
KiCS2 0.1

The Kiel Curry System (Version 2)

User Manual

Version of December 16, 2011

Michael Hanus1 [editor]

Additional Contributors:

Bernd Braßel2

Björn Peemöller3

Fabian Reck4

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de

(2) University of Kiel, Germany, bbr@informatik.uni-kiel.de

(3) University of Kiel, Germany, bjp@informatik.uni-kiel.de

(4) University of Kiel, Germany, fre@informatik.uni-kiel.de

Contents

Preface 4

1 Overview of KiCS2 5

1.1 General Use . 5

1.2 Restrictions . 5

1.3 Modules in KiCS2 . 6

2 Using the Interactive Environment of KiCS2 7

2.1 Invoking KiCS2 . 7

2.2 Command of KiCS2 . 7

2.3 Option of KiCS2 . 9

2.4 Source-File Options . 12

2.5 Command Line Editing . 12

2.6 Customization . 12

2.7 Emacs Interface . 13

3 Extensions 14

3.1 Recursive Variable Bindings . 14

3.2 Functional Patterns . 14

3.3 Records . 15

3.3.1 Record Type Declaration . 15

3.3.2 Record Construction . 16

3.3.3 Field Selection . 16

3.3.4 Field Update . 17

3.3.5 Records in Pattern Matching . 17

3.3.6 Export of Records . 17

3.3.7 Restrictions in the Usage of Records . 18

4 CurryDoc: A Documentation Generator for Curry Programs 19

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 22

6 CurryTest: A Tool for Testing Curry Programs 24

7 ERD2Curry: A Tool to Generate Programs from ER Specifications 26

8 Technical Problems 27

Bibliography 28

A Libraries of the KiCS2 Distribution 30

A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry 30

A.2 General Libraries . 31

A.2.1 Library AllSolutions . 31

1

A.2.2 Library Assertion . 32

A.2.3 Library Char . 33

A.2.4 Library Combinatorial . 34

A.2.5 Library Constraint . 35

A.2.6 Library CSV . 36

A.2.7 Library Directory . 36

A.2.8 Library FileGoodies . 37

A.2.9 Library Float . 38

A.2.10 Library Global . 40

A.2.11 Library GUI . 41

A.2.12 Library Integer . 53

A.2.13 Library IO . 54

A.2.14 Library IOExts . 57

A.2.15 Library JavaScript . 59

A.2.16 Library KeyDatabaseSQLite . 61

A.2.17 Library List . 66

A.2.18 Library Maybe . 68

A.2.19 Library NamedSocket . 69

A.2.20 Library Parser . 71

A.2.21 Library Pretty . 72

A.2.22 Library Profile . 80

A.2.23 Library PropertyFile . 82

A.2.24 Library Read . 82

A.2.25 Library ReadNumeric . 83

A.2.26 Library ReadShowTerm . 83

A.2.27 Library SearchTree . 85

A.2.28 Library Socket . 86

A.2.29 Library System . 87

A.2.30 Library Time . 88

A.2.31 Library Unsafe . 91

A.3 Data Structures and Algorithms . 91

A.3.1 Library Array . 91

A.3.2 Library Dequeue . 92

A.3.3 Library FiniteMap . 94

A.3.4 Library GraphInductive . 97

A.3.5 Library Random . 103

A.3.6 Library RedBlackTree . 103

A.3.7 Library SetRBT . 105

A.3.8 Library Sort . 106

A.3.9 Library TableRBT . 106

A.3.10 Library Traversal . 107

A.4 Libraries for Web Applications . 109

A.4.1 Library CategorizedHtmlList . 109

A.4.2 Library HTML . 110

2

A.4.3 Library HtmlParser . 121

A.4.4 Library Mail . 122

A.4.5 Library Markdown . 123

A.4.6 Library WUI . 125

A.4.7 Library URL . 130

A.4.8 Library XML . 130

A.4.9 Library XmlConv . 133

A.5 Libraries for Meta-Programming . 140

A.5.1 Library AbstractCurry . 140

A.5.2 Library AbstractCurryPrinter . 146

A.5.3 Library CompactFlatCurry . 146

A.5.4 Library CurryStringClassifier . 148

A.5.5 Library FlatCurry . 150

A.5.6 Library FlatCurryGoodies . 158

A.5.7 Library FlatCurryRead . 170

A.5.8 Library FlatCurryShow . 170

A.5.9 Library FlatCurryXML . 171

A.5.10 Library FlexRigid . 171

A.5.11 Library PrettyAbstract . 172

B Markdown Syntax 174

B.1 Paragraphs and Basic Formatting . 174

B.2 Lists and Block Formatting . 175

B.3 Headers . 177

C Auxiliary Files 178

D External Operations 179

Index 182

3

Preface

This document describes KiCS2 (Kiel Curry System Version 2), an implementation of the multi-

paradigm language Curry [6, 14] that is based on compiling Curry programs into Haskell pro-

grams. Curry is a universal programming language aiming at the amalgamation of the most impor-

tant declarative programming paradigms, namely functional programming and logic programming.

Curry combines in a seamless way features from functional programming (nested expressions, lazy

evaluation, higher-order functions), logic programming (logical variables, partial data structures,

built-in search), and concurrent programming (concurrent evaluation of constraints with synchro-

nization on logical variables). The current KiCS2 implementation does not support concurrent

constraints. Alternatively, one can write distributed applications by the use of sockets that can be

registered and accessed with symbolic names. Moreover, KiCS2 also supports the high-level imple-

mentation of graphical user interfaces and web services (as described in more detail in [7, 8, 9, 12]).

We assume familiarity with the ideas and features of Curry as described in the Curry language

definition [14]. Therefore, this document only explains the use of the different components of KiCS2

and the differences and restrictions of KiCS2 (see Section 1.2) compared with the language Curry

(Version 0.8.2). The basic ideas of the implementation of KiCS2 can be found in [5, 4].

Acknowledgements

This work has been supported in part by the DFG grants Ha 2457/5-1 and Ha 2457/5-2.

4

1 Overview of KiCS2

1.1 General Use

This version of KiCS2 has been developed and tested on Linux systems. In principle, it should be

also executable on other platforms on which a Haskell implementation (Glasgow Haskell Compiler

and Cabal) exists, like in many Linux distributions, Sun Solaris, or Mac OS X systems (see the file

INSTALL.html in the KiCS2 directory for a description of the necessary software to install KiCS2).

