHTML :: String → String → String

Translate a markdown text into a complete HTML text that can be viewed as a stan-

dalone document by a browser. The first argument is the title of the document.

markdownText2LaTeX :: String → String

Translate a markdown text into a (partial) LaTeX document. All characters with a

special meaning in LaTeX, like dollar or ampersand signs, are quoted.

markdownText2LaTeXWithFormat :: (String → String) → String → String

Translate a markdown text into a (partial) LaTeX document where the first argument is

a function to translate the basic text occurring in markdown elements to a LaTeX string.

For instance, one can use a translation operation that supports passing mathematical

formulas in LaTeX style instead of quoting all special characters.

markdownText2CompleteLaTeX :: String → String

Translate a markdown text into a complete LaTeX document that can be formatted as

a standalone document.

formatMarkdownInputAsPDF :: IO ()

Format the standard input (containing markdown text) as PDF.

formatMarkdownFileAsPDF :: String → IO ()

Format a file containing markdown text as PDF.

200

A.4.8 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the

program ”wget” is in your path, otherwise the implementation must be adapted to the

local installation.

A.4.9 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs).

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

code attached (for future extensions).

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

201

http://www.informatik.uni-kiel.de/~pakcs/WUI

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must

be a transformation mapping values from the old type to the new type. This function

must be bijective and operationally invertible (i.e., the inverse must be computable by

narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

202

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

203

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-

structor. The second and third arguments are the WUI specifications for the argument

types.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

204

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

205

WUI combinator for constructors of arity 11. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

206

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

207

A.4.10 Library WUIjs

A library to support the type-oriented construction of Web User Interfaces (WUIs).

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

In addition to the original library, this version provides also support for JavaScript.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

JavaScript code attached.

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

208

http://www.informatik.uni-kiel.de/~pakcs/WUI

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

withConditionJS :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

withConditionJSName :: WuiSpec a → (a → Bool,String) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must

be a transformation mapping values from the old type to the new type. This function

must be bijective and operationally invertible (i.e., the inverse must be computable by

narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

209

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

210

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-

structor. The second and third arguments are the WUI specifications for the argument

types.

wCons2JS :: Maybe ([JSExp] → JSExp) → (a → b → c) → WuiSpec a → WuiSpec b →
WuiSpec c

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons3JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons4JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

211

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons5JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons6JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons7JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h)

→ WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

212

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons8JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

→ WuiSpec g → WuiSpec h → WuiSpec i

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons9JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h → i

→ j) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec

f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wCons10JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

213

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wCons11JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k → l) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wCons12JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h

→ i → j → k → l → m) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d →
WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j →
WuiSpec k → WuiSpec l → WuiSpec m

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

214

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

215

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

A.4.11 Library XML

Library for processing XML data.

Warning: the structure of this library is not stable and might be changed in the future!

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

• XText :: String → XmlExp

XText

– a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem

– an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

216

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc

– the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl

– the url of the DTD for a document

Exported functions:

tagOf :: XmlExp → String

Returns the tag of an XML element (or empty for a textual element).

elemsOf :: XmlExp → [XmlExp]

Returns the child elements an XML element.

textOf :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function

when transforming XML expressions into other data structures.

For instance, textOf [XText ”xy”, XElem ”a” [] [], XText "bc"] == "xy bc"

textOfXml :: [XmlExp] → String

Included for backward compatibility, better use textOf!

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

217

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-

sion, if possible. If file or parse errors occur, Nothing is returned.

readFileWithXmlDocs :: String → IO [XmlExp]

Reads a file with an arbitrary sequence of XML documents and returns the list of

corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well

structured document, the list of XML expressions should contain exactly one element.

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the

XML document.

A.4.12 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be rep-

resented as algebraic datatypes and vice versa. See here8 for a description of this library.

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

8http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

218

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns

the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the

representation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

Takes an XML converter and an XML expression and returns a corresponding Curry

value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer values. Integer values must not be used in repe-

titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions

and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in

repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repeti-

tions and do not represent XML elements.

219

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element

that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

Takes a value and returns an XML converter for this value which is not represented as

XML data. Empty XML data must not be used in repetitions and does not represent

an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that

represents an attribute. Attributes must not be used in repetitions and do not represent

an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

Creates a converter for arbitrary optional XML data. Optional XML data must not be

used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter

that represents repetitions of this data. Repetitions must not be used in other repeti-

tions and do not represent XML elements.

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used

in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in

repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be

used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

220

Creates an XML converter for string attributes. String attributes must not be used in

repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used

in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

Creates an XML converter for integer elements. Integer elements may be used in repe-

titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in

repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-

tions.

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in

repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given

value. The created element may be used in repetitions.

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.

The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.

The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

221

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions but does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

222

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

223

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

224

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

A.5 Libraries for Meta-Programming

A.5.1 Library AbstractCurry.Types

This library contains a definition for representing Curry programs in Curry and an I/O action to

read Curry programs and transform them into this abstract representation.

Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of

2003.

Assumption: an abstract Curry program is stored in file with extension .acy

Exported types:

type MName = String

A module name.

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-

ified to avoid name clashes. The first component is the module name and the second

component the unqualified name as it occurs in the source program. An exception are

locally defined names where the module name is the empty string (to avoid name clashes

with a globally defined name).

type CTVarIName = (Int,String)

The type for representing type variables. They are represented by (i,n) where i is a type

variable index which is unique inside a function and n is a name (if possible, the name

written in the source program).

type CField a = ((String,String),a)

Labeled record fields

type Arity = Int

Function arity

type CVarIName = (Int,String)

225

Data types for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data CVisibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: CVisibility

• Private :: CVisibility

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(CurryProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are im-

ported, typedecls: Type declarations functions: Function declarations opdecls: Opera-

tor precedence declarations

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

226

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

• CNewType :: (String,String) → CVisibility → [(Int,String)] → CConsDecl →
CTypeDecl

data CConsDecl

A constructor declaration consists of the name of the constructor and a list of the

argument types of the constructor. The arity equals the number of types.

Exported constructors:

• CCons :: (String,String) → CVisibility → [CTypeExpr] → CConsDecl

• CRecord :: (String,String) → CVisibility → [CFieldDecl] → CConsDecl

data CFieldDecl

A record field declaration consists of the name of the the label, the visibility and its

corresponding type.

Exported constructors:

• CField :: (String,String) → CVisibility → CTypeExpr → CFieldDecl

data CTypeExpr

Type expression. A type expression is either a type variable, a function type, or a type

constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

data COpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-

sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

227

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

Data type for operator associativity

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in AbstractCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

Thus, a function declaration consists of the name, arity, type, and a list of rules.

A function declaration with the constructor CmtFunc is similarly to CFunc but has

a comment as an additional first argument. This comment could be used by pretty

printers that generate a readable Curry program containing documentation comments.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

• CmtFunc :: String → (String,String) → Int → CVisibility → CTypeExpr →
[CRule] → CFuncDecl

data CRule

The general form of a function rule. It consists of a list of patterns (left-hand side) and

the right-hand side for these patterns.

Exported constructors:

• CRule :: [CPattern] → CRhs → CRule

data CRhs

Right-hand-side of a CRule or a case expression. It is either a simple unconditional

right-hand side or a list of guards with their corresponding right-hand sides, and a list

of local declarations.

228

Exported constructors:

• CSimpleRhs :: CExpr → [CLocalDecl] → CRhs

• CGuardedRhs :: [(CExpr,CExpr)] → [CLocalDecl] → CRhs

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CRhs → CLocalDecl

• CLocalVars :: [(Int,String)] → CLocalDecl

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

• CPLazy :: CPattern → CPattern

• CPRecord :: (String,String) → [((String,String),CPattern)] → CPattern

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

229

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CCaseType → CExpr → [(CPattern,CRhs)] → CExpr

• CTyped :: CExpr → CTypeExpr → CExpr

• CRecConstr :: (String,String) → [((String,String),CExpr)] → CExpr

• CRecUpdate :: CExpr → [((String,String),CExpr)] → CExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a

float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

• CStringc :: String → CLiteral

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

• CSLet :: [CLocalDecl] → CStatement

data CCaseType

Type of case expressions

Exported constructors:

• CRigid :: CCaseType

• CFlex :: CCaseType

230

Exported functions:

version :: String

Current version of AbstractCurry

preludeName :: String

The name of the standard prelude.

pre :: String → (String,String)

Converts a string into a qualified name of the Prelude.

A.5.2 Library AbstractCurry.Files

This library defines various I/O actions to read Curry programs and transform them into the

AbstractCurry representation and to write AbstractCurry files.

Assumption: an abstract Curry program is stored in file with extension .acy in the subdirectory

.curry

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract

Curry program. Thus, the argument is the file name without suffix ”.curry” or ”.lcurry”)

and the result is a Curry term representing this program.

readCurryWithImports :: String → IO [CurryProg]

Read an AbstractCurry file with all its imports.

tryReadCurryWithImports :: String → IO (Either [String] [CurryProg])

tryReadCurryFile :: String → IO (Either String CurryProg)

tryParse :: String → IO (Either String CurryProg)

Try to parse an AbstractCurry file.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-

stract Curry program. Thus, the argument is the file name without suffix ”.curry” or

”.lcurry”) and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

231

I/O action which reads a typed Curry program from a file (with extension ”.acy”)

with respect to some parser options. This I/O action is used by the standard action

readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads an untyped Curry program from a file (with extension

”.uacy”) with respect to some parser options. For more details see function

readCurryWithParseOptions

abstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding AbstractCurry program.

untypedAbstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding untyped AbstractCurry program.

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ”.acy” format. In

contrast to readCurry, this action does not parse a source program. Thus, the argument

must be the name of an existing file (with suffix ”.acy”) containing an AbstractCurry

program in ”.acy” format and the result is a Curry term representing this program. It

is currently predefined only in Curry2Prolog.

tryReadACYFile :: String → IO (Maybe CurryProg)

Tries to read an AbstractCurry file and returns

• Left err , where err specifies the error occurred

• Right prog, where prog is the AbstractCurry program

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ”.acy” format. The first argument must

be the name of the target file (with suffix ”.acy”).

A.5.3 Library AbstractCurry.Select

This library provides some useful operations to select components in AbstractCurry programs, i.e.,

it provides a collection of selector functions for AbstractCurry.

232

Exported functions:

progName :: CurryProg → String

imports :: CurryProg → [String]

Returns the imports (module names) of a given Curry program.

functions :: CurryProg → [CFuncDecl]

Returns the function declarations of a given Curry program.

constructors :: CurryProg → [CConsDecl]

Returns all constructors of given Curry program.

types :: CurryProg → [CTypeDecl]

Returns the type declarations of a given Curry program.

publicFuncNames :: CurryProg → [(String,String)]

Returns the names of all visible functions in given Curry program.

publicConsNames :: CurryProg → [(String,String)]

Returns the names of all visible constructors in given Curry program.

publicTypeNames :: CurryProg → [(String,String)]

Returns the names of all visible types in given Curry program.

typeName :: CTypeDecl → (String,String)

Returns the name of a given type declaration

typeVis :: CTypeDecl → CVisibility

Returns the visibility of a given type declaration

typeCons :: CTypeDecl → [CConsDecl]

Returns the constructors of a given type declaration.

consName :: CConsDecl → (String,String)

Returns the name of a given constructor declaration.

consVis :: CConsDecl → CVisibility

Returns the visibility of a given constructor declaration.

isBaseType :: CTypeExpr → Bool

233

Returns true if the type expression is a base type.

isPolyType :: CTypeExpr → Bool

Returns true if the type expression contains type variables.

isFunctionalType :: CTypeExpr → Bool

Returns true if the type expression is a functional type.

isIOType :: CTypeExpr → Bool

Returns true if the type expression is (IO t).

isIOReturnType :: CTypeExpr → Bool

Returns true if the type expression is (IO t) with t/=() and t is not functional

argTypes :: CTypeExpr → [CTypeExpr]

Returns all argument types from a functional type

resultType :: CTypeExpr → CTypeExpr

Return the result type from a (nested) functional type

tvarsOfType :: CTypeExpr → [(Int,String)]

Returns all type variables occurring in a type expression.

modsOfType :: CTypeExpr → [String]

Returns all modules used in the given type.

funcName :: CFuncDecl → (String,String)

Returns the name of a given function declaration.

funcArity :: CFuncDecl → Int

funcVis :: CFuncDecl → CVisibility

Returns the visibility of a given function declaration.

funcType :: CFuncDecl → CTypeExpr

Returns the type of a given function declaration.

varsOfPat :: CPattern → [(Int,String)]

Returns list of all variables occurring in a pattern. Each occurrence corresponds to one

element, i.e., the list might contain multiple elements.

varsOfExp :: CExpr → [(Int,String)]

234

Returns list of all variables occurring in an expression. Each occurrence corresponds to

one element, i.e., the list might contain multiple elements.

varsOfRhs :: CRhs → [(Int,String)]

Returns list of all variables occurring in a right-hand side. Each occurrence corresponds

to one element, i.e., the list might contain multiple elements.

varsOfStat :: CStatement → [(Int,String)]

Returns list of all variables occurring in a statement. Each occurrence corresponds to

one element, i.e., the list might contain multiple elements.

varsOfLDecl :: CLocalDecl → [(Int,String)]

Returns list of all variables occurring in a local declaration. Each occurrence corresponds

to one element, i.e., the list might contain multiple elements.

varsOfFDecl :: CFuncDecl → [(Int,String)]

Returns list of all variables occurring in a function declaration. Each occurrence corre-

sponds to one element, i.e., the list might contain multiple elements.

varsOfRule :: CRule → [(Int,String)]

Returns list of all variables occurring in a rule. Each occurrence corresponds to one

element, i.e., the list might contain multiple elements.

funcNamesOfLDecl :: CLocalDecl → [(String,String)]

funcNamesOfFDecl :: CFuncDecl → [(String,String)]

funcNamesOfStat :: CStatement → [(String,String)]

ldeclsOfRule :: CRule → [CLocalDecl]

isPrelude :: String → Bool

Tests whether a module name is the prelude.

A.5.4 Library AbstractCurry.Build

This library provides some useful operations to write programs that generate AbstractCurry pro-

grams in a more compact and readable way.

235

Exported functions:

(~>) :: CTypeExpr → CTypeExpr → CTypeExpr

A function type.

baseType :: (String,String) → CTypeExpr

A base type.

listType :: CTypeExpr → CTypeExpr

Constructs a list type from an element type.

tupleType :: [CTypeExpr] → CTypeExpr

Constructs a tuple type from list of component types.

ioType :: CTypeExpr → CTypeExpr

Constructs an IO type from a type.

maybeType :: CTypeExpr → CTypeExpr

Constructs a Maybe type from element type.

stringType :: CTypeExpr

The type expression of the String type.

intType :: CTypeExpr

The type expression of the Int type.

floatType :: CTypeExpr

The type expression of the Float type.

boolType :: CTypeExpr

The type expression of the Bool type.

charType :: CTypeExpr

The type expression of the Char type.

unitType :: CTypeExpr

The type expression of the unit type.

dateType :: CTypeExpr

The type expression of the Time.CalendarTime type.

cfunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

236

Constructs a function declaration from a given qualified function name, arity, visibility,

type expression and list of defining rules.

cmtfunc :: String → (String,String) → Int → CVisibility → CTypeExpr → [CRule]

→ CFuncDecl

Constructs a function declaration from a given comment, qualified function name, arity,

visibility, type expression and list of defining rules.

simpleRule :: [CPattern] → CExpr → CRule

Constructs a simple rule with a pattern list and an unconditional right-hand side.

guardedRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

Constructs a rule with a possibly guarded right-hand side and local declarations. A

simple right-hand side is constructed if there is only one True condition.

noGuard :: CExpr → (CExpr,CExpr)

Constructs a guarded expression with the trivial guard.

applyF :: (String,String) → [CExpr] → CExpr

An application of a qualified function name to a list of arguments.

applyE :: CExpr → [CExpr] → CExpr

An application of an expression to a list of arguments.

constF :: (String,String) → CExpr

A constant, i.e., an application without arguments.

applyV :: (Int,String) → [CExpr] → CExpr

An application of a variable to a list of arguments.

applyJust :: CExpr → CExpr

applyMaybe :: CExpr → CExpr → CExpr → CExpr

tupleExpr :: [CExpr] → CExpr

Constructs a tuple expression from list of component expressions.

cBranch :: CPattern → CExpr → (CPattern,CRhs)

Constructs from a pattern and an expression a branch for a case expression.

tuplePattern :: [CPattern] → CPattern

237

Constructs a tuple pattern from list of component patterns.

pVars :: Int → [CPattern]

Constructs, for given n, a list of n PVars starting from 0.

pInt :: Int → CPattern

Converts an integer into an AbstractCurry expression.

pFloat :: Float → CPattern

Converts a float into an AbstractCurry expression.

pChar :: Char → CPattern

Converts a character into a pattern.

pNil :: CPattern

Constructs an empty list pattern.

listPattern :: [CPattern] → CPattern

Constructs a list pattern from list of component patterns.

stringPattern :: String → CPattern

Converts a string into a pattern representing this string.

list2ac :: [CExpr] → CExpr

Converts a list of AbstractCurry expressions into an AbstractCurry representation of

this list.

cInt :: Int → CExpr

Converts an integer into an AbstractCurry expression.

cFloat :: Float → CExpr

Converts a float into an AbstractCurry expression.

cChar :: Char → CExpr

Converts a character into an AbstractCurry expression.

string2ac :: String → CExpr

Converts a string into an AbstractCurry represention of this string.

toVar :: Int → CExpr

Converts an index i into a variable named xi.

cvar :: String → CExpr

Converts a string into a variable with index 1.

cpvar :: String → CPattern

Converts a string into a pattern variable with index 1.

ctvar :: String → CTypeExpr

Converts a string into a type variable with index 1.

238

A.5.5 Library AbstractCurry.Pretty

Pretty-printing of AbstractCurry.

This library provides a pretty-printer for AbstractCurry modules.

Exported types:

data Qualification

Exported constructors:

data LayoutChoice

The choice for a generally preferred layout.

Exported constructors:

• PreferNestedLayout :: LayoutChoice

PreferNestedLayout

– prefer a layout where the arguments of long expressions are vertically aligned

• PreferFilledLayout :: LayoutChoice

PreferFilledLayout

– prefer a layout where the arguments of long expressions are filled as long as possible into

one line

data Options

Exported constructors:

Exported functions:

defaultOptions :: Options

The default options to pretty print a module. These are:

• page width: 78 characters

• indentation width: 2 characters

• qualification method: qualify all imported names (except prelude names)

• layout choice: prefer nested layout (see LayoutChoice)

239

These options can be changed by corresponding setters (setPageWith, setIndentWith,

set...Qualification, setLayoutChoice).

Note: If these default options are used for pretty-print operations other than

prettyCurryProg or ppCurryProg, then one has to set the current module name ex-

plicitly by setModName!

setPageWith :: Int → Options → Options

Sets the page width of the pretty printer options.

setIndentWith :: Int → Options → Options

Sets the indentation width of the pretty printer options.

setImportQualification :: Options → Options

Sets the qualification method to be used to print identifiers to ”import qualification”

(which is the default). In this case, all identifiers imported from other modules (except

for the identifiers of the prelude) are fully qualified.

setNoQualification :: Options → Options

Sets the qualification method to be used to print identifiers to ”unqualified”. In this

case, no identifiers is printed with its module qualifier. This might lead to name conflicts

or unintended references if some identifiers in the pretty-printed module are in conflict

with imported identifiers.

setFullQualification :: Options → Options

Sets the qualification method to be used to print identifiers to ”fully qualified”. In this

case, every identifiers, including those of the processed module and the prelude, are

fully qualified.

setOnDemandQualification :: [CurryProg] → Options → Options

Sets the qualification method to be used to print identifiers to ”qualification on de-

mand”. In this case, an identifier is qualified only if it is necessary to avoid a name

conflict, e.g., if a local identifier has the same names as an imported identifier. Since it

is necessary to know the names of all identifiers defined in the current module (to be

pretty printed) and imported from other modules, the first argument is the list of mod-

ules consisting of the current module and all imported modules (including the prelude).

The current module must always be the head of this list.

setModName :: String → Options → Options

Sets the name of the current module in the pretty printer options.

setLayoutChoice :: LayoutChoice → Options → Options

Sets the preferred layout in the pretty printer options.

240

showCProg :: CurryProg → String

Shows a pretty formatted version of an abstract Curry Program. The options for pretty-

printing are the defaultOptions (and therefore the restrictions mentioned there apply

here too).

prettyCurryProg :: Options → CurryProg → String

Pretty-print the document generated by ppCurryProg, using the page width specified

by given options.

ppCurryProg :: Options → CurryProg → Doc

Pretty-print a CurryProg (the representation of a program, written in curry, using

AbstractCurry) according to given options. This function will overwrite the module

name given by options with the name encapsulated in CurryProg.

ppMName :: String → Doc

Pretty-print a module name (just a string).

ppExports :: Options → [CTypeDecl] → [CFuncDecl] → Doc

Pretty-print exports, i.e. all type and function declarations which are public. extract

the type and function declarations which are public and gather their qualified names in

a list.

ppImports :: Options → [String] → Doc

Pretty-print imports (list of module names) by prepending the word ”import” to the

module name. If the qualification mode is Imports or Full, then the imports are

declared as qualified.

ppCOpDecl :: Options → COpDecl → Doc

Pretty-print operator precedence declarations.

ppCTypeDecl :: Options → CTypeDecl → Doc

Pretty-print type declarations, like data ... = ..., type ... = ... or newtype

... =

ppCFuncDecl :: Options → CFuncDecl → Doc

Pretty-print a function declaration.

ppCFuncDeclWithoutSig :: Options → CFuncDecl → Doc

Pretty-print a function declaration without signature.

ppCFuncSignature :: Options → (String,String) → CTypeExpr → Doc

Pretty-print a function signature according to given options.

241

ppCTypeExpr :: Options → CTypeExpr → Doc

Pretty-print a type expression.

ppCPattern :: Options → CPattern → Doc

Pretty-print a pattern expression.

ppCLiteral :: Options → CLiteral → Doc

Pretty-print given literal (Int, Float, ...).

ppCExpr :: Options → CExpr → Doc

Pretty-print an expression.

ppCStatement :: Options → CStatement → Doc

ppQFunc :: Options → (String,String) → Doc

Pretty-print a function name or constructor name qualified according to given options.

Use ppQType or ppType for pretty-printing type names.

ppFunc :: (String,String) → Doc

Pretty-print a function name or constructor name non-qualified. Use ppQType or ppType

for pretty-printing type names.

ppQType :: Options → (String,String) → Doc

Pretty-print a type (QName) qualified according to given options.

ppType :: (String,String) → Doc

Pretty-print a type (QName) non-qualified.

A.5.6 Library FlatCurry.Types

This library supports meta-programming, i.e., the manipulation of Curry programs in Curry. For

this purpose, the library contains definitions of data types for the representation of so-called

FlatCurry programs.

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to

avoid name clashes. The first component is the module name and the second component

the unqualified name as it occurs in the source program.

type TVarIndex = Int

242

The data type for representing type variables. They are represented by (TVar i) where

i is a type variable index.

type VarIndex = Int

Data type for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(Prog modname imports typedecls functions opdecls)

where modname is the name of this module, imports is the list of modules names that are

imported, and typedecls, functions, and opdecls are the list of data type, function,

and operator declarations contained in this module, respectively.

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

• Private :: Visibility

data TypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

243

Exported constructors:

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

data OpDecl

Data type for operator declarations. An operator declaration fix p n in Curry corre-

sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

244

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name k type (Rule [i1,...,ik] e))

and represents the function name with definition

name :: type

name x1...xk = e

where each ij is the index of the variable xj.

Note: the variable indices are unique inside each function declaration and are usually

numbered from 0

External functions are represented as

(Func name arity type (External s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

data Rule

A rule is either a list of formal parameters together with an expression or an ”External”

tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or

rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

245

Data type for classifying combinations (i.e., a function/constructor applied to some

arguments).

Exported constructors:

• FuncCall :: CombType

FuncCall

– a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall

– a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall

– a partial call to a function (i.e., not all arguments are provided) where the parameter is

the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall

– a partial call to a constructor (i.e., not all arguments are provided) where the parameter

is the number of missing arguments

data Expr

Data type for representing expressions.

Remarks:

if-then-else expressions are represented as function calls:

(if e1 then e2 else e3)

is represented as

(Comb FuncCall ("Prelude","if_then_else") [e1,e2,e3])

Higher-order applications are represented as calls to the (external) function apply. For

instance, the rule

app f x = f x

is represented as

246

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

A conditional rule is represented as a call to an external function cond where the first

argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = True

is represented as

(Rule [0]

(Comb FuncCall ("Prelude","cond")

[Comb FuncCall ("Prelude","=:=") [Var 0, Lit (Intc 2)],

Comb FuncCall ("Prelude","True") []]))

Exported constructors:

• Var :: Int → Expr

Var

– variable (represented by unique index)

• Lit :: Literal → Expr

Lit

– literal (Int/Float/Char constant)

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb

– application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

Let

– introduction of local variables via (recursive) let declarations

• Free :: [Int] → Expr → Expr

Free

– introduction of free local variables

• Or :: Expr → Expr → Expr

Or

– disjunction of two expressions (used to translate rules with overlapping left-hand sides)

247

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case

– case distinction (rigid or flex)

• Typed :: Expr → TypeExpr → Expr

Typed

– typed expression to represent an expression with a type declaration

data BranchExpr

Data type for representing branches in a case expression.

Branches ”(m.c x1...xn) -> e” in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-

stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either

an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

248

Exported functions:

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,

names not defined in this module (except for names defined in the prelude) are prefixed

with their module name.

A.5.7 Library FlatCurry.Files

This library supports meta-programming, i.e., the manipulation of Curry programs in Curry. This

library defines I/O actions

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry

program. Thus, the argument is the module path (without suffix ”.curry” or ”.lcurry”)

and the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which parses a Curry program with respect to some parser options and

returns the corresponding FlatCurry program. This I/O action is used by the standard

action readFlatCurry.

flatCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

flatCurryIntName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ”.fcy” format. In contrast to

readFlatCurry, this action does not parse a source program. Thus, the argument must

be the name of an existing file (with suffix ”.fcy”) containing a FlatCurry program in

”.fcy” format and the result is a FlatCurry term representing this program.

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry module, i.e., a FlatCurry program

containing only ”Public” entities and function definitions without rules (i.e., external

functions). The argument is the file name without suffix ”.curry” (or ”.lcurry”) and the

result is a FlatCurry term representing the interface of this module.

249

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ”.fcy” format. The first argument must be

the name of the target file (with suffix ”.fcy”).

lookupFlatCurryFileInLoadPath :: String → IO (Maybe String)

Returns the name of the FlatCurry file of a module in the load path, if this file exists.

getFlatCurryFileInLoadPath :: String → IO String

Returns the name of the FlatCurry file of a module in the load path, if this file exists.

A.5.8 Library FlatCurry.Goodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

250

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

251

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

252

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

253

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

254

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

funcType :: FuncDecl → TypeExpr

get type of function

255

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

256

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

257

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of variables in let declaration

letBody :: Expr → Expr

get body of let declaration

258

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → (a → TypeExpr → a) → Expr → a

259

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

updTypeds :: (Expr → TypeExpr → Expr) → Expr → Expr

update all typed expressions in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

is expression a partial constructor call?

isGround :: Expr → Bool

260

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

get literal from literal pattern

isConsPattern :: Pattern → Bool

261

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

A.5.9 Library FlatCurry.Pretty

This library provides pretty-printers for FlatCurry modules and all substructures (e.g., expressions).