All executables required to use the different components of KiCS2 are stored in the di-

rectory kics2home/bin (where kics2home is the installation directory of the complete KiCS2

installation). You should add this directory to your path (e.g., by the bash command

“export PATH=kics2home/bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with KiCS2 creates some auxiliary files (see Section C

for details), you need write permission in the directory where you have stored your Curry programs.

Moreover, the current implementation also recompiles system libraries according to the setting of

some options. Therefore, the KiCS2 system should be locally installed in your user account. The

auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the KiCS2 installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions

There are a few minor restrictions on Curry programs when they are processed with KiCS2:

• Singleton variables, i.e., variables that occur only once in a rule, should be denoted as an

anonymous variable “_”, otherwise the parser will print a warning since this is a typical

source of programming errors.

• KiCS2 translates all local declarations into global functions with additional arguments

(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various

run-time systems, the definition of functions with local declarations look different from their

original definition (in order to see the result of this transformation, you can use the Curry-

Browser, see Section 5).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,

17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Encapsulated search: In order to allow the integration of non-deterministic computations in

programs performing I/O at the top-level, KiCS2 provides the libraries AllSolutions (Sec-

tion A.2.1) and SearchTree (Section A.2.27) where one can defined search operators and

5

various search strategies. The general definition of encapsulated search of the Curry report

[13] is not supported.

• Concurrent computations based on the suspension of expressions containing free variables are

not yet supported. KiCS2 supports value generators for free variables so that a free variable

is instantiated when its value is demanded. For instance, the initial expression

x == True where x free

is non-deterministically evaluated to False and True by instantiating x to False and True,

respectively. Thus, a computation is never suspended due to free variables. This behavior also

applies to free variables of primitive types like integers. For instance, the initial expression

x*y=:=1 where x,y free

is non-deterministically evaluated to the two solutions

{x = -1, y = -1} Success

{x = 1, y = 1} Success

• There is currently no general connection to external constraint solvers.

1.3 Modules in KiCS2

The current implementation of KiCS2 supports only flat module names, i.e., the notation Dir.Mod.f

is not supported. In order to allow the structuring of modules in different directories, KiCS2

searches for imported modules in various directories. By default, imported modules are searched

in the directory of the main program and the system module directories “kics2home/lib” and

“kics2home/lib/meta”. This search path can be extended by setting the environment variable

CURRYPATH (which can be also set in a KiCS2 session by the option “:set path”, see below) to a

list of directory names separated by colons (“:”). In addition, a local standard search path can be

defined in the “.kics2rc” file (see Section 2.6). Thus, modules to be loaded are searched in the

following directories (in this order, i.e., the first occurrence of a module file in this search path is

imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory

“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.kics2rc” variable “libraries”.

4. The directories “kics2home/lib” and “kics2home/lib/meta”.

Note that the standard prelude (kics2home/lib/Prelude.curry) will be always implicitly imported

to all modules if a module does not contain an explicit import declaration for the module Prelude.

6

2 Using the Interactive Environment of KiCS2

This section describes the interactive environment KiCS2 that supports the development of appli-

cations written in Curry. The implementation of KiCS2 contains also a separate compiler which is

automatically invoked by the interactive environment.

2.1 Invoking KiCS2

To start KiCS2, execute the command “kics2” (this is a shell script stored in kics2home/bin where

kics2home is the installation directory of KiCS2). When the system is ready (i.e., when the

prompt “Prelude>” occurs), the prelude (kics2home/lib/Prelude.curry) is already loaded, i.e., all

definitions in the prelude are accessible. Now you can type various commands (see next section)

or an expression to be evaluated.

One can also invoke KiCS2 with parameters. These parameters are usual a sequence of com-

mands (see next section) that are executed before the user interaction starts. For instance, the

invocation

kics2 :load Mod :add List

starts KiCS2, loads the main module Mod, and adds the additional module List. The invocation

kics2 :load Mod :eval config

starts KiCS2, loads the main module Mod, and evaluates the operation config before the user

interaction starts. As a final example, the invocation

kics2 :load Mod :save :quit

starts KiCS2, loads the main module Mod, creates an executable, and terminates KiCS2. This

invocation could be useful in “make” files for systems implemented in Curry.

2.2 Command of KiCS2

The most important commands of KiCS2 are (it is sufficient to type a unique prefix of a

command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry together with all its imported

modules.

:reload Recompile all currently loaded modules.

:add m Add module m to the set of currently loaded modules so that its exported entities are

available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. In the default

mode, all results of non-deterministic computations are printed. One can also print first one

result and the next result only if the user requests it. This behavior can be set by the option

interactive (see below).

7

Free variables in initial expressions must be declared as in Curry programs. In order to

see the results of their bindings,1 they must be introduced by a “where...free” declaration.

For instance, one can write

xs++ys =:= [1,2] where xs,ys free

in order to obtain the following three possible bindings:

{xs = [], ys = [1,2]} Success

{xs = [1], ys = [2]} Success

{xs = [1,2], ys = []} Success

Without these declarations, an error is reported in order to avoid the unintended introduction

of free variables in initial expressions by typos.

If the free variables in the initial goal are of a polymorphic type, as in the expression

xs++ys=:=[z] where xs,ys,z free

they are specialized to the type “()” (since the current implementation of KiCS2 does not

support computations with polymorphic logic variables).

:eval expr Same as expr. This command might be useful when putting commands as arguments

when invoking kics2.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:programs Show the list of all Curry programs that are available in the load path.

:cd dir Change the current working directory to dir.

:edit Load the source code of the current main module into a text editor. If the variable

editcommand is set in the configuration file “.kics2rc” (see Section 2.6), its value is used

as an editor command, otherwise the environment variable “EDITOR” is used as the editor

program.

:edit file Load file file into a text editor which is defined as in the command “:edit”.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.kics2rc” (see Section 2.6), its value is used as a command to

show the source text, otherwise the “cat” is used.

:show m Show the source text of module m which must be accessible via the current load path.

1Currently, bindings are only printed if the initial expression is not an I/O action (i.e., not of type “IO...”) and

there are not more than ten free variables in the initial expression.

8

:source f Show the source code of function f (which must be visible in the currently loaded

module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its

imported modules (see Section 5 for more details).

:interface Show the interface of the currently loaded module, i.e., show the names of all imported

modules, the fixity declarations of all exported operators, the exported datatypes declarations

and the types of all exported functions.

:interface m Similar to “:interface” but shows the interface of the module m which must be

in the load path of KiCS2.

:usedimports Show all calls to imported functions in the currently loaded module. This might

be useful to see which import declarations are really necessary.

:set option Set or turn on/off a specific option of the KiCS2 environment (see 2.3 for a description

of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options

that can only be set (e.g., path) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

:save Save the currently loaded program as an executable evaluating the main expression “main”.

The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)

will be evaluated by the executable.

:fork expr The expression expr, which is typically of type “IO ()”, is evaluated in an independent

process which runs in parallel to the current KiCS2 process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry

programs where one can start a new server process by this command. The new process will

be terminated when the evaluation of the expression expr is finished.

:!cmd Shell escape: execute cmd in a Unix shell.

2.3 Option of KiCS2

The following options (which can be set by the command “:set”) are currently supported:

path path Set the additional search path for loading modules to path. Note that this search path

is only used for loading modules inside this invocation of KiCS2.

prdfs Set the search mode to evaluate non-deterministic expressions to primitive depth-first

search (which is usually the fastest method to print all non-deterministic values).

dfs Set the search mode to evaluate non-deterministic expressions to depth-first search. Usually,

all non-deterministic values are printed with a depth-first strategy, but one can also print only

the first value or all values by interactively requesting them (see below for these options).

9

bfs Similarly to dfs but use a breadth-first search strategy to compute and print the values of

the given expression.

ids Similarly to dfs but use an iterative-deepening strategy to compute and print the values of

the initial expression. The initial depth bound is 100 and the depth-bound is doubled after

each iteration.

ids n Similarly to ids but use an initial depth bound of n.

par Similarly to dfs but use a parallel search strategy to compute and print the values of the

initial expression. The system chooses an appropriate number of threads according the current

number of available processors.

par n Similarly to par but use n parallel threads.

choices Show the internal choice structure (according to the implementation described in [5])

resulting from the complete evaluation of the main expression in a tree-like structure. This

mode is only useful for debugging or understanding the implementation of non-deterministic

evaluations used in KiCS2.

supply i Use implementation i as the identifier supply for choice structures (see [5] for a detailed

explanation). Currently, the following values for i are supported:

integer: Use unbounded integers as choice identifiers. This implementation is described in

[5].

ghc (default): Use a more sophisticated implementation of choice identifiers (based on the

ideas described in [2]) provided by the Glasgow Haskell Compiler.

pureio: Use IO references (i.e., memory cells) for choice identifiers. This is the most efficient

implementation for top-level depth-first search but cannot be used for more sophisticated

search methods like encapsulated search.

ioref: Use a mixture of ghc and pureio. IO references are used for top-level depth-first search

and ghc identifiers are used for encapsulated search methods.

vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like compilation messages from the Haskell com-

piler.

n = 3: Show also intermediate messages and commands of the compilation process.

n = 4: Show also all intermediate results of the compilation process.

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-

deterministic value is only computed when the user requests it. In this mode, the computation

is performed in a separate window created by the command interactivecommand whose value

is defined in “.kics2rc” (see Section 2.6).

10

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main

expression is printed (instead of all values).

+/-optimize Turn on/off the optimization of the target program.

+/-bindings Turn on/off the binding mode. If the binding mode is on (default), then the bindings

of the free variables of the initial expression are printed together with the result of the

expression.

+/-time Turn on/off the time mode. If the time mode is on, the cpu time and the elapsed time

of the computation is always printed together with the result of an evaluation.

+/-ghci Turn on/off the ghci mode. In the ghci mode, the initial goal is send to the interactive

version of the Glasgow Haskell Compiler. This might result in a slower execution but in a

faster startup time since the linker to create the main executable is not used.

cmp opts Define additional options passed to the KiCS2 compiler. For instance, setting the option

:set cmp -O 0

has the effect that all optimizations performed by the KiCS2 compiler are turned off.

ghc opts Define additional options passed to the Glasgow Haskell Compiler when the generated

Haskell programs are compiled. Usually, such options are useful only for experimental pur-

poses. For instance, setting the option

:set ghc -DDISABLE_CS

has the effect that the constraint store used to enable an efficient access to complex bindings

is disabled. Similarly,

:set ghc -DSTRICT_VAL_BIND

has the effect that expressions in a unification constraint (=:=) are always fully evaluated

(instead of the evaluation to a head normal form only) before unifying both sides. Since

these options influence the compilation of the run-time system, one should also enforce the

recompilation of Haskell programs by the GHC option “-fforce-recomp”, e.g., one should set

:set ghc -DDISABLE_CS -fforce-recomp

rts opts Define additional run-time options passed to the executable generated by the Glasgow

Haskell Compiler, i.e., the parameters “+RTS o -RTS” are passed to the executable. For in-

stance, setting the option

:set rts -H512m

has the effect that the minimum heap size is set to 512 megabytes.

args arguments Define run-time arguments passed to the executable generated by the Glasgow

Haskell Compiler. For instance, setting the option

11

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.29) returns the

value ["first","second"].

2.4 Source-File Options

If the evaluation of operations in some main module loaded into KiCS2 requires specific options,

like an iterative-deepening search strategy, one can also put these options into the source code of

this module in order to avoid setting these options every time when this module is loaded. Such

source-file options must occur before the module header, i.e., before the first declaration (module

header, imports, fixity declaration, defining rules, etc) occurring in the module. Each source file

option must be in a line of the form

{-# KiCS2_OPTION opt #-}

where opt is an option that can occur in a “:set” command (compare Section 2.3). Such a line

in the source code (which is a comment according to the syntax of Curry) has the effect that this

option is set by the KiCS2 command “:set opt” whenever this module is loaded (not reloaded!) as

a main module. For instance, if a module starts with the lines

{-# KiCS2_OPTION ids #-}

{-# KiCS2_OPTION +ghci #-}

{-# KiCS2_OPTION v2 #-}

module M where

. . .

then the load command “:load M” will also set the options for iterative deepening, using ghci and

verbosity level 2.