Exported types:

data Options

Options for pretty printing

Exported constructors:

• Options :: Int → QualMode → String → Options

data QualMode

Qualification mode, determines whether identifiers are printed qualified or unqualified.

While QualNone and QualImports aim at readability, there may be ambiguities due to

shadowing. On the contrary, QualImports and QualAll produce correct output at the

cost of readability.

Exported constructors:

• QualNone :: QualMode

QualNone

– no qualification, only unqualified names

262

• QualImportsButPrelude :: QualMode

QualImportsButPrelude

– qualify all imports except those from the module Prelude

• QualImports :: QualMode

QualImports

– qualify all imports, including Prelude

• QualAll :: QualMode

QualAll

– qualify all names

Exported functions:

indentWidth :: Options → Int

qualMode :: Options → QualMode

currentModule :: Options → String

defaultOptions :: Options

Default Options for pretty-printing.

ppProg :: Options → Prog → Doc

pretty-print a FlatCurry module

ppHeader :: Options → String → [TypeDecl] → [FuncDecl] → Doc

pretty-print the module header

ppExports :: Options → [TypeDecl] → [FuncDecl] → Doc

pretty-print the export list

ppTypeExport :: Options → TypeDecl → Doc

pretty-print a type export

ppConsExports :: Options → [ConsDecl] → [Doc]

pretty-print the export list of constructors

263

ppFuncExports :: Options → [FuncDecl] → [Doc]

pretty-print the export list of functions

ppImports :: Options → [String] → Doc

pretty-print a list of import statements

ppImport :: Options → String → Doc

pretty-print a single import statement

ppOpDecls :: Options → [OpDecl] → Doc

pretty-print a list of operator fixity declarations

ppOpDecl :: Options → OpDecl → Doc

pretty-print a single operator fixity declaration

ppFixity :: Fixity → Doc

pretty-print the associativity keyword

ppTypeDecls :: Options → [TypeDecl] → Doc

pretty-print a list of type declarations

ppTypeDecl :: Options → TypeDecl → Doc

pretty-print a type declaration

ppConsDecls :: Options → [ConsDecl] → Doc

pretty-print the constructor declarations

ppConsDecl :: Options → ConsDecl → Doc

pretty print a single constructor

ppTypeExp :: Options → TypeExpr → Doc

pretty a top-level type expression

ppTypeExpr :: Options → Int → TypeExpr → Doc

pretty-print a type expression

ppTVarIndex :: Int → Doc

pretty-print a type variable

ppFuncDecls :: Options → [FuncDecl] → Doc

pretty-print a list of function declarations

264

ppFuncDecl :: Options → FuncDecl → Doc

pretty-print a function declaration

ppRule :: Options → Rule → Doc

pretty-print a function rule

ppExp :: Options → Expr → Doc

Pretty-print a top-level expression.

ppExpr :: Options → Int → Expr → Doc

pretty-print an expression

ppVarIndex :: Int → Doc

pretty-print a variable

ppLiteral :: Literal → Doc

pretty-print a literal

ppComb :: Options → Int → (String,String) → [Expr] → Doc

Pretty print a constructor or function call

ppDecls :: Options → [(Int,Expr)] → Doc

pretty-print a list of declarations

ppDecl :: Options → (Int,Expr) → Doc

pretty-print a single declaration

ppCaseType :: CaseType → Doc

Pretty print the type of a case expression

ppBranch :: Options → BranchExpr → Doc

Pretty print a case branch

ppPattern :: Options → Pattern → Doc

Pretty print a pattern

ppPrefixQOp :: Options → (String,String) → Doc

pretty-print a qualified prefix operator.

ppPrefixOp :: (String,String) → Doc

pretty-print a prefix operator unqualified.

265

ppInfixQOp :: Options → (String,String) → Doc

pretty-print an infix operator

ppQName :: Options → (String,String) → Doc

Pretty-print a qualified name

ppName :: (String,String) → Doc

Pretty-print a qualified name unqualified (e.g., for type definitions).

isInfixOp :: (String,String) → Bool

Check whether an operator is an infix operator

isConsId :: (String,String) → Bool

Check whether an identifier represents the : list constructor.

isListId :: (String,String) → Bool

Check whether an identifier represents a list

isTupleId :: (String,String) → Bool

Check whether an identifier represents a tuple

indent :: Options → Doc → Doc

Indentation

A.5.10 Library FlatCurry.Read

This library defines operations to read a FlatCurry programs or interfaces together with all its

imported modules in the current load path.

Exported functions:

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is

the name of the main module, possibly with a directory prefix.

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.

The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The

argument is the name of the main module, possibly with a directory prefix. If there is

no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead of

the interface.

266

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given

load path. The arguments are a load path and the name of the main module. If there

is no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead

of the interface.

A.5.11 Library FlatCurry.Show

This library contains operations to transform FlatCurry programs into string representations, either

in a FlatCurry format or in a Curry-like syntax.

This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg,

showFlatType, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurryType,

showCurryExpr,...).

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.5.12 Library FlatCurry.XML

This library contains functions to convert FlatCurry programs into corresponding XML expressions

and vice versa. This can be used to store Curry programs in a way independent of a Curry system

or to use a Curry system, like PAKCS, as back end by other functional logic programming systems.

267

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

A.5.13 Library FlatCurry.FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-

hand side of a function definition).

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases

in this expression. If the expression has rigid as well as flex cases (which cannot be the

case for source level programs but might occur after some program transformations),

the result ConflictFR is returned.

A.5.14 Library FlatCurry.Compact

This module contains functions to reduce the size of FlatCurry programs by combining the main

module and all imports into a single program that contains only the functions directly or indirectly

called from a set of main functions.

268

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose

– for more output

• Main :: String → Option

Main

– optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports

– optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs

– optimize w.r.t. given list of initially required functions

• Required :: [RequiredSpec] → Option

Required

– list of functions that are implicitly required and, thus, should not be deleted if the

corresponding module is imported

• Import :: String → Option

Import

– module that should always be imported (useful in combination with option InitFuncs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

269

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun requires reqfun) specifies that the use of the function ”fun” implies the application

of function ”reqfun”.

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function ”fun” should be always present if the

corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be

generated by external functions like ”==” or ”=:=” on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from

a set of main functions and writes it into a FlatCurry file. This is done by merging all

imported FlatCurry modules and removing the imported functions that are definitely

not used.

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a

set of main functions. This is done by merging all imported FlatCurry modules (these

are loaded demand-driven so that modules that contains no potentially called functions

are not loaded) and removing the imported functions that are definitely not used.

A.5.15 Library FlatCurry.Annotated.Types

This library contains a version of FlatCurry’s abstract syntax tree which can be annotated with

arbitrary information due to a polymorphic type parameter. For instance, this could be used to

annotate function declarations and expressions with their corresponding type.

For more information about the abstract syntax tree of FlatCurry, see the documentation of the

respective module.

Exported types:

type Arity = Int

Arity of a function declaration

data AProg

Annotated FlatCurry program (corresponds to a module)

Exported constructors:

270

• AProg :: String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] →
AProg a

data AFuncDecl

Annotated function declaration

Exported constructors:

• AFunc :: (String,String) → Int → Visibility → TypeExpr → (ARule a) →
AFuncDecl a

data ARule

Annotated function rule

Exported constructors:

• ARule :: a → [(Int,a)] → (AExpr a) → ARule a

• AExternal :: a → String → ARule a

data AExpr

Annotated expression

Exported constructors:

• AVar :: a → Int → AExpr a

• ALit :: a → Literal → AExpr a

• AComb :: a → CombType → ((String,String),a) → [AExpr a] → AExpr a

• ALet :: a → [((Int,a),AExpr a)] → (AExpr a) → AExpr a

• AFree :: a → [(Int,a)] → (AExpr a) → AExpr a

• AOr :: a → (AExpr a) → (AExpr a) → AExpr a

• ACase :: a → CaseType → (AExpr a) → [ABranchExpr a] → AExpr a

• ATyped :: a → (AExpr a) → TypeExpr → AExpr a

data ABranchExpr

Annotated case branch

Exported constructors:

• ABranch :: (APattern a) → (AExpr a) → ABranchExpr a

data APattern

Annotated pattern

Exported constructors:

• APattern :: a → ((String,String),a) → [(Int,a)] → APattern a

• ALPattern :: a → Literal → APattern a

271

A.5.16 Library FlatCurry.Annotated.Pretty

This library provides pretty-printers for AnnotatedFlatCurry modules and all substructures (e.g.,

expressions). Note that annotations are ignored for pretty-printing.

Exported functions:

ppProg :: AProg a → Doc

pretty-print a FlatCurry module

ppHeader :: String → [TypeDecl] → [AFuncDecl a] → Doc

pretty-print the module header

ppExports :: [TypeDecl] → [AFuncDecl a] → Doc

pretty-print the export list

ppTypeExport :: TypeDecl → Doc

pretty-print a type export

ppConsExports :: [ConsDecl] → [Doc]

pretty-print the export list of constructors

ppFuncExports :: [AFuncDecl a] → [Doc]

pretty-print the export list of functions

ppImports :: [String] → Doc

pretty-print a list of import statements

ppImport :: String → Doc

pretty-print a single import statement

ppOpDecls :: [OpDecl] → Doc

pretty-print a list of operator fixity declarations

ppOpDecl :: OpDecl → Doc

pretty-print a single operator fixity declaration

ppFixity :: Fixity → Doc

pretty-print the associativity keyword

ppTypeDecls :: [TypeDecl] → Doc

pretty-print a list of type declarations

272

ppTypeDecl :: TypeDecl → Doc

pretty-print a type declaration

ppConsDecls :: [ConsDecl] → Doc

pretty-print the constructor declarations

ppConsDecl :: ConsDecl → Doc

pretty print a single constructor

ppTypeExp :: TypeExpr → Doc

pretty a top-level type expression

ppTypeExpr :: Int → TypeExpr → Doc

pretty-print a type expression

ppTVarIndex :: Int → Doc

pretty-print a type variable

ppFuncDecls :: [AFuncDecl a] → Doc

pretty-print a list of function declarations

ppFuncDecl :: AFuncDecl a → Doc

pretty-print a function declaration

ppRule :: ARule a → Doc

pretty-print a function rule

ppExp :: AExpr a → Doc

pretty-print a top-level expression

ppExpr :: Int → AExpr a → Doc

pretty-print an expression

ppAVarIndex :: (Int,a) → Doc

pretty-print an annotated variable

ppVarIndex :: Int → Doc

pretty-print a variable

ppLiteral :: Literal → Doc

pretty-print a literal

273

showEscape :: Char → String

Escape character literal

ppComb :: Int → ((String,String),a) → [AExpr b] → Doc

Pretty print a constructor or function call

ppDecls :: [((Int,a),AExpr b)] → Doc

pretty-print a list of declarations

ppDecl :: ((Int,a),AExpr b) → Doc

pretty-print a single declaration

ppCaseType :: CaseType → Doc

Pretty print the type of a case expression

ppBranch :: ABranchExpr a → Doc

Pretty print a case branch

ppPattern :: APattern a → Doc

Pretty print a pattern

ppPrefixOp :: (String,String) → Doc

pretty-print a prefix operator

ppInfixOp :: (String,String) → Doc

pretty-print an infix operator

ppQName :: (String,String) → Doc

Pretty-print a qualified name

isInfixOp :: (String,String) → Bool

Check whether an operator is an infix operator

isListId :: (String,String) → Bool

Check whether an identifier represents a list

isTupleId :: (String,String) → Bool

Check whether an identifier represents a tuple

indent :: Doc → Doc

Indentation

274

A.5.17 Library FlatCurry.Annotated.Goodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] → b) →
AProg a → b

transform program

progName :: AProg a → String

get name from program

progImports :: AProg a → [String]

get imports from program

progTypes :: AProg a → [TypeDecl]

get type declarations from program

progFuncs :: AProg a → [AFuncDecl a]

get functions from program

progOps :: AProg a → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([AFuncDecl a] → [AFuncDecl a]) → ([OpDecl] → [OpDecl]) → AProg

a → AProg a

update program

updProgName :: (String → String) → AProg a → AProg a

275

update name of program

updProgImports :: ([String] → [String]) → AProg a → AProg a

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → AProg a → AProg a

update type declarations of program

updProgFuncs :: ([AFuncDecl a] → [AFuncDecl a]) → AProg a → AProg a

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → AProg a → AProg a

update infix operators of program

allVarsInProg :: AProg a → [Int]

get all program variables (also from patterns)

updProgExps :: (AExpr a → AExpr a) → AProg a → AProg a

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → AProg a → AProg a

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → AProg a → AProg a

update all qualified names in program

rnmProg :: String → AProg a → AProg a

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

276

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

277

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

278

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

279

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → ARule a → b) →
AFuncDecl a → b

transform function

funcName :: AFuncDecl a → (String,String)

get name of function

funcArity :: AFuncDecl a → Int

get arity of function

funcVisibility :: AFuncDecl a → Visibility

get visibility of function

funcType :: AFuncDecl a → TypeExpr

get type of function

funcRule :: AFuncDecl a → ARule a

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (ARule a → ARule a) → AFuncDecl a →
AFuncDecl a

update function

updFuncName :: ((String,String) → (String,String)) → AFuncDecl a → AFuncDecl a

update name of function

updFuncArity :: (Int → Int) → AFuncDecl a → AFuncDecl a

280

update arity of function

updFuncVisibility :: (Visibility → Visibility) → AFuncDecl a → AFuncDecl a

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → AFuncDecl a → AFuncDecl a

update type of function

updFuncRule :: (ARule a → ARule a) → AFuncDecl a → AFuncDecl a

update rule of function

isExternal :: AFuncDecl a → Bool

is function externally defined?