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of KiCS2 (as

often supported by the readline library), you should have the Unix command rlwrap installed on

your local machine. If rlwrap is installed, it is used by KiCS2 if called on a terminal. If it should

not be used (e.g., because it is executed in an editor with readline functionality), one can call

KiCS2 with the parameter “--noreadline” (which must occur as the first parameter).

2.6 Customization

In order to customize the behavior of KiCS2 to your own preferences, there is a configuration file

which is read by KiCS2 when it is invoked. When you start KiCS2 for the first time, a standard

version of this configuration file is copied with the name “.kics2rc” into your home directory. The

file contains definitions of various settings, e.g., about showing warnings, using Curry extensions,

programs etc. After you have started KiCS2 for the first time, look into this file and adapt it to

your own preferences.

12

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available

for many platforms (see http://www.emacs.org). The distribution of KiCS2 contains also a special

Curry mode that supports the development of Curry programs in the Emacs environment. This

mode includes support for syntax highlighting, finding declarations in the current buffer, and

loading Curry programs into KiCS2 in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is

described in the file README in directory “kics2home/tools/emacs” which also contains the sources

of the Curry mode and a short description about the use of this mode.

13

http://www.emacs.org

3 Extensions

KiCS2 supports some extensions in Curry programs that are not (yet) part of the definition of

Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in KiCS2. For

instance, the declaration

ones5 = let ones = 1 : ones

in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list

of 1’s. Similarly, the definition

onetwo n = take n one2

where

one2 = 1 : two1

two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [1] are a useful extension to code operations in a more readable way. Fur-

thermore, defining operations with functional patterns avoids problems caused by strict equality

(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the

prelude operation “++” for list concatenation:

last xs | ys++[y] =:= xs = y where y,ys free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the

list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is

a function call at a pattern position. With functional patterns, we can define the operation last

as follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:

since a functional pattern is considered as an abbreviation for the set of constructor terms obtained

by all evaluations of the functional pattern to normal form (see [1] for an exact definition), the

previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

. . .

14

which shows that the evaluation of the list elements is not demanded by the functional pattern.

In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a functional pattern if f

is not a visible constructor but a defined function that is visible in the scope of the pattern.

3.3 Records

A record is a data structure for bundling several data of various types. It consists of typed data

fields where each field is associated with a unique label. These labels can be used to construct,

select or update fields in a record.

Unlike labeled data fields in Haskell, records are not syntactic sugar but a real extension of the

language2. The basic concept is described in [16] but the current version does not yet provide all

features mentioned there. The restrictions are explained in Section 3.3.7.

3.3.1 Record Type Declaration

It is necessary to declare a record type before a record can be constructed or used. The declaration

has the following form:

type R α1 . . . αn = { l1 :: τ1,. . ., lm :: τm }

It introduces a new n-ary record type R which represents a record consisting of m fields. Each field

has a unique label li representing a value of the type τi. Labels are identifiers which refer to the

corresponding fields. The following examples define some record types:

type Person = {name :: String, age :: Int}

type Address = {person :: Person, street :: String, city :: String}

type Branch a b = {left :: a, right :: b}

It is possible to summarize different labels which have the same type. For instance, the record

Address can also be declared as follows:

type Address = {person :: Person, street,city :: String}

The fields can occur in an arbitrary order. The example above can also be written as

type Address = {street,city :: String, person :: Person}

The record type can be used in every type expression to represent the corresponding record, e.g.

data BiTree = Node (Branch BiTree BiTree) | Leaf Int

getName :: Person → String

getName . . .

Labels can only be used in the context of records. They do not share the name space with

functions/constructors/variables or type constructors/type variables. For instance it is possible to

use the same identifier for a label and a function at the same time. Label identifiers cannot be

shadowed by other identifiers.

2The current version allows to transform records into abstract data types. Future extensions may not have this

facility.

15

Like in type synonym declarations, recursive or mutually dependent record declarations are not

allowed. Records can only be declared at the top level. Further restrictions are described in section

3.3.7.

3.3.2 Record Construction

The record construction generates a record with initial values for each data field. It has the following

form:

{ l1 = v1,. . ., lm = vm }

It generates a record where each label li refers to the value vi. The type of the record results from

the record type declaration where the labels li are defined. A mix of labels from different record

types is not allowed. All labels must be specified with exactly one assignment. Examples for record

constructions are

{name = "Johnson", age = 30} -- generates a record of type ’Person’

{left = True, right = 20} -- generates a record of type ’Branch’

Assignments to labels can occur in an arbitrary order. For instance a record of type Person can

also be generated as follows:

{age = 30, name = "Johnson"} -- generates a record of type ’Person’

Unlike labeled fields in record type declarations, record constructions can be used in expressions

without any restrictions (as well as all kinds of record expressions). For instance the following

expression is valid:

{person = {name = "Smith", age = 20}, -- generates a record of

street = "Main Street", -- type ’Address’

city = "Springfield"}

3.3.3 Field Selection

The field selection is used to extract data from records. It has the following form:

r → l

It returns the value to which the label l refers to from the record expression r. The label must

occur in the declaration of the record type of r. An example for a field selection is:

pers → name

This returns the value of the label name from the record pers (which has the type Person). Sequential

application of field selections are also possible:

(addr → person) → age

The value of the label age is extracted from a record which itself is the value of the label person in

the record addr (which has the type Address). When a field selection is used in expressions, it has

to be parenthesized.

16

3.3.4 Field Update

Records can be updated by reassigning a new value to a label:

{l1 := v1,. . ., lk := vk | r}

The label li is associated with the new value vi which replaces the current value in the record r.

The labels must occur in the declaration of the record type of r. In contrast to record constructions,

it is not necessary to specify all labels of a record. Assignments can occur in an arbitrary order.

It is not allowed to specify more than one assignment for a label in a record update. Examples for

record updates are:

{name := "Scott", age := 25 | pers}

{person := {name := "Scott", age := 25 | pers} | addr}

In these examples pers is a record of type Person and addr is a record of type Address.