allVarsInFunc :: AFuncDecl a → [Int]

get variable names in a function declaration

funcArgs :: AFuncDecl a → [(Int,a)]

get arguments of function, if not externally defined

funcBody :: AFuncDecl a → AExpr a

get body of function, if not externally defined

funcRHS :: AFuncDecl a → [AExpr a]

rnmAllVarsInFunc :: (Int → Int) → AFuncDecl a → AFuncDecl a

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → AFuncDecl a →
AFuncDecl a

update all qualified names in function

updFuncArgs :: ([(Int,a)] → [(Int,a)]) → AFuncDecl a → AFuncDecl a

update arguments of function, if not externally defined

updFuncBody :: (AExpr a → AExpr a) → AFuncDecl a → AFuncDecl a

update body of function, if not externally defined

trRule :: (a → [(Int,a)] → AExpr a → b) → (a → String → b) → ARule a → b

transform rule

ruleArgs :: ARule a → [(Int,a)]

281

get rules arguments if it’s not external

ruleBody :: ARule a → AExpr a

get rules body if it’s not external

ruleExtDecl :: ARule a → String

get rules external declaration

isRuleExternal :: ARule a → Bool

is rule external?

updRule :: (a → a) → ([(Int,a)] → [(Int,a)]) → (AExpr a → AExpr a) → (String

→ String) → ARule a → ARule a

update rule

updRuleArgs :: ([(Int,a)] → [(Int,a)]) → ARule a → ARule a

update rules arguments

updRuleBody :: (AExpr a → AExpr a) → ARule a → ARule a

update rules body

updRuleExtDecl :: (String → String) → ARule a → ARule a

update rules external declaration

allVarsInRule :: ARule a → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → ARule a → ARule a

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → ARule a → ARule a

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

282

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: AExpr a → Int

get internal number of variable

literal :: AExpr a → Literal

get literal if expression is literal expression

combType :: AExpr a → CombType

get combination type of a combined expression

combName :: AExpr a → (String,String)

get name of a combined expression

combArgs :: AExpr a → [AExpr a]

get arguments of a combined expression

missingCombArgs :: AExpr a → Int

get number of missing arguments if expression is combined

letBinds :: AExpr a → [((Int,a),AExpr a)]

get indices of variables in let declaration

letBody :: AExpr a → AExpr a

get body of let declaration

freeVars :: AExpr a → [Int]

get variable indices from declaration of free variables

freeExpr :: AExpr a → AExpr a

get expression from declaration of free variables

orExps :: AExpr a → [AExpr a]

get expressions from or-expression

caseType :: AExpr a → CaseType

283

get case-type of case expression

caseExpr :: AExpr a → AExpr a

get scrutinee of case expression

caseBranches :: AExpr a → [ABranchExpr a]

isVar :: AExpr a → Bool

is expression a variable?

isLit :: AExpr a → Bool

is expression a literal expression?

isComb :: AExpr a → Bool

is expression combined?

isLet :: AExpr a → Bool

is expression a let expression?

isFree :: AExpr a → Bool

is expression a declaration of free variables?

isOr :: AExpr a → Bool

is expression an or-expression?

isCase :: AExpr a → Bool

is expression a case expression?

trExpr :: (a → Int → b) → (a → Literal → b) → (a → CombType →
((String,String),a) → [b] → b) → (a → [((Int,a),b)] → b → b) → (a →
[(Int,a)] → b → b) → (a → b → b → b) → (a → CaseType → b → [c] → b)

→ (APattern a → b → c) → (a → b → TypeExpr → b) → AExpr a → b

transform expression

updVars :: (a → Int → AExpr a) → AExpr a → AExpr a

update all variables in given expression

updLiterals :: (a → Literal → AExpr a) → AExpr a → AExpr a

update all literals in given expression

updCombs :: (a → CombType → ((String,String),a) → [AExpr a] → AExpr a) →
AExpr a → AExpr a

284

update all combined expressions in given expression

updLets :: (a → [((Int,a),AExpr a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all let expressions in given expression

updFrees :: (a → [(Int,a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all free declarations in given expression

updOrs :: (a → AExpr a → AExpr a → AExpr a) → AExpr a → AExpr a

update all or expressions in given expression

updCases :: (a → CaseType → AExpr a → [ABranchExpr a] → AExpr a) → AExpr a →
AExpr a

update all case expressions in given expression

updBranches :: (APattern a → AExpr a → ABranchExpr a) → AExpr a → AExpr a

update all case branches in given expression

updTypeds :: (a → AExpr a → TypeExpr → AExpr a) → AExpr a → AExpr a

update all typed expressions in given expression

isFuncCall :: AExpr a → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: AExpr a → Bool

is expression a partial function call?

isConsCall :: AExpr a → Bool

is expression a call of a constructor?

isConsPartCall :: AExpr a → Bool

is expression a partial constructor call?

isGround :: AExpr a → Bool

is expression fully evaluated?

allVars :: AExpr a → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → AExpr a → AExpr a

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → AExpr a → AExpr a

285

update all qualified names in expression

trBranch :: (APattern a → AExpr a → b) → ABranchExpr a → b

transform branch expression

branchPattern :: ABranchExpr a → APattern a

get pattern from branch expression

branchExpr :: ABranchExpr a → AExpr a

get expression from branch expression

updBranch :: (APattern a → APattern a) → (AExpr a → AExpr a) → ABranchExpr a

→ ABranchExpr a

update branch expression

updBranchPattern :: (APattern a → APattern a) → ABranchExpr a → ABranchExpr a

update pattern of branch expression

updBranchExpr :: (AExpr a → AExpr a) → ABranchExpr a → ABranchExpr a

update expression of branch expression

trPattern :: (a → ((String,String),a) → [(Int,a)] → b) → (a → Literal → b)

→ APattern a → b

transform pattern

patCons :: APattern a → (String,String)

get name from constructor pattern

patArgs :: APattern a → [(Int,a)]

get arguments from constructor pattern

patLiteral :: APattern a → Literal

get literal from literal pattern

isConsPattern :: APattern a → Bool

is pattern a constructor pattern?

updPattern :: (((String,String),a) → ((String,String),a)) → ([(Int,a)] →
[(Int,a)]) → (Literal → Literal) → APattern a → APattern a

update pattern

updPatCons :: ((String,String) → (String,String)) → APattern a → APattern a

286

update constructors name of pattern

updPatArgs :: ([(Int,a)] → [(Int,a)]) → APattern a → APattern a

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → APattern a → APattern a

update literal of pattern

patExpr :: APattern a → AExpr a

build expression from pattern

annRule :: ARule a → a

annExpr :: AExpr a → a

Extract the annotation of an annotated expression.

annPattern :: APattern a → a

Extract the annotation of an annotated pattern.

unAnnProg :: AProg a → Prog

unAnnFuncDecl :: AFuncDecl a → FuncDecl

unAnnRule :: ARule a → Rule

unAnnExpr :: AExpr a → Expr

unAnnPattern :: APattern a → Pattern

A.5.18 Library FlatCurry.Annotated.TypeSubst

Type substitutions on type-annotated AnnotatedFlatCurry

Exported types:

type AFCSubst = FM Int TypeExpr

The (abstract) data type for substitutions on TypeExpr.

287

Exported functions:

showAFCSubst :: FM Int TypeExpr → String

emptyAFCSubst :: FM Int TypeExpr

The empty substitution

lookupAFCSubst :: FM Int TypeExpr → Int → Maybe TypeExpr

Searches the substitution for a mapping from the given variable index to a term.

substFunc :: FM Int TypeExpr → AFuncDecl TypeExpr → AFuncDecl TypeExpr

Applies a substitution to a function.

substRule :: FM Int TypeExpr → ARule TypeExpr → ARule TypeExpr

Applies a substitution to a type expression.

substExpr :: FM Int TypeExpr → AExpr TypeExpr → AExpr TypeExpr

Applies a substitution to a type expression.

substSnd :: FM Int TypeExpr → (a,TypeExpr) → (a,TypeExpr)

substBranch :: FM Int TypeExpr → ABranchExpr TypeExpr → ABranchExpr TypeExpr

Applies a substitution to a branch expression.

substPattern :: FM Int TypeExpr → APattern TypeExpr → APattern TypeExpr

Applies a substitution to a pattern.

subst :: FM Int TypeExpr → TypeExpr → TypeExpr

Looks up a type in a substitution and converts the resulting Term to a TypeExpr.

Returns a given default value if the lookup fails.

A.5.19 Library FlatCurry.Annotated.TypeInference

Library to annotate the expressions of a FlatCurry program with type information.

It can be used by any other Curry program which processes or transforms FlatCurry programs.

The main operation to use is

inferProg :: Prog -> IO (Either String (AProg TypeExpr))

which annotates a FlatCurry program with type information.

The type inference works in several steps:

288

1. For each known function and constructor, either imported or defined in the module itself, the

respective type is inserted into a type environment (type assumption).

2. Every subexpression is annotated with a fresh type variable, whereas constructor and function

names are annotated with a fresh variant of the type in the type assumption.

3. Based on FlatCurry’s type inference rules, type equations are generated for a function’s rule.

4. The resulting equations are solved using unification and the resulting substitution is applied

to the function rule.

5. The inferred types are then normalized such that for every function rule the type variables

start with 0.

In addition, the function inferNewFunctions allows to infer the types of a list of functions whose

type is not known before. Consequently, this disallows polymorphic recursive functions. Those

functions are separated into strongly connected components before their types are inferred to allow

mutually recursive function definitions.

In case of any error, the type inference quits with an error message.

Exported types:

type TypeEnv = FM (String,String) TypeExpr

A type environment.

Exported functions:

inferProg :: Prog → IO (Either String (AProg TypeExpr))

Infers the type of a whole program.

inferProgFromProgEnv :: [(String,Prog)] → Prog → Either String (AProg TypeExpr)

Infers the type of a whole program w.r.t. a list of imported modules.

inferFunction :: (String,String) → Prog → IO (Either String (AFuncDecl

TypeExpr))

Infers the types of a single function specified by its qualified name.

inferNewFunctions :: Prog → [FuncDecl] → IO (Either String [AFuncDecl

TypeExpr])

Infers the types of a group of (possibly mutually recursive) functions. Note that the

functions are only monomorphically instantiated, i.e., polymorphic recursion is not sup-

ported. The given type may be too general, for instance a type variable only, and will

be specialised to the inferred type.

inferExpr :: Prog → Expr → IO (Either String (AExpr TypeExpr))

289

inferProgEnv :: FM (String,String) TypeExpr → Prog → Either String (AProg

TypeExpr)

Infers the type of a whole program. Uses the given type environment instead of gener-

ating a new one.

inferFunctionEnv :: FM (String,String) TypeExpr → (String,String) → Prog →
Either String (AFuncDecl TypeExpr)

Infers the types of a single function specified by its qualified name. Uses the given type

environment instead of generating a new one.

getTypeEnv :: Prog → IO (FM (String,String) TypeExpr)

Extract the type environment from the given Prog.

getTypeEnvFromProgEnv :: [(String,Prog)] → Prog → Either String (FM

(String,String) TypeExpr)

Extract the type environment from the given Prog by lookup in a module name -> Prog

environment.

A.5.20 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The

source string is classified into the following categories:

• moduleHead - module interface, imports, operators

• code - the part where the actual program is defined

• big comment - parts enclosed in {- ... -}

• small comment - from ”–” to the end of a line

• text - a string, i.e. text enclosed in ”...”

• letter - the given string is the representation of a character

• meta - containing information for meta programming

For an example to use the state scanner cf. addtypes, the tool to add function types to a given

program.

290

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

Exported functions:

isSmallComment :: Token → Bool

test for category ”SmallComment”

isBigComment :: Token → Bool

test for category ”BigComment”

isComment :: Token → Bool

test if given token is a comment (big or small)

isText :: Token → Bool

test for category ”Text” (String)

isLetter :: Token → Bool

test for category ”Letter” (Char)

isCode :: Token → Bool

test for category ”Code”

isModuleHead :: Token → Bool

test for category ”ModuleHead”, ie imports and operator declarations

291

isMeta :: Token → Bool

test for category ”Meta”, ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to

know whether a given part of code is at the beginning of a line or in the middle. The

state scanner organizes the code in such a way that every string categorized as ”Code”

always starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-

ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program

after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

292

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax

is intended to simplify the writing of texts whose source is readable and can be easily formatted,

e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only

internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.

Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two or * characters:

emphasize

emphasize

__strong__

strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).

If one wants to put a link under a text, one can put the text in square brackets directly followed

by the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or , in

the output document, it should be escaped with a backslash, i.e., a backslash followed by a special

character in the source text is translated into the given character (this also holds for program code,

see below). For instance, the input text

word

produces the output ” word ”. The following backslash escapes are recognized:

\ backslash

‘ backtick

* asterisk

_ underscore

{} curly braces

[] square brackets

293

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses

hash symbol

+ plus symbol

- minus symbol (dash)

. dot

blank

! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list

elements (where the star can be preceded by blanks). The individual list elements must contain

the same indentation, as in

* First list element

with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one

could nest lists. Thus, the input text

- Color:

+ Yellow

+ Read

+ Blue

- BW:

+ Black

+ White

is formatted as

• Color:

294

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by

a dot and at least one blank. All following lines belonging to the same numbered item must have

the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second

element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is

> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input

line by at least four spaces where all following lines must have at least the same indentation as the

first non-blank character of the first line:

f x y = let z = (x,y)

in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)

in (z,z)

To visualize the structure of a document, one can also put a line containing only blanks and at

least three dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

295

B.3 Headers

The are two forms to mark headers. In the first form, one can ”underline” the main header in the

source text by equal signs and the second-level header by dashes:

First-level header

==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,

where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

296

C Auxiliary Files

During the translation and execution of a Curry program with KiCS2, various intermediate repre-

sentations of the source program are created and stored in different files which are shortly explained

in this section. If you use KiCS2, it is not necessary to know about these auxiliary files because they

are automatically generated and updated. You should only remember the command for deleting

all auxiliary files (“cleancurry”, see Section 1.2) to clean up your directories.

The various components of KiCS2 create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where

all functions are global (i.e., lambda lifting has been performed) and pattern matching is

translated into explicit case/or expressions (compare Appendix A.1). This representation

might be useful for other back ends and compilers for Curry and is the basis doing meta-

programming in Curry. This file is implicitly generated when a program is compiled with

KiCS2. It can be also explicitly generated by the Curry front end

cymake --flat -ikics2home /lib prog

The FlatCurry representation of a Curry program is usually generated by the front-end after

parsing, type checking and eliminating local declarations.

If the Curry module M is stored in the directory dir, the corresponding FlatCurry pro-

gram is stored in the directory “dir/.curry”. This is also the case for hierarchical module

names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-

ally stored in dir/D1/D2/M.curry), then the corresponding FlatCurry program is stored in

“dir/.curry/D1/D2/M.fcy”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-

tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all

functions omitted (i.e., “external”). This representation is useful for providing a fast access

to module interfaces. This file is implicitly generated when a program is compiled with KiCS2

and stored in the same directory as prog.fcy.

Curry_prog.hs: This file contains a Haskell program as the result of translating the Curry program

with the KiCS2 compiler.

If the Curry module M is stored in the directory dir, the corresponding Haskell program

is stored in the directory “dir/.curry/kics2”. This is also the case for hierarchical module

names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-

ally stored in dir/D1/D2/M.curry), then the corresponding Haskell program is stored in

“dir/.curry/kics2/D1/D2/Curry_prog.hs”.

Curry_prog.hi: This file contains the interface of the Haskell program Curry_prog.hs when the

latter program is compiled in order to execute it. This file is stored in the same directory as

Curry_prog.hs.

Curry_prog.o: This file contains the object code of the Haskell program Curry_prog.hs when the

latter program is compiled in order to execute it. This file is stored in the same directory as

Curry_prog.hs.

297

Curry_prog.nda: This file contains some information about the determinism behavior of operations

that is used by the KiCS2 compiler (see [11] for more details about the use of this information).

This file is stored in the same directory as Curry_prog.hs.

Curry_prog.info: This file contains some information about the top-level functions of module prog

that are used by the interactive environment, like determinism behavior or IO status. This

file is stored in the same directory as Curry_prog.hs.

prog: This file contains the executable after compiling and saving a program with KiCS2 (see

command “:save” in Section 2.2).

298

D External Operations

Currently, KiCS2 has no general interface to external operations, i.e., operations whose semantics is

not defined by program rules in a Curry program but by some code written in another programming

language. Thus, if an external operation should be added to the system, this operation must be

declared as external in the Curry source code and an implementation for this external operation

must be provided for the run-time system. An external operation is defined as follows in the Curry

source code:

1. Add a type declaration for the external operation somewhere in a module defining this oper-

ation (usually, the prelude or some system module).

2. For external operations it is not allowed to define any rule since their semantics is determined

by an external implementation. Instead of the defining rules, you have to write

f external

below the type declaration for the external operation f.

Furthermore, an implementation of the external operation must be provided in the target language

of the KiCS2 compiler, i.e., in Haskell, and inserted in the compiled code. In order to simplify this

task, KiCS2 follows some code conventions that are described in the following.

Assume you want to implement your own concatenation for strings in a module String. The

name and type of this string concatenation should be

sconc :: String → String → String

Since the primitive Haskell implementation of this operation does not now anything about the

operational mechanism of Curry (e.g., needed narrowing, non-deterministic rewriting), the argu-

ments need to be completely evaluated before the primitive implementation is called. This can be

easily obtained by the prelude operation ($##) that applies an operation to the normal form of the

given argument, i.e., this operation evaluates the argument to its normal form before applying the

operation to it.9 Thus, we define sconc by

sconc :: String → String → String

sconc s1 s2 = (prim_sconc $## s1) $## s2

prim_sconc :: String → String → String

prim_sconc external

so that it is ensured that the external operation prim_sconc is always called with complete evaluated

arguments.

In order to define the Haskell code implementing prim_sconc, one has to satisfy the naming

conventions of KiCS2. The KiCS2 compiler generates the following code for the external opera-

tion prim_sconc (note that the generated Haskell code for the module String is stored in the file

.curry/kics2/Curry_String.hs):

9There is also a similar prelude operation ($#) which evaluates the argument only to head-normal form. This is

a bit more efficient and can be used for unstructured types like Bool.

299

d_C_prim_sconc :: Curry_Prelude.OP_List Curry_Prelude.C_Char

→ Curry_Prelude.OP_List Curry_Prelude.C_Char

→ ConstStore

→ Curry_Prelude.OP_List Curry_Prelude.C_Char

d_C_prim_sconc x1 x2 x3500 = external_d_C_prim_sconc x1 x2 x3500

The type constructors OP_List and C_Char of the prelude Curry_Prelude10 correspond to the Curry

type constructors for lists and characters. The Haskell operation external_d_C_prim_sconc is the

external operation to be implemented in Haskell by the programmer. The additional argument

of type ConstStore represents the current set of constraints when this operation is called. This

argument is intended to provide a more efficient access to binding constraints and can be ignored

in standard operations.

If String.curry contains the code of the Curry function sconc described above, the Haskell

code implementing the external operations occurring in the module String must be in the file

External_String.hs which is located in the same directory as the file String.curry. The KiCS2

compiler appends the code contained in External_String.hs to the generated code stored in the

file .curry/kics2/Curry_String.hs.11

In order to complete our example, we have to write into the file External_String.hs a definition

of the Haskell function external_d_C_prim_sconc. Thus, we start with the following definitions:

import qualified Curry_Prelude as CP

external_d_C_prim_sconc :: CP.OP_List CP.C_Char → CP.OP_List CP.C_Char

→ ConstStore → CP.OP_List CP.C_Char

First, we import the standard prelude with the name CP in order to shorten the writing of type

declarations. In order to write the final code of this operation, we have to convert the Curry-related

types (like C_Char) into the corresponding Haskell types (like Char). Note that the Curry-related

types contain information about non-deterministic or constrained values (see [11, 10]) that are

meaningless in Haskell. To solve this conversion problem, the implementation of KiCS2 provides a

family of operations to perform these conversions for the predefined types occurring in the standard

prelude. For instance, fromCurry converts a Curry type into the corresponding Haskell type, and

toCurry converts the Haskell type into the corresponding Curry type. Thus, we complete our exam-

ple with the definition (note that we simply ignore the final argument representing the constraint

store)

external_d_C_prim_sconc s1 s2 _ =

toCurry ((fromCurry s1 ++ fromCurry s2) :: String)

Here, we use Haskell’s concatenation operation “++” to concatenate the string arguments. The

type annotation “:: String” is necessary because “++” is a polymorphic function so that the type

inference system of Haskell has problems to determine the right instance of the conversion function.

The conversion between Curry types and Haskell types, i.e., the family of conversion operation

fromCurry and toCurry, is defined in the KiCS2 implementation for all standard data types. In

10Note that all translated Curry modules are imported in the Haskell code fully qualified in order to avoid name

conflicts.
11If the file External_String.hs contains also some import declarations at the beginning, these import declara-

tions are put after the generated import declarations.

300

particular, it is also defined on function types so that one can easily implement external Curry I/O

actions by using Haskell I/O actions. For instance, if we want to implement an external operation

to print some string as an output line, we start by declaring the external operations in the Curry

module String:

printString :: String → IO ()

printString s = prim_printString $## s

prim_printString :: String → IO ()

prim_printString external

Next we add the corresponding implementation in the file External_String.hs (where C_IO and

OP_Unit are the names of the Haskell representation of the Curry type constructor IO and the

Curry data type “()”, respectively):

external_d_C_prim_printString :: CP.OP_List CP.C_Char → ConstStore

→ CP.C_IO CP.OP_Unit

external_d_C_prim_printString s _ = toCurry putStrLn s

Here, Haskell’s I/O action putStrLn of type “String -> IO ()” is transformed into a Curry I/O

action “toCurry putStrLn” which has the type

CP.OP_List CP.C_Char → CP.C_IO CP.OP_Unit

When we compile the Curry module String, KiCS2 combines these definitions in the target program

so that we can immediately use the externally defined operation printString in Curry programs.

As we have seen, KiCS2 transforms a name like primOP of an external operation into the name

external_d_C_primOP for the Haskell operation to be implemented, i.e., only a specific prefix is

added. However, this is only valid if no special characters occur in the Curry names. Otherwise (in

order to generate a correct Haskell program), special characters are translated into specific names

prefixed by “OP_”. For instance, if we declare the external operation

(<&>) :: Int → Int → Int

(<&>) external

the generated Haskell module contains the code

d_OP_lt_ampersand_gt :: Curry_Prelude.C_Int → Curry_Prelude.C_Int

→ ConstStore → Curry_Prelude.C_Int

d_OP_lt_ampersand_gt x1 x2 x3500 = external_d_OP_lt_ampersand_gt x1 x2 x3500

so that one has to implement the operation external_d_OP_lt_ampersand_gt in Haskell. If in doubt,

one should look into the generated Haskell code about the names and types of the operations to

be implemented.

Finally, note that this method to connect functions implemented in Haskell to Curry programs

provides the opportunity to connect also operations written in other programming languages to

Curry via Haskell’s foreign function interface.