3.3.5 Records in Pattern Matching

It is possible to apply pattern matching to records (e.g., in functions, let expressions or case

branches). Two kinds of record patterns are available:

{l1 = p1,. . ., ln = pn}

{l1 = p1,. . ., lk = pk | _}

In both cases each label li is specified with a pattern pi. All labels must occur only once in the

record pattern. The first case is used to match the whole record. Thus, all labels of the record must

occur in the pattern. The second case is used to match only a part of the record. Here it is not

necessary to specify all labels. This case is represented by a vertical bar followed by the underscore

(anonymous variable). It is not allowed to use a pattern term instead of the underscore.

When trying to match a record against a record pattern, the patterns of the specified labels

are matched against the corresponding values in the record expression. On success, all pattern

variables occurring in the patterns are replaced by their actual expression. If none of the patterns

matches, the computation fails.

Here are some examples of pattern matching with records:

isSmith30 :: Person → Bool

isSmith30 {name = "Smith", age = 30} = True

startsWith :: Char → Person → Bool

startsWith c {name = (d:_) | _} = c == d

getPerson :: Address → Person

getPerson {person = p | _} = p

As shown in the last example, a field selection can also be obtained by pattern matching.

3.3.6 Export of Records

Exporting record types and labels is very similar to exporting data types and constructors. There

are three ways to specify an export:

17

• module M (..., R, ...) where

exports the record R without any of its labels.

• module M (..., R(..), ...) where

exports the record R together with all its labels.

• module M (..., R(l1,...,lk), ...) where

exports the record R together with the labels l1, . . . , lk.

Note that imported labels cannot be overwritten in record declarations of the importing module.

It is also not possible to import equal labels from different modules.

3.3.7 Restrictions in the Usage of Records

In contrast to the basic concept in [16], KiCS2/Curry provides a simpler version of records. Some

of the features described there are currently not supported or even restricted.

• Labels must be unique within the whole scope of the program. In particular, it is not allowed

to define the same label within different records, not even when they are imported from other

modules. However, it is possible to use equal identifiers for other entities without restrictions,

since labels have an independent name space.

• The record type representation with labeled fields can only be used as the right-hand-side of

a record type declaration. It is not allowed to use it in any other type annotation.

• Records are not extensible or reducible. The structure of a record is specified in its record

declaration and cannot be modified at the runtime of the program.

• Empty records are not allowed.

• It is not allowed to use a pattern term at the right side of the vertical bar in a record pattern

except for the underscore (anonymous pattern variable).

• Labels cannot be sequentially associated with multiple values (record fields do not behave

like stacks).

18

4 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the KiCS2 distribution that generates the documentation for a Curry

program (i.e., the main module and all its imported modules) in HTML format. The generated

HTML pages contain information about all data types and functions exported by a module as well

as links between the different entities. Furthermore, some information about the definitional status

of functions (like external, complete, or overlapping definitions) are provided and combined with

documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate

programs!). All documentation comments immediately before a definition of a datatype or (top-

level) function are kept together.3 The documentation comments for the complete module occur

before the first “module” or “import” line in the module. The comments can also contain several

special tags. These tags must be the first thing on its line (in the documentation comment) and

continues until the next tag is encountered or until the end of the comment. The following tags

are recognized:

@author comment

Specifies the author of a module (only reasonable in module comments).

@version comment

Specifies the version of a module (only reasonable in module comments).

@cons id comment

A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment

A comment for function parameter id (only reasonable in function comments). Due to pattern

matching, this need not be the name of a parameter given in the declaration of the function

but all parameters for this functions must be commented in left-to-right order (if they are

commented at all).

@return comment

A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-

ported set of elements is described in detail in the appendix). For instance, it can contain Markdown

annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code

elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed

by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines

prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the

Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<”

must be quoted (e.g., “<”). However, header tags like <h1> should not be used since the struc-

turing is generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark

3The documentation tool recognizes this association from the first identifier in a program line. If one wants to

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition, otherwise the documentation comment is not recognized.

19

http://en.wikipedia.org/wiki/Markdown

references to names of operations or data types in Curry programs which are translated into links

inside the generated HTML documentation. Such references have to be enclosed in single quotes.

For instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas

the text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants

to write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single

words, i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted,

as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an

--- example module.

--- @author Michael Hanus

--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.

--- @param xs - the first list

--- @param ys - the second list

--- @return a list containing all elements of ‘xs‘ and ‘ys‘

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.

--- It is based on the operation ’conc’ to concatenate two lists.

--- @param xs - the given input list

--- @return last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

--- @cons Leaf - a leaf of the tree

--- @cons Node - an inner node of the tree

data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc Example

(currydoc is a command usually stored in kics2home/bin where kics2home is the installation di-

rectory of KiCS2; see Section 1.1). This command creates the directory DOC_Example (if it does

not exist) and puts all HTML documentation files for the main program module Example and all

its imported modules in this directory together with a main index file index.html. If one prefers

another directory for the documentation files, one can also execute the command

20

currydoc docdir Example

where docdir is the directory for the documentation files.

In order to generate the common documentation for large collections of Curry modules (e.g.,

the libraries contained in the KiCS2 distribution), one can call currydoc with the following options:

currydoc --noindexhtml docdir Mod : This command generates the documentation for module Mod

in the directory docdir without the index pages (i.e., main index page and index pages for

all functions and constructors defined in Mod and its imported modules).

currydoc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index

pages (i.e., a main index page and index pages for all functions and constructors defined in

the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

21

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show

them in various formats, and analyze their properties.4 Moreover, it is constructed in a way so

that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas

behind this tool can be found in [10, 11].

CurryBrowser is part of the KiCS2 distribution and can be started in two ways:

• In the command shell via the command: kics2home/bin/currybrowser mod

• In the KiCS2 environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser

loads the interfaces of the main module and all imported modules before a GUI is created for

interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a

particular application (here: the implementation of CurryBrowser). The upper list box in the

left column shows the modules and their imports in order to browse through the modules of an

application. Similarly to directory browsers, the list of imported modules of a module can be opened

or closed by clicking. After selecting a module in the list of modules, its source code, interface, or

various other formats of the module can be shown in the main (right) text area. For instance, one

can show pretty-printed versions of the intermediate flat programs (see below) in order to see how

local function definitions are translated by lambda lifting [15] or pattern matching is translated

into case expressions [6, 17]. Since Curry is a language with parametric polymorphism and type

inference, programmers often omit the type signatures when defining functions. Therefore, one can

also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze

all functions of the currently selected module at once. This is useful to spot some functions of a

module that could be problematic in some application contexts, like functions that are impure (i.e.,

the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground

terms). If such an analysis is selected, the names of all functions are shown in the lower list box

of the left column (the “function list”) with prefixes indicating the properties of the individual

functions.