301

Index

<, 117

***, 81

*., 79

+., 78

---, 29

-., 78

-=-, 147

.kics2rc, 16

/., 79

//, 153

:!, 11

:&, 160

:add, 10

:browse, 11

:cd, 10

:compile, 10

:edit, 10, 11

:eval, 10

:fork, 11

:help, 9

:interface, 11

:load, 9

:programs, 10

:quit, 10

:reload, 9

:save, 11

:set, 11

:set path, 8

:show, 11

:source, 11

:type, 10

:usedimports, 11

==>, 148

@, 19

@author, 29

@cons, 29

@param, 29

@return, 29

@version, 29

#, 148

$$, 121

&&&, 81

KiCS2, 9

<*>, 72, 117

<+>, 120

<.>, 74

<//>, 121

</>, 76, 121

<$

<$

$>, 121

<$+$>, 121

<$$>, 121

<$>, 71

<>, 120

<~, 147

<~>, 147

<~~>, 148

>+, 71

>+=, 71

>>-, 115

>>>, 117

~>, 147, 236

\\, 111

^, 97

^., 79

aBool, 221

ABranchExpr, 271

abs, 97

AbstractCurry, 57

abstractCurryFileName, 232

aChar, 220

acos, 80

acosh, 80

adapt, 220

adaptWSpec, 202, 209

addAttr, 193

addAttrs, 193

addCanvas, 95

addClass, 193

addCookies, 187

302

addCurrySubdir, 68

addDays, 145

addExtension, 75

addFormParam, 187

addHeadings, 191

addHours, 145

addListToFM, 156

addListToFM C, 156

addMinutes, 145

addMonths, 145

addPageParam, 188

addRegionStyle, 94

address, 190

addSeconds, 145

addSound, 187

addToFM, 156

addToFM C, 156

addTrailingPathSeparator, 76

addVS, 178

addYears, 145

AExpr, 271

AFCSubst, 287

aFloat, 220

AFuncDecl, 271

aInt, 220

align, 119

allDBInfos, 109

allDBKeyInfos, 109

allDBKeys, 108

AllSolutions, 7

allSolutions, 78

allValues, 77

allValuesBFS, 169, 176

allValuesDFS, 169, 176

allValuesDiag, 169

allValuesIDS, 169, 177

allValuesIDSwith, 169, 177

allValuesWith, 168

allVars, 261, 285

allVarsInFunc, 256, 281

allVarsInProg, 251, 276

allVarsInRule, 257, 282

always, 148

alwaysRequired, 270

anchor, 190

angles, 125

annExpr, 287

annPattern, 287

annRule, 287

answerEncText, 187

answerText, 187

APattern, 271

appendStyledValue, 94

appendValue, 94

applyAt, 153

applyE, 237

applyF, 237

applyJust, 237

applyMaybe, 237

applySubst, 180

applyV, 237

AProg, 270

ArgDescr, 82

ArgOrder, 82

args, 15

argTypes, 234, 254, 279

Arity, 225, 270

Array, 153

ARule, 271

as-pattern, 19

asin, 80

asinh, 80

assert, 64

assertEqual, 59

assertEqualIO, 59

assertIO, 59, 64

Assertion, 59

assertSolutions, 59

assertTrue, 59

assertValues, 59

aString, 220

at, 128

atan, 80

atanh, 80

attr, 220

backslash, 127

bar, 127

303

baseName, 73

baseType, 236

best, 7

bfs, 12

bfsStrategy, 168, 177

bgBlack, 130

bgBlue, 130

bgCyan, 130

bgGreen, 130

bgMagenta, 130

bgRed, 130

bgWhite, 130

bgYellow, 130

bindings, 13

binomial, 97

bitAnd, 98

bitNot, 98

bitOr, 98

bitTrunc, 97

bitXor, 98

black, 129

blink, 190

blinkRapid, 129

blinkSlow, 129

block, 191

blockstyle, 191

blue, 130

bold, 129, 189

boolType, 236

bootstrapForm, 181

bootstrapPage, 181

both, 81

bquotes, 125

braces, 125

brackets, 125

BranchExpr, 248

branchExpr, 261, 286

branchPattern, 261, 286

breakline, 191

buildGr, 161

Button, 95

button, 192

CalendarTime, 143

calendarTimeToString, 145

callFrontend, 70

callFrontendWithParams, 70

CanvasItem, 90

CanvasScroll, 96

caseBranches, 259, 284

caseExpr, 259, 284

CaseType, 245

caseType, 259, 283

cat, 122

categorizeByItemKey, 182

catMaybes, 115

cBranch, 237

CCaseType, 230

cChar, 238

CConsDecl, 227

center, 190

CExpr, 229

CField, 225

CFieldDecl, 227

CFixity, 228

cFloat, 238

cfunc, 236

CFuncDecl, 228

CgiEnv, 183

CgiRef, 183

CgiServerMsg, 196

cgiServerRegistry, 197

char, 126, 219

charType, 236

check0, 149

check1, 150

check2, 150

check3, 150

check4, 151

check5, 151

checkAssertion, 60

checkbox, 192

checkedbox, 192

checkPropIOWithMsg, 152

checkPropWithMsg, 152

checkWithValues0, 149

checkWithValues1, 149

checkWithValues2, 150

304

checkWithValues3, 150

checkWithValues4, 150

checkWithValues5, 150

childFamilies, 174

children, 174

choices, 12

choose, 139

chooseColor, 96

chooseValue, 140

cInt, 238

classify, 149

cleancurry, 6

cleanDB, 110

CLiteral, 230

CLocalDecl, 229

ClockTime, 143

clockTimeToInt, 144

closeDBHandles, 110

Cmd, 95

cmp, 14

cmpChar, 172

cmpList, 172

cmpString, 172

cmtfunc, 237

code, 190

col, 92

collect, 149

collectAs, 149

colon, 127

Color, 91

ColVal, 106

combArgs, 258, 283

combine, 76, 120, 153

combineSimilar, 153

combName, 258, 283

CombType, 245

combType, 258, 283

comma, 127

Command, 95

comment

documentation, 29

compareCalendarTime, 145

compareClockTime, 145

compareDate, 145

compose, 121

computeCompactFlatCurry, 270

concatMapES, 72

concurrency, 7

ConfCollection, 89

Config, 147

ConfigButton, 95

ConfItem, 86

connectToCommand, 101

connectToSocket, 116, 142

connectToSocketRepeat, 116

connectToSocketWait, 116

cons, 154

consArgs, 253, 278

consArity, 253, 277

ConsDecl, 244

consName, 233, 253, 277

constF, 237

constract, 40

constructors, 233

consVis, 233

consVisibility, 253, 277

Context, 159

context, 162

Context’, 159

cookieForm, 187

CookieParam, 185

coordinates, 194

COpDecl, 227

copyFile, 65

cos, 79

cosh, 80

CPattern, 229

cpnsAlive, 63

cpnsShow, 62

cpnsStart, 62

cpnsStop, 63

cpvar, 238

createDirectory, 65

createDirectoryIfMissing, 65

CRhs, 228

crossout, 129

CRule, 228

CStatement, 230

305

ctDay, 144

ctHour, 144

ctMin, 144

ctMonth, 144

ctSec, 144

ctTZ, 144

ctvar, 238

CTVarIName, 225

ctYear, 144

CTypeDecl, 226

CTypeExpr, 227

currentModule, 263

Curry mode, 16

Curry preprocessor, 45

CurryCheck, 34

curryCompiler, 67

curryCompilerMajorVersion, 67

curryCompilerMinorVersion, 67

CurryDoc, 29

currydoc, 30

CURRYPATH, 8

CurryProg, 226

curryRuntime, 67

curryRuntimeMajorVersion, 67

curryRuntimeMinorVersion, 67

currySubdir, 68

CurryTest, 43

currytest, 43

cvar, 238

CVarIName, 225

CVisibility, 226

cyan, 130

cycle, 114

cyclic structure, 19

cymake, 297

database programming, 52

dateType, 236

daysOfMonth, 145

debugTcl, 92

Decomp, 159

defaultButton, 181

defaultEncoding, 186

defaultOptions, 239, 263

defaultParams, 69

defaultRequired, 270

deg, 162

deg’, 163

delEdge, 161

delEdges, 161

delete, 111, 166

deleteBy, 111

deleteDBEntries, 109

deleteDBEntry, 109

deleteRBT, 171, 173

delFromFM, 156

delListFromFM, 156

delNode, 161

delNodes, 161

depthDiag, 170

deqHead, 154

deqInit, 154

deqLast, 154

deqLength, 154

deqReverse, 154

deqTail, 154

deqToList, 155

deterministic, 148

dfs, 12

dfsStrategy, 168, 176

diagonal, 112

diagStrategy, 168

digitToInt, 61

dirName, 73

dlist, 190

Doc, 118

documentation comment, 29

documentation generator, 29

doesDirectoryExist, 64

doesFileExist, 64

domain, 253, 278

doneT, 107

dot, 127

doubleArrow, 127

doubleColon, 127

dquote, 127

dquotes, 125

dropDrive, 75

306

dropExtension, 74

dropExtensions, 75

dropFileName, 75

dropTrailingPathSeparator, 76

Dynamic, 106

easyCheck0, 151

easyCheck1, 151

easyCheck2, 151

easyCheck3, 151

easyCheck4, 151

easyCheck5, 151

easyConfig, 149

eBool, 221

eChar, 221

Edge, 159

edges, 164

eEmpty, 221

eFloat, 221

eInt, 221

element, 220

elemFM, 157

elemIndex, 110

elemIndices, 110

elemRBT, 171

elemsOf, 217

eltsFM, 158

Emacs, 16

emap, 164

emphasize, 189

empty, 117, 118, 154, 160, 166, 220

emptyAFCSubst, 288

emptyDefaultArray, 153

emptyErrorArray, 153

emptyFM, 155

emptySetRBT, 171

emptySubst, 180

emptyTableRBT, 173

emptyVS, 178

encapsulated search, 7

enclose, 125

encloseSep, 123

encloseSepSpaced, 124

Encoding, 216

entity relationship diagrams, 52

EntryScroll, 96

eOpt, 221

eqFM, 157

equal, 163

equalFilePath, 76

equals, 127

ERD2Curry, 52

erd2curry, 52

eRep, 221

eRepSeq1, 222

eRepSeq2, 222

eRepSeq3, 223

eRepSeq4, 223

eRepSeq5, 224

eRepSeq6, 225

errorT, 107

ES, 71

eSeq1, 222

eSeq2, 222

eSeq3, 223

eSeq4, 223

eSeq5, 224

eSeq6, 224

eString, 221

evalChildFamilies, 174

evalChildFamiliesIO, 175

evalCmd, 101

evalES, 71

evalFamily, 174

evalFamilyIO, 175

even, 98

Event, 88

eventually, 148

exclusiveIO, 102

execCmd, 101

existsDBKey, 108

exitGUI, 94

exitWith, 143

exp, 79

expires, 187

Expr, 246

extended, 69

extendSubst, 180

307

external operation, 299

extSeparator, 74

factorial, 97

failES, 71

failing, 148

failT, 108

failVS, 178

faint, 129

family, 174

FilePath, 73

fileSize, 64

fileSuffix, 73

fill, 128

fillBreak, 128

fillCat, 122

fillEncloseSep, 124

fillEncloseSepSpaced, 124

fillSep, 122

filterFM, 157

find, 110

findall, 7

findIndex, 110

findIndices, 111

first, 13, 81

fix, 81

Fixity, 244

FlatCurry, 57

flatCurry2Xml, 268

flatCurry2XmlFile, 268

flatCurryFileName, 249

flatCurryIntName, 249

FlexRigidResult, 268

float, 126, 219

floatType, 236

FM, 155

fmSortBy, 158

fmToList, 158

fmToListPreOrder, 158

focusInput, 95

fold, 174

foldChildren, 175

foldFM, 157

foldValues, 140

footer, 189

for, 149

form, 187

formatMarkdownFileAsPDF, 200

formatMarkdownInputAsPDF, 200

formBodyAttr, 187

formCSS, 186

formEnc, 186

formMetaInfo, 187

FormParam, 184

freeExpr, 259, 283

freeVars, 259, 283

fromJust, 114

fromLeft, 71

fromMarkdownText, 200

fromMaybe, 114

fromRight, 71

FrontendParams, 66

FrontendTarget, 66

fullPath, 70

funcArgs, 256, 281

funcArity, 234, 255, 280

funcBody, 256, 281

FuncDecl, 244

funcName, 234, 255, 280

funcNamesOfFDecl, 235

funcNamesOfLDecl, 235

funcNamesOfStat, 235

funcRHS, 256, 281

funcRule, 256, 280

functional pattern, 19

functions, 233

funcType, 234, 255, 280

funcVis, 234

funcVisibility, 255, 280

garbageCollect, 132

garbageCollectorOff, 132

garbageCollectorOn, 132

GDecomp, 159

gelem, 162

generateCompactFlatCurryFile, 270

germanLatexDoc, 195

getAbsolutePath, 65

308

getAllFailures, 58

getAllSolutions, 58

getAllValues, 58, 77

getAllValuesWith, 169, 177

getArgs, 142

getAssoc, 102

getClockTime, 144

getContents, 100

getContentsOfUrl, 201

getCookies, 194

getCPUTime, 142

getCurrentDirectory, 65

getCursorPosition, 95

getDB, 107

getDBInfo, 109

getDBInfos, 109

getDirectoryContents, 65

getElapsedTime, 142

getEnviron, 142

getFileInPath, 73

getFlatCurryFileInLoadPath, 250

getFlexRigid, 268

getHomeDirectory, 65

getHostname, 143

getLoadPathForModule, 68

getLocalTime, 144

getModificationTime, 65

getOneSolution, 58

getOneValue, 58

getOpenFile, 96

getOpenFileWithTypes, 96

getOpt, 83

getOpt’, 83

getPID, 143

getPortInfo, 63

getProcessInfos, 132

getProgName, 143

getRandomSeed, 165

getRcVar, 67

getRcVars, 67

gets, 72

getSaveFile, 96

getSaveFileWithTypes, 96

getSearchPath, 74

getSearchTree, 168, 176

getSomeValue, 77

getTemporaryDirectory, 65

getTypeEnv, 290

getTypeEnvFromProgEnv, 290

getUrlParameter, 194

getValue, 94

ghc, 13, 14

ghci, 14

Global, 83

global, 84

global installation, 6

GlobalSpec, 83

glyphicon, 182

gmap, 164

Graph, 160

green, 129

group, 112, 119

groupBy, 112

guardedRule, 237

GuiPort, 84

h1, 189

h2, 189

h3, 189

h4, 189

h5, 189

Handle, 98

hang, 119

hardline, 118

hasDrive, 75

hasExtension, 75

hasTrailingPathSeparator, 76

hcat, 122

hClose, 99

headedTable, 191

header, 189

hempty, 188

hEncloseSep, 124

hFlush, 99

hGetChar, 100

hGetContents, 100

hGetLine, 100

hiddenfield, 193

309

hIsEOF, 99

hIsReadable, 101

hIsTerminalDevice, 101

hIsWritable, 101

homeIcon, 182

hPrint, 101

hPutChar, 100

hPutStr, 100

hPutStrLn, 100

hReady, 100

href, 190

hrefBlock, 181

hrefButton, 181

hrefInfoBlock, 181

hrule, 191

hSeek, 99

hsep, 121

htmldir, 70

HtmlExp, 183

HtmlForm, 183

HtmlHandler, 183

htmlIsoUmlauts, 193

HtmlPage, 185

htmlQuote, 193

htmlSpecialChars2tex, 195

htxt, 188

htxts, 188

hWaitForInput, 99

hWaitForInputOrMsg, 99

hWaitForInputs, 99

hWaitForInputsOrMsg, 100

i2f, 79

identicalVars, 176

idOfCgiRef, 186

ids, 12

idsStrategy, 168, 177

idsStrategyWith, 168, 177

ilog, 97

image, 191

imageButton, 192

imports, 233

inCurrySubdir, 68

inCurrySubdirModule, 68

indeg, 162

indeg’, 163

indent, 120, 266, 274

indentWidth, 263

inferExpr, 289

inferFunction, 289

inferFunctionEnv, 290

inferNewFunctions, 289

inferProg, 289

inferProgEnv, 290

inferProgFromProgEnv, 289

init, 113

inits, 112

inline, 191

inn, 162

inn’, 163

insEdge, 161

insEdges, 161

insertBy, 113

insertionSort, 172

insertMultiRBT, 171

insertRBT, 171

insNode, 161

insNodes, 161

installation

global, 6

local, 6

installDir, 67

int, 126, 219

integer, 12

interactive, 10

interactive, 13

intercalate, 111

intersect, 111

intersectBy, 111

intersectFM, 156

intersectFM C, 157

intersectRBT, 171

intersperse, 111

intForm, 195

intFormMain, 195

intToDigit, 61

intType, 236

inverse, 129

310

invf1, 81

invf2, 81

invf3, 81

invf4, 81

invf5, 81

IOMode, 98

IORef, 101

ioref, 13

ioType, 236

is, 148

isAbsolute, 72, 77

isAlpha, 61

isAlphaNum, 61

isAlways, 148

isAscii, 60

isAsciiLower, 60

isAsciiUpper, 61

isBaseType, 233

isBigComment, 291

isBinDigit, 61

isCase, 259, 284

isCode, 291

isComb, 259, 284

isCombTypeConsCall, 258, 282

isCombTypeConsPartCall, 258, 283

isCombTypeFuncCall, 258, 282

isCombTypeFuncPartCall, 258, 282

isComment, 291

isConsCall, 260, 285

isConsId, 266

isConsPartCall, 260, 285

isConsPattern, 261, 286

isControl, 61

isDefined, 168, 176

isDigit, 61

isDrive, 75

isEmpty, 118, 139, 154, 161, 166

isEmptyFM, 157

isEmptySetRBT, 171

isEmptyTable, 173

isEOF, 99

isEventually, 148

isExternal, 256, 281

isExtSeparator, 74

isFree, 259, 284

isFuncCall, 260, 285

isFuncPartCall, 260, 285

isFunctionalType, 234

isFuncType, 254, 279

isGround, 260, 285

isHexDigit, 61

isInfixOf, 113

isInfixOp, 266, 274

isIOReturnType, 234

isIOType, 234

isJust, 114

isLatin1, 60

isLeft, 70

isLet, 259, 284

isLetter, 291

isListId, 266, 274

isLit, 259, 284

isLower, 61

isMeta, 292

isModuleHead, 291

isNothing, 114

isOctDigit, 61

isOr, 259, 284

isPathSeparator, 74

isPolyType, 234

isPosix, 143

isPrefixOf, 113

isPrelude, 235

isqrt, 97

isRelative, 77

isRight, 70

isRuleExternal, 257, 282

isSearchPathSeparator, 74

isSmallComment, 291

isSpace, 61

isSuffixOf, 113

isTCons, 254, 279

isText, 291

isTupleId, 266, 274

isTVar, 254, 279

isTypeSyn, 252, 277

isUpper, 61

isValid, 77

311

isVar, 176, 259, 284

isWindows, 143

italic, 129, 189

joinDrive, 75

joinModuleIdentifiers, 68

joinPath, 76

JSBranch, 104

jsConsTerm, 105

JSExp, 102

JSFDecl, 104

JSStat, 103

Key, 105

keyOrder, 157

KeyPred, 105

keysFM, 158

kics2, 9

kics2rc, 16

lab, 162

lab’, 163

labEdges, 164

label, 149

labNode’, 163

labNodes, 164

labUEdges, 164

labUNodes, 164

langle, 126

larrow, 127

last, 113

LayoutChoice, 239

lbrace, 126

lbracket, 126

ldeclsOfRule, 235

LEdge, 159

lefts, 70

leqChar, 172

leqCharIgnoreCase, 172

leqLexGerman, 172

leqList, 172

leqString, 172

leqStringIgnoreCase, 172

let, 18

letBinds, 258, 283

letBody, 258, 283

levelDiag, 170

limitSearchTree, 168

line, 118

linebreak, 118

linesep, 118

list, 124

list2ac, 238

list2CategorizedHtml, 182

ListBoxScroll, 96

listenOn, 116, 141

listenOnFresh, 141

listPattern, 238

listSpaced, 124

listToDefaultArray, 153

listToDeq, 155

listToErrorArray, 153

listToFM, 155

listToMaybe, 115

listType, 236

litem, 190

Literal, 248

literal, 258, 283

LNode, 159

local installation, 6

log, 79

logBase, 79

logfile, 70

loginIcon, 182

logoutIcon, 182

lookup, 166

lookupAFCSubst, 288

lookupFileInPath, 73

lookupFlatCurryFileInLoadPath, 250

lookupFM, 157

lookupModuleSourceInLoadPath, 69

lookupRBT, 173

lookupSubst, 180

lookupWithDefaultFM, 157

lparen, 126

LPath, 160

lpre, 162

lpre’, 163

lsuc, 162

312

lsuc’, 163

magenta, 130

MailOption, 198

main, 63

mainWUI, 207, 215

makeRelative, 77

makeValid, 77

mapAccumES, 72

mapAccumL, 114

mapAccumR, 114

mapChildFamilies, 174

mapChildFamiliesIO, 175

mapChildren, 174

mapChildrenIO, 175

mapES, 72

mapFamily, 174

mapFamilyIO, 175

mapFM, 157

mapMaybe, 115

mapMMaybe, 115

mapT, 108

mapT , 108

mapValues, 140

markdown, 29

MarkdownDoc, 198

MarkdownElem, 198

markdownEscapeChars, 200

markdownText2CompleteHTML, 200

markdownText2CompleteLaTeX, 200

markdownText2HTML, 200

markdownText2LaTeX, 200

markdownText2LaTeXWithFormat, 200

match, 161

matchAny, 160

matchHead, 155

matchLast, 155

matrix, 92

max3, 97

maxFM, 157

maximum, 113

maximumBy, 113

maxlist, 97

maxValue, 141

maybeToList, 115

maybeType, 236

MContext, 159

MenuItem, 90

mergeSort, 172

min3, 97

minFM, 157

minimum, 113

minimumBy, 113

minlist, 97

minusFM, 156

minValue, 140

missingArgs, 258, 283

missingCombArgs, 258, 283

mkGraph, 161

mkUGraph, 161

MName, 225

modify, 72

modifyIORef, 102

modNameToPath, 68

modsOfType, 234

mplus, 115

multipleSelection, 193

nav, 190

nbsp, 189

neighbors, 162

neighbors’, 163

nest, 119

newDBEntry, 110

newDBKeyEntry, 110

newIORef, 102

newNodes, 164

newTreeLike, 166

nextBoolean, 165

nextInt, 165

nextIntRange, 165

nmap, 164

noChildren, 174

Node, 159

node’, 163

nodeRange, 162

nodes, 164

noGuard, 237

313

noHandlerPage, 197

noindex, 31

noNodes, 161

normalise, 77

notEmpty, 139

nub, 111

nubBy, 111

odd, 98

olist, 190

on, 81

once, 7

onlyindex, 31

OpDecl, 244

openFile, 99

operation

external, 299

opFixity, 255, 279

opName, 255, 279

opPrecedence, 255, 279

opt, 220

OptDescr, 82

optimize, 13

Option, 269

option

in source file, 15

Options, 239, 262

orExps, 259, 283

out, 162

out’, 163

outdeg, 162

outdeg’, 163

overlapWarn, 70

page, 188

pageBodyAttr, 188

pageCSS, 188

pageEnc, 188

pageLinkInfo, 188

pageMetaInfo, 188

PageParam, 186

par, 189

parallel, 12

parens, 125

parensIf, 125

parseHtmlString, 197

Parser, 117

parser, 14

ParserRep, 117

parseXmlString, 218

partition, 62, 112

partitionEithers, 71

password, 192

patArgs, 261, 286

patCons, 261, 286

patExpr, 262, 287

Path, 160

path, 8, 12

pathSeparator, 74

pathSeparatorChar, 72

pathSeparators, 74

patLiteral, 261, 286

Pattern, 248

pattern

functional, 19

pChar, 238

permutations, 112

permute, 62

persistentSQLite, 108

pFloat, 238

pi, 78

pInt, 238

plainCode, 292

PlClause, 133

PlGoal, 133

plList, 134

PlTerm, 133

plusFM, 156

plusFM C, 156

pNil, 238

popupMessage, 95

Pos, 179

postcondition, 40

pow, 97

ppAVarIndex, 273

ppBranch, 265, 274

ppCaseType, 265, 274

ppCExpr, 242

314

ppCFuncDecl, 241

ppCFuncDeclWithoutSig, 241

ppCFuncSignature, 241

ppCLiteral, 242

ppComb, 265, 274

ppConsDecl, 264, 273

ppConsDecls, 264, 273

ppConsExports, 263, 272

ppCOpDecl, 241

ppCPattern, 242

ppCStatement, 242

ppCTypeDecl, 241

ppCTypeExpr, 242

ppCurryProg, 241

ppDecl, 265, 274

ppDecls, 265, 274

ppExp, 265, 273

ppExports, 241, 263, 272

ppExpr, 265, 273

ppFixity, 264, 272

ppFunc, 242

ppFuncDecl, 265, 273

ppFuncDecls, 264, 273

ppFuncExports, 264, 272

ppHeader, 263, 272

ppImport, 264, 272

ppImports, 241, 264, 272

ppInfixOp, 274

ppInfixQOp, 266

ppLiteral, 265, 273

ppMName, 241

ppName, 266

ppOpDecl, 264, 272

ppOpDecls, 264, 272

ppPattern, 265, 274

ppPrefixOp, 265, 274

ppPrefixQOp, 265

ppProg, 263, 272

ppQFunc, 242

ppQName, 266, 274

ppQType, 242

pPrint, 118

ppRule, 265, 273

ppTVarIndex, 264, 273

ppType, 242

ppTypeDecl, 264, 273

ppTypeDecls, 264, 272

ppTypeExp, 264, 273

ppTypeExport, 263, 272

ppTypeExpr, 264, 273

ppVarIndex, 265, 273

prdfs, 12

pre, 162, 190, 231

pre’, 163

precondition, 40

preludeName, 231

preprocessor, 45

pretty, 130

prettyCurryProg, 241

primButton, 181

printAllValuesWith, 169

printMemInfo, 132

printValues, 141

printValuesWith, 169

ProcessInfo, 131

product, 113

profile, 14

profileSpace, 132

profileSpaceNF, 132

profileTime, 132

profileTimeNF, 132

profiling, 6, 14

Prog, 243

progFuncs, 250, 275

progImports, 250, 275

progName, 233, 250, 275

progOps, 251, 275

program

documentation, 29

testing, 34, 43

progTypes, 250, 275

prompt, 13

Prop, 146

PropIO, 146

ProtocolMsg, 59

publicConsNames, 233

publicFuncNames, 233

publicTypeNames, 233

315

punctuate, 123

pureio, 13

puts, 72

pVars, 238

QName, 225, 242

Qualification, 239

QualMode, 262

qualMode, 263

Query, 106

Queue, 154

quickSort, 172

quiet, 69

quietConfig, 149

radio main, 192

radio main off, 192

radio other, 192

range, 254, 278

rangle, 126

rarrow, 127

rbrace, 126

rbracket, 126

rcFileContents, 67

rcFileName, 67

rcParams, 69

readAbstractCurryFile, 232

readCgiServerMsg, 197

readCompleteFile, 102

readCSV, 63

readCSVFile, 63

readCSVFileWithDelims, 63

readCSVWithDelims, 63

readCurry, 57, 231

readCurryWithImports, 231

readCurryWithParseOptions, 231

readFileWithXmlDocs, 218

readFlatCurry, 57, 249

readFlatCurryFile, 249

readFlatCurryInt, 249

readFlatCurryIntWithImports, 266

readFlatCurryIntWithImportsInPath, 267

readFlatCurryWithImports, 266

readFlatCurryWithImportsInPath, 266

readFlatCurryWithParseOptions, 249

readFM, 158

readGlobal, 84

readHex, 135

readHtmlFile, 197

readInt, 135

readIORef, 102

readNat, 135

readOct, 135

readPropertyFile, 134

readQTerm, 137

readQTermFile, 137

readQTermListFile, 137

readScan, 292

readsQTerm, 136

readsTerm, 136

readsUnqualifiedTerm, 136

readTerm, 136

readUnqualifiedTerm, 136

readUnsafeXmlFile, 218

readUntypedCurry, 231

readUntypedCurryWithParseOptions, 232

readXmlFile, 218

recip, 79

ReconfigureItem, 88

red, 129

RedBlackTree, 166

redirect, 187

registerCgiServer, 197

registerPort, 63

removeDirectory, 65

removeEscapes, 200

removeFile, 65

removeRegionStyle, 94

renameDirectory, 65

renameFile, 65

Rendering, 201, 208

renderList, 207, 215

renderTaggedTuple, 207, 215

renderTuple, 207, 215

rep, 220

replace, 112

replaceBaseName, 76

replaceChildren, 174

316

replaceChildrenIO, 175

replaceDirectory, 76

replaceExtension, 74

replaceFileName, 75

repSeq1, 221

repSeq2, 222

repSeq3, 223

repSeq4, 223

repSeq5, 224

repSeq6, 224

RequiredSpec, 269

requires, 270

resetbutton, 192

Result, 146

result, 147

resultType, 234, 254, 279

returnES, 71

returns, 147

returnT, 107

rights, 70

rndDepthDiag, 170

rndLevelDiag, 170

rndLevelDiagFlat, 170

rnmAllVars, 261, 285

rnmAllVarsInFunc, 256, 281

rnmAllVarsInProg, 251, 276

rnmAllVarsInRule, 257, 282

rnmAllVarsInTypeExpr, 254, 279

rnmProg, 251, 276

rotate, 155

round, 79

row, 92

rparen, 126

rts, 15

Rule, 245

ruleArgs, 257, 281

ruleBody, 257, 282

ruleExtDecl, 257, 282

runCgiServerCmd, 197

runConfigControlledGUI, 93

runControlledGUI, 93

runcurry, 50

runFormServerWithKey, 194

runFormServerWithKeyAndFormParams, 194

runGUI, 92

runGUIwithParams, 93

runHandlesControlledGUI, 93

runInitControlledGUI, 93

runInitGUI, 93

runInitGUIwithParams, 93

runInitHandlesControlledGUI, 93

runJustT, 107

runPassiveGUI, 92

runQ, 107

runT, 107

safe, 14

sameReturns, 147

satisfy, 117

scan, 292

scanl, 113

scanl1, 114

scanr, 114

scanr1, 114

scc, 167

sClose, 116, 142

searchPathSeparator, 74

SearchTree, 7, 167, 175

searchTreeSize, 168, 176

second, 81

section, 189

SeekMode, 98

seeText, 95

select, 140

selection, 193

selectionInitial, 193

selectValue, 140

semi, 127

semiBraces, 125

semiBracesSpaced, 125

sendMail, 198

sendMailWithOptions, 198

sep, 122

separatorChar, 72

seq1, 221

seq2, 222

seq3, 222

seq4, 223

317

seq5, 224

seq6, 224

seqStrActions, 60

sequenceMaybe, 115

sequenceT, 108

sequenceT , 108

set, 124

set functions, 7

set0, 138

set0With, 138

set1, 138

set1With, 138

set2, 138

set2With, 138

set3, 138

set3With, 138

set4, 138

set4With, 139

set5, 139

set5With, 139

set6, 139

set6With, 139

set7, 139

set7With, 139

setAssoc, 102

setConfig, 94

setCurrentDirectory, 65

setEnviron, 142

setExtended, 69

setFullPath, 69

setFullQualification, 240

setHtmlDir, 69

setImportQualification, 240

setIndentWith, 240

setInsertEquivalence, 166

setLayoutChoice, 240

setLogfile, 69

setMaxFail, 149

setMaxTest, 149

setModName, 240

setNoQualification, 240