The function list box can be also filled with functions via the menu “Select functions”. For

instance, all functions or only the exported functions defined in the currently selected module can

be shown there, or all functions from different modules that are directly or indirectly called from a

currently selected function. This list box is central to focus on a function in the source code of some

module or to analyze some function, i.e., showing their properties. In order to focus on a function,

it is sufficient to check the “focus on code” button. To analyze an individually selected function,

one can select an analysis from the list of available program analyses (through the menu “Select

analysis”). In this case, the analysis results are either shown in the text box below the main text

area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

4Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

22

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they

consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends

on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into

CurryBrowser, for instance, to visualize the import relation between all modules as a dependency

graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the

“Help” menu of CurryBrowser.

23

6 CurryTest: A Tool for Testing Curry Programs

CurryTest is a simple tool in the KiCS2 distribution to write and run repeatable tests. CurryTest

simplifies the task of writing test cases for a module and executing them. The tool is easy to

use. Assume one has implemented a module MyMod and wants to write some test cases to test its

functionality, making regression tests in future versions, etc. For this purpose, there is a system

library Assertion (Section A.2.2) which contains the necessary definitions for writing tests. In

particular, it exports an abstract polymorphic type “Assertion a” together with the following

operations:

assertTrue :: String → Bool → Assertion ()

assertEqual :: String → a → a → Assertion a

assertValues :: String → a → [a] → Assertion a

assertSolutions :: String → (a → Success) → [a] → Assertion a

assertIO :: String → IO a → a → Assertion a

assertEqualIO :: String → IO a → IO a → Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value True.

Similarly, the expression “assertEqual s e1 e2” asserts that the expressions e1 and e2 must be equal

(i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the multiset of all

values of e, and the expression “assertSolutions s c vs” asserts that the constraint abstraction c

has the multiset of solutions vs. Furthermore, the expression “assertIO s a v” asserts that the I/O

action a yields the value v whenever it is executed, and the expression “assertEqualIO s a1 a2”

asserts that the I/O actions a1 and a2 yields equal values. The name s provided as a first argument

in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module

Assertion and defining top-level functions of type Assertion in this module (which must also be

exported). As an example, consider the following program that can be used to test some list

processing functions:

import List

import Assertion

test1 = assertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = assertTrue "all" (all (<5) [1,2,3,4])

test3 = assertSolutions "prefix" (\x → let y free in x++y =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal to

[1,2,3,4].

We can execute a test suite by the command

currytest testList

(currytest is a program stored in kics2home/bin where kics2home is the installation directory of

KiCS2; see Section 1.1). In our example, “testList.curry” is the program containing the definition

of all assertions. This has the effect that all exported top-level functions of type Assertion are

24

Figure 2: Snapshot of CurryTest’s graphical interface

tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are reported

together with the name of each assertion. For our example above, we obtain the following successful

protocol:

==

Testing module "testList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely. In order to start this

interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

currytest --window testList

or

currytest -w testList

A snapshot of the interface is shown in Figure 2.

25

7 ERD2Curry: A Tool to Generate Programs from ER Specifica-

tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored from

entity relationship diagrams. The idea of this tool is described in detail in [3]. Thus, we describe

only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has

to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.

This description can be compiled into a Curry program by the command

erd2curry myerd.xmi

(erd2curry is a program stored in kics2home/bin where kics2home is the installation directory of

KiCS2; see Section 1.1). If MyData is the name of the ERD, the Curry program file “MyData.curry”

is generated containing all the necessary database access code as described in [3].

If one does not want to use the Umbrello UML Modeller, one can also create a textual de-

scription of the ERD as a Curry term of type ERD (w.r.t. the type definition given in module

kics2home/tools/erd2curry/ERD.curry) and store it in some file, e.g., “myerd.term”. This descrip-

tion can be compiled into a Curry program by the command

erd2curry -t myerd.term

There is also the possibility to visualize an ERD term as a graph with the graph visualization

program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand

in your “.kics2rc” file, see Section 2.6, according to your local environment). This can be done by

the command

erd2curry -v myerd.term

Inclusion in the Curry application: To compile the generated database code, ei-

ther include the directory kics2home/tools/erd2curry into your Curry load path (e.g.,

by setting the environment variable “CURRYPATH”, see also Section 1.3) or copy the file

kics2home/tools/erd2curry/ERDGeneric.curry into the directory of the generated database code.

26

8 Technical Problems

One can implement distributed systems with KiCS2 by the use of the library NamedSocket (Sec-

tion A.2.19) that supports a socket communication with symbolic names rather than natural num-

bers. For instance, this library is the basis of programming dynamic web pages with the libraries

HTML (Section A.4.2) or WUI (Section A.4.6). However, it might be possible that some technical

problems arise due to the use of named sockets. Therefore, this section gives some information

about the technical requirements of KiCS2 and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of KiCS2:

Port 8767: This port is used by the Curry Port Name Server (CPNS) to implement symbolic

names for named sockets in Curry. If some other process uses this port on the machine, the

distribution facilities defined in the module NamedSocket cannot be used.

If these features do not work, you can try to find out whether this port is in use by the shell

command “netstat -a | fgrep 8767” (or similar).

The CPNS is implemented as a demon listening on its port 8767 in order to serve requests

about registering a new symbolic name for a named socket or asking the physical port number

of an registered named socket. The demon will be automatically started for the first time on a

machine when a user runs a program using named sockets. It can also be manually started and

terminated by the scripts kics2home/cpns/start and kics2home/cpns/stop. If the demon is already

running, the command kics2home/cpns/start does nothing (so it can be always executed before

invoking a Curry program using named sockets).

If you detect any further technical problem, please write to

mh@informatik.uni-kiel.de

27

References

[1] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’05), pages 6–22. Springer LNCS 3901, 2005.

[2] L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal of Functional

Programming, 4(1):117–123, 1994.

[3] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of

the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),

pages 316–332. Springer LNCS 4902, 2008.

[4] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. Implementing equational constraints in a

functional language. In Proc. of the 19th International Conference on Applications of Declara-

tive Programming and Knowledge Management (INAP 2011) and the 25th Workshop on Logic

Programming (WLP 2011), pages 22–33. INFSYS Research Report 1843-11-06 (TU Wien),

2011.

[5] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to

Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic

Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

[6] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the

24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[7] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the

International Conference on Principles and Practice of Declarative Programming (PPDP’99),

pages 376–395. Springer LNCS 1702, 1999.

[8] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-

national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.

Springer LNCS 1753, 2000.

[9] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International

Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer

LNCS 1990, 2001.

[10] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-

PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages

43–48. ACM Press, 2005.

[11] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of

the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages

61–74, 2006.

[12] M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of the 8th ACM

SIGPLAN International Conference on Principles and Practice of Declarative Programming

(PPDP’06), pages 27–38. ACM Press, 2006.

28

[13] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-

ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.

Springer LNCS 1490, 1998.

[14] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at

http://www.curry-language.org, 2006.

[15] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional

Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[16] D. Leijen. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on

Trends in Functional Programming (TFP’05), 2005.

[17] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The

Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

29

http://www.curry-language.org

A Libraries of the KiCS2 Distribution

The KiCS2 distribution comes with an extensive collection of libraries for application program-

ming. The libraries for meta-programming by representing Curry programs as datatypes in Curry

are described in the following subsection in more detail. The complete set of libraries with all

exported types and functions are described in the further subsections. For a more detailed online

documentation of all libraries of KiCS2, see http://www-ps.informatik.uni-kiel.de/kics2/

lib/index.html.

A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are

system modules FlatCurry (Section A.5.5) and AbstractCurry (Section A.5.1), stored in the di-

rectory “kics2home/lib/meta”, which define datatypes for the representation of Curry programs.

AbstractCurry is a more direct representation of a Curry program, whereas FlatCurry is a simpli-

fied representation where local function definitions are replaced by global definitions (i.e., lambda

lifting has been performed) and pattern matching is translated into explicit case/or expressions.

Thus, FlatCurry can be used for more back-end oriented program manipulations (or, for writing

new back ends for Curry), whereas AbstractCurry is intended for manipulations of programs that

are more oriented towards the source program.

Both modules contain predefined I/O actions to read programs in the AbstractCurry (readCurry)

or FlatCurry (readFlatCurry) format. These actions parse the corresponding source program

and return a data term representing this program (according to the definitions in the modules

AbstractCurry and FlatCurry).

Since all datatypes are explained in detail in these modules, we refer to the online documentation5

of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.readFlatCurry "test") returns the following term:

(Prog "test"

["Prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])

(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])

(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])

(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],

5http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/FlatCurry.html and http://www-ps.informatik.

uni-kiel.de/kics2/lib/CDOC/AbstractCurry.html

30

http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/index.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/FlatCurry.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/AbstractCurry.html
http://www-ps.informatik.uni-kiel.de/kics2/lib/CDOC/AbstractCurry.html

Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]

])

]))]

[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These

operations are useful to encapsulate non-deterministic operations between I/O actions in order to

connects the worlds of logic and functional programming and to avoid non-determinism failures on

the I/O level.

In contrast the ”old” concept of encapsulated search (which could be applied to any subexpression

in a computation), the operations to encapsulate search in this module are I/O actions in order to

avoid some anomalities in the old concept.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllSolutions :: (a → Success) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right

strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,

the evaluation of the constraint does not share any results. Moreover, this evaluation

suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getOneSolution :: (a → Success) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Success) → IO [a]

Returns a list of values that do not satisfy a given constraint.

31

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.

==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of

e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Success) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has

the multiset of solutions vs. The solutions of c are compared with the elements in vs

w.r.t. ==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

32

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield

equal (w.r.t. ==) results.

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the

currytest tool.

writeAssertResult :: (String,Bool) → IO ()

Writes the results of assertion checking into a file and stdout, if the results are non-

empty. Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest

tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the

currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

33

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

A.2.4 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are

intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-

sented as lists. Ideally these lists contains no duplicate elements and the order of their elements

cannot be observed. In practice, these conditions are not enforced.

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list

in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],

[1,3], [1], [2,3], [2], [3], or [].

34

splitSet :: [a] → ([a],[a])

Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the

result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their

concatenation is a permutation of the input list. No guarantee is made on the order of

the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]

gives [[1,2,3]], [[2,3],[1]], [[1,3],[2]], [[3],[1,2]], or [[3],[2],[1]].

A.2.5 Library Constraint

Some useful operations for constraint programming.

Exported functions:

(<:) :: a → a → Success

Less-than on ground data terms as a constraint.

(>:) :: a → a → Success

Greater-than on ground data terms as a constraint.

(<=:) :: a → a → Success

Less-or-equal on ground data terms as a constraint.

(>=:) :: a → a → Success

Greater-or-equal on ground data terms as a constraint.

andC :: [Success] → Success

Evaluates the conjunction of a list of constraints.

orC :: [Success] → Success

Evaluates the disjunction of a list of constraints.

allC :: (a → Success) → [a] → Success

Is a given constraint abstraction satisfied by all elements in a list?

anyC :: (a → Success) → [a] → Success

Is there an element in a list satisfying a given constraint?

35

A.2.6 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format

can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

A.2.7 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

36

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

removeFile :: String → IO ()

Deletes a file from the file system.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameFile :: String → String → IO ()

Renames a file.

renameDirectory :: String → String → IO ()

Renames a directory.

A.2.8 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is

’/’.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is

’:’.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ’.’.

37

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory

prefix is ”.” if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if

such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is

delivered if there is no such file.

A.2.9 Library Float

A collection of operations on floating point numbers.

38

Exported functions:

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between

the argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the

argument. If the argument is equidistant between two integers, it is rounded to the

closest even integer value.

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

Cosine.

tan :: Float → Float

Tangent.

atan :: Float → Float

Arc tangent.

39

A.2.10 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its

value can be accessed and modified by IO actions. Furthermore, global entities can be declared as

persistent so that their values are stored across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global entity g with an initial value v of type t must be declared by:

g :: Global t

g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the

global entity (see type GlobalSpec).