setOnDemandQualification, 240

setOverlapWarn, 69

setPageWith, 240

setQuiet, 69

SetRBT, 170

setRBT2list, 171

setSpaced, 124

setSpecials, 69

setValue, 94

showAFCSubst, 288

showCProg, 241

showCSV, 63

showCurryExpr, 267

showCurryId, 267

showCurryType, 267

showCurryVar, 267

showEscape, 274

showFlatFunc, 267

showFlatProg, 267

showFlatType, 267

showFM, 158

showGraph, 164

showHtmlExp, 193

showHtmlExps, 193

showHtmlPage, 194

showJSExp, 105

showJSFDecl, 105

showJSStat, 105

showLatexDoc, 195

showLatexDocs, 195

showLatexDocsWithPackages, 195

showLatexDocWithPackages, 195

showLatexExp, 195

showLatexExps, 194

showMemInfo, 132

showPlClause, 134

showPlGoal, 134

showPlGoals, 134

showPlProg, 134

showPlTerm, 134

showQNameInModule, 249

showQTerm, 136

showSearchTree, 168, 176

showSubst, 180

showTerm, 136

showTError, 110

showTestCase, 60

318

showTestCompileError, 60

showTestEnd, 60

showTestMod, 60

showXmlDoc, 217

showXmlDocWithParams, 218

shuffle, 165

simpleRule, 237

sin, 79

singleton variables, 7

sinh, 80

sizedSubset, 62

sizeFM, 157

sleep, 143

smallButton, 181

snoc, 154

Socket, 115, 141

socketAccept, 116, 141

socketName, 116

softbreak, 119

softline, 118

solutionOf, 148

solveAll, 7

some, 117

someDBInfos, 109

someDBKeyInfos, 109

someDBKeyProjections, 109

someDBKeys, 109

someSearchTree, 168, 176

someSolution, 78

someValue, 78, 169, 177

someValueWith, 170, 177

sort, 166, 172

sortBy, 113

sortRBT, 171

sortValues, 141

sortValuesBy, 141

source-file option, 15

space, 127

specials, 70

specification, 40

spiceup, 53

Spicey, 53

split, 112

splitBaseName, 73

splitDirectories, 76

splitDirectoryBaseName, 73

splitDrive, 75

splitExtension, 74

splitExtensions, 75

splitFileName, 75

splitFM, 156

splitModuleFileName, 67

splitModuleIdentifiers, 68

splitOn, 112

splitPath, 73, 76

splitSearchPath, 74

splitSet, 62

sqrt, 79

squote, 126

squotes, 125

standardForm, 187

standardPage, 188

star, 117

stderr, 99

stdin, 99

stdout, 99

Strategy, 167, 175

string, 126, 219

string2ac, 238

string2urlencoded, 194

stringList2ItemList, 182

stringPattern, 238

stringType, 236

stripCurrySuffix, 68

stripSuffix, 73

strong, 189

Style, 91

style, 191

styleSheet, 191

submitForm, 197

subset, 62

Subst, 179

subst, 288

substBranch, 288

substExpr, 288

substFunc, 288

substPattern, 288

substRule, 288

319

substSnd, 288

suc, 162

suc’, 163

successful, 148

suffixSeparatorChar, 72

sum, 113

supply, 12

system, 143

table, 191

TableRBT, 173

tableRBT2list, 173

tabulator stops, 7

tagOf, 217

tails, 112

takeBaseName, 76

takeDirectory, 76

takeDrive, 75

takeExtension, 74

takeExtensions, 75

takeFileName, 76

tan, 80

tanh, 80

tConsArgs, 254, 278

tConsName, 254, 278

teletype, 190

Term, 179

TermEq, 179

TermEqs, 179

terminal, 117

TError, 106

TErrorKind, 106

Test, 146

test, 147

testing programs, 34, 43

testScan, 292

text, 118

textarea, 192

TextEditScroll, 95

textfield, 192

textOf, 217

textOfXml, 217

textstyle, 191

tilde, 128

time, 13

titledSideMenu, 181

toCalendarTime, 144

toClockTime, 144

toDayString, 145

Token, 291

Tokens, 291

toLower, 61

toTimeString, 145

toUpper, 61

toUTCTime, 144

toVar, 238

trace, 13, 64, 146

traceId, 64

traceIO, 64

traceShow, 64

traceShowId, 64

Transaction, 106

transformQ, 107

transformWSpec, 202, 209

transpose, 111

Traversable, 173

trBranch, 261, 286

trCombType, 258, 282

trCons, 253, 277

tree2list, 166

trExpr, 259, 284

trFunc, 255, 280

trivial, 149

trOp, 255, 279

trPattern, 261, 286

trProg, 250, 275

trRule, 257, 281

trType, 251, 276

trTypeExpr, 254, 278

truncate, 79

try, 7

tryParse, 231

tryReadACYFile, 232

tryReadCurryFile, 231

tryReadCurryWithImports, 231

tupled, 124

tupledSpaced, 125

tupleExpr, 237

320

tuplePattern, 237

tupleType, 236

TVarIndex, 242

tVarIndex, 253, 278

tvarsOfType, 234

typeCons, 233

typeConsDecls, 252, 276

TypeDecl, 243

TypeEnv, 289

TypeExpr, 244

typeName, 233, 252, 276

typeParams, 252, 276

types, 233

typeSyn, 252, 277

typeVis, 233

typeVisibility, 252, 276

UContext, 159

UDecomp, 160

UEdge, 159

ufold, 164

UGr, 160

ulist, 190

unAnnExpr, 287

unAnnFuncDecl, 287

unAnnPattern, 287

unAnnProg, 287

unAnnRule, 287

underline, 129

unfoldr, 114

UnificationError, 180

unify, 180, 181

union, 111

unionBy, 111

unionRBT, 171

uniquely, 148

unitFM, 155

unitType, 236

UNode, 159

unregisterCgiServer, 197

unregisterPort, 63

unsafePerformIO, 146

unscan, 292

unsetEnviron, 143

untypedAbstractCurryFileName, 232

UPath, 160

Update, 250, 275

update, 153, 166

updateDBEntry, 110

updateFile, 102

updatePropertyFile, 134

updateRBT, 173

updateValue, 94

updateXmlFile, 218

updBranch, 261, 286

updBranches, 260, 285

updBranchExpr, 261, 286

updBranchPattern, 261, 286

updCases, 260, 285

updCombs, 260, 284

updCons, 253, 278

updConsArgs, 253, 278

updConsArity, 253, 278

updConsName, 253, 278

updConsVisibility, 253, 278

updFM, 156

updFrees, 260, 285

updFunc, 256, 280

updFuncArgs, 257, 281

updFuncArity, 256, 280

updFuncBody, 257, 281

updFuncName, 256, 280

updFuncRule, 256, 281

updFuncType, 256, 281

updFuncTypes, 254, 279

updFuncVisibility, 256, 281

updLets, 260, 285

updLiterals, 260, 284

updOp, 255, 280

updOpFixity, 255, 280

updOpName, 255, 280

updOpPrecedence, 255, 280

updOrs, 260, 285

updPatArgs, 262, 287

updPatCons, 262, 286

updPatLiteral, 262, 287

updPattern, 262, 286

updProg, 251, 275

321

updProgExps, 251, 276

updProgFuncs, 251, 276

updProgImports, 251, 276

updProgName, 251, 275

updProgOps, 251, 276

updProgTypes, 251, 276

updQNames, 261, 285

updQNamesInConsDecl, 253, 278

updQNamesInFunc, 256, 281

updQNamesInProg, 251, 276

updQNamesInRule, 257, 282

updQNamesInType, 252, 277

updQNamesInTypeExpr, 254, 279

updRule, 257, 282

updRuleArgs, 257, 282

updRuleBody, 257, 282

updRuleExtDecl, 257, 282

updTCons, 254, 279

updTVars, 254, 279

updType, 252, 277

updTypeConsDecls, 252, 277

updTypeds, 260, 285

updTypeName, 252, 277

updTypeParams, 252, 277

updTypeSynonym, 252, 277

updTypeVisibility, 252, 277

updVars, 260, 284

urlencoded2string, 194

usageInfo, 83

userIcon, 182

v, 13

validDate, 145

valueOf, 139

Values, 138

values2list, 141

ValueSequence, 178

valuesOf, 152

valuesOfSearchTree, 152

variables

singleton, 7

varId, 176

VarIdx, 179

VarIndex, 243

varNr, 258, 283

varsOfExp, 234

varsOfFDecl, 235

varsOfLDecl, 235

varsOfPat, 234

varsOfRhs, 235

varsOfRule, 235

varsOfStat, 235

vcat, 122

verbatim, 190

verboseCheck0, 151

verboseCheck1, 152

verboseCheck2, 152

verboseCheck3, 152

verboseCheck4, 152

verboseCheck5, 152

verboseConfig, 149

verbosity, 13

version, 231

Visibility, 243

vsep, 121

vsepBlank, 122

vsToList, 178

w10Tuple, 205, 213

w11Tuple, 205, 214

w12Tuple, 206, 214

w4Tuple, 204, 211

w5Tuple, 204, 212

w6Tuple, 204, 212

w7Tuple, 204, 212

w8Tuple, 205, 212

w9Tuple, 205, 213

waitForSocketAccept, 116, 142

wCheckBool, 203, 210

wCheckMaybe, 206, 215

wCons10, 205, 213

wCons10JS, 213

wCons11, 205, 214

wCons11JS, 214

wCons12, 206, 214

wCons12JS, 214

wCons2, 204, 211

wCons2JS, 211

322

wCons3, 204, 211

wCons3JS, 211

wCons4, 204, 211

wCons4JS, 211

wCons5, 204, 212

wCons5JS, 212

wCons6, 204, 212

wCons6JS, 212

wCons7, 205, 212

wCons7JS, 212

wCons8, 205, 213

wCons8JS, 213

wCons9, 205, 213

wCons9JS, 213

wConstant, 202, 209

wEither, 207, 215

where, 18

wHidden, 202, 209

white, 130

wHList, 206, 214

Widget, 84

WidgetRef, 90

wInt, 202, 209

withCondition, 202, 209

withConditionJS, 209

withConditionJSName, 209

withError, 202, 209

withRendering, 202, 209

wJoinTuple, 206, 211

wList, 206, 214

wListWithHeadings, 206, 214

wMatrix, 206, 215

wMaybe, 206, 215

wMultiCheckSelect, 203, 210

wPair, 203, 211

wRadioBool, 203, 210

wRadioMaybe, 207, 215

wRadioSelect, 203, 210

wRequiredString, 202, 210

wRequiredStringSize, 203, 210

writeAbstractCurryFile, 232

writeAssertResult, 60

writeCSVFile, 63

writeFCY, 250

writeGlobal, 84

writeIORef, 102

writeQTermFile, 137

writeQTermListFile, 137

writeXmlFile, 217

writeXmlFileWithParams, 217

wSelect, 203, 210

wSelectBool, 203, 210

wSelectInt, 203, 210

wString, 202, 209

wStringSize, 202, 210

wTextArea, 203, 210

WTree, 201, 208

wTree, 207, 215

wTriple, 204, 211

wui2html, 207, 216

WuiHandler, 201, 208

wuiHandler2button, 202, 209

wuiInForm, 207, 216

WuiSpec, 201, 208

wuiWithErrorForm, 207, 216

XAttrConv, 218

XElemConv, 218

xml, 217

xml2FlatCurry, 268

XmlDocParams, 216

XmlExp, 216

xmlFile2FlatCurry, 268

xmlRead, 219

XmlReads, 218

xmlReads, 219

xmlShow, 219

XmlShows, 218

xmlShows, 219

XOptConv, 219

XPrimConv, 218

XRepConv, 219

xtxt, 217

yellow, 130

323

	Title
	Contents
	Preface
	Overview of KiCS2
	Installation
	General Use
	Restrictions
	Modules in KiCS2

	Using the Interactive Environment of KiCS2
	Invoking KiCS2
	Commands of KiCS2
	Options of KiCS2
	Source-File Options
	Using KiCS2 in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Narrowing on Int Literals
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Case Mode
	Identifiers and Keywords
	Comments
	Numeric and Character Literals

	Layout
	Context Free Grammar

	Optimization of Curry Programs
	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryCheck: A Tool for Testing Curry Programs
	Testing Properties
	Generating Test Data
	Checking Contracts and Specifications
	Checking Usage of Specific Operations

	CurryTest: A Tool for Testing Curry Programs
	CurryPP: A Preprocessor for Curry Programs
	Integrated Code
	Regular Expressions
	Format Specifications
	HTML Code
	XML Expressions

	Sequential Rules
	Default Rules

	runcurry: Running Curry Programs
	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Spicey: An ER-based Web Framework
	Technical Problems
	Bibliography
	Libraries of the KiCS2 Distribution
	AbstractCurry and FlatCurry: Meta-Programming in Curry
	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library Combinatorial
	Library CPNS
	Library CSV
	Library Debug
	Library Directory
	Library Distribution
	Library Either
	Library ErrorState
	Library FileGoodies
	Library FilePath
	Library Findall
	Library Float
	Library Function
	Library FunctionInversion
	Library GetOpt
	Library Global
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library KeyDatabaseSQLite
	Library List
	Library Maybe
	Library NamedSocket
	Library Parser
	Library Pretty
	Library Profile
	Library Prolog
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library System
	Library Time
	Library Unsafe
	Library Test.EasyCheck

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SCC
	Library SearchTree
	Library SearchTreeTraversal
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal
	Library UnsafeSearchTree
	Library ValueSequence
	Library Rewriting.Term
	Library Rewriting.Substitution
	Library Rewriting.Unification
	Library Rewriting.UnificationSpec

	Libraries for Web Applications
	Library Bootstrap3Style
	Library CategorizedHtmlList
	Library HTML
	Library HtmlCgi
	Library HtmlParser
	Library Mail
	Library Markdown
	Library URL
	Library WUI
	Library WUIjs
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry.Types
	Library AbstractCurry.Files
	Library AbstractCurry.Select
	Library AbstractCurry.Build
	Library AbstractCurry.Pretty
	Library FlatCurry.Types
	Library FlatCurry.Files
	Library FlatCurry.Goodies
	Library FlatCurry.Pretty
	Library FlatCurry.Read
	Library FlatCurry.Show
	Library FlatCurry.XML
	Library FlatCurry.FlexRigid
	Library FlatCurry.Compact
	Library FlatCurry.Annotated.Types
	Library FlatCurry.Annotated.Pretty
	Library FlatCurry.Annotated.Goodies
	Library FlatCurry.Annotated.TypeSubst
	Library FlatCurry.Annotated.TypeInference
	Library CurryStringClassifier

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	Auxiliary Files
	External Operations
	Index