Exported types:

data Global

The abstract type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does

not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used else-

where. In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term

before it is updated.

40

A.2.11 Library GUI

Library for GUI programming in Curry (based on Tcl/Tk). This paper contains a description of

the basic ideas behind this library.

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication

is done.

Exported constructors:

data Widget

The type of possible widgets in a GUI.

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton

– a button in a GUI whose event handler is activated if the user presses the button

• Canvas :: [ConfItem] → Widget

Canvas

– a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton

– a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

• Entry :: [ConfItem] → Widget

Entry

– an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label

– a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox

– a widget containing a list of items for selection

41

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

• Message :: [ConfItem] → Widget

Message

– a message for showing simple string values

• MenuButton :: [ConfItem] → Widget

MenuButton

– a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale

– a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH

– a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV

– a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit

– a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row

– a horizontal alignment of widgets

• Col :: [ConfCollection] → [Widget] → Widget

Col

– a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix

– a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

42

Exported constructors:

• Active :: Bool → ConfItem

Active

– define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor

– alignment of information inside a widget where the argument must be: n, ne, e, se, s,

sw, w, nw, or center

• Background :: String → ConfItem

Background

– the background color

• Foreground :: String → ConfItem

Foreground

– the foreground color

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler

– an event handler associated to a widget. The event handler returns a list of widget

ref/configuration pairs that are applied after the handler in order to configure GUI

widgets

• Height :: Int → ConfItem

Height

– the height of a widget (chars for text, pixels for graphics)

• CheckInit :: String → ConfItem

CheckInit

– initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems

– list of items contained in a canvas

• List :: [String] → ConfItem

List

– list of values shown in a listbox

43

• Menu :: [MenuItem] → ConfItem

Menu

– the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef

– a reference to this widget

• Text :: String → ConfItem

Text

– an initial text contents

• Width :: Int → ConfItem

Width

– the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill

– fill widget in both directions

• FillX :: ConfItem

FillX

– fill widget in horizontal direction

• FillY :: ConfItem

FillY

– fill widget in vertical direction

• TclOption :: String → ConfItem

TclOption

– further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some

event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf

44

– reconfigure the widget referred by wref with configuration item conf

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler

– add a new handler to the GUI that processes inputs on an input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl

– remove a handler for an input stream referred by hdl from the GUI (usually used to

remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete

and might be extended or restructured in future releases of this library.

Exported constructors:

• DefaultEvent :: Event

DefaultEvent

– the default event of the widget

• MouseButton1 :: Event

MouseButton1

– left mouse button pressed

• MouseButton2 :: Event

MouseButton2

– middle mouse button pressed

• MouseButton3 :: Event

MouseButton3

– right mouse button pressed

• KeyPress :: Event

KeyPress

– any key is pressed

• Return :: Event

Return

45

– return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign

– centered alignment

• LeftAlign :: ConfCollection

LeftAlign

– left alignment

• RightAlign :: ConfCollection

RightAlign

– right alignment

• TopAlign :: ConfCollection

TopAlign

– top alignment

• BottomAlign :: ConfCollection

BottomAlign

– bottom alignment

data MenuItem

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton

– a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator

– a separator between menu entries

46

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton

– a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk

(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the

constructor WRefLabel will not be exported so that values can only be created inside

this module.

Exported constructors:

data Style

The data type of possible text styles.

Exported constructors:

• Bold :: Style

Bold

– text in bold font

• Italic :: Style

Italic

– text in italic font

• Underline :: Style

Underline

– underline text

47

• Fg :: Color → Style

Fg

– foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg

– background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

• Blue :: Color

• Brown :: Color

• Cyan :: Color

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

• Pink :: Color

• Purple :: Color

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

48

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI

events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO [ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO

[ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runControlledGUI :: String → (Widget,String → GuiPort → IO ()) → Handle → IO

()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external message stream.

This operation is useful to run a GUI that should react on user events as well as messages

sent to an external port.

runConfigControlledGUI :: String → (Widget,String → GuiPort → IO

[ReconfigureItem]) → Handle → IO ()

49

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external message stream.

This operation is useful to run a GUI that should react on user events as well as messages

sent to an external port.

runInitControlledGUI :: String → (Widget,String → GuiPort → IO ()) → (GuiPort

→ IO [ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, an event handler is provided that process

messages received from an external message stream. This operation is useful to run a

GUI that should react on user events as well as messages sent to an external port.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of

event handlers is provided that process inputs received from a corresponding list of

handles to input streams. Thus, if the i-th handle has some data available, the i-th

event handler is executed with the i-th handle as a parameter. This operation is useful

to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → (GuiPort → IO [ReconfigureItem]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, a list of event handlers is provided that process

inputs received from a corresponding list of handles to input streams. Thus, if the i-th

handle has some data available, the i-th event handler is executed with the i-th handle

as a parameter. This operation is useful to run a GUI that should react on inputs

provided by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for

backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

50

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the

end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust

the view to the end of the TextEdit widget. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and

end position similarly to getCursorPosition. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

Removes a style value in a region of a TextEdit widget. The region is specified a start

and end position similarly to getCursorPosition. This is an experimental function

and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are

numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is

visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is

useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popup message :: String → IO ()

A simple popup message.

51

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a

GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI

port as parameter (in order to read or write values from/into the GUI) and returns a

list of widget reference/configuration pairs which is applied after the handler in order

to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

The event handler is a configuration handler (see Command) that allows the configura-

tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration

options for the entry widget.

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be

returned (or ”” if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types

that could be selected. A file type pair consists of a name and an extension for that

file type. The file with its full path name will be returned (or ”” if the user cancels the

selection).

52

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing

file, she/he will asked to confirm to overwrite it. The file with its full path name will

be returned (or ”” if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of

file types that could be selected. A file type pair consists of a name and an extension

for that file type. If the user chooses an existing file, she/he will asked to confirm to

overwrite it. The file with its full path name will be returned (or ”” if the user cancels

the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or

”” if the user cancels the selection).

A.2.12 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on

the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0 . Executes in O(log b)

steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <= 0 .

For positive integers, the returned value is 1 less the number of digits in the decimal

representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0 . Executes in

O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0 .

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if m <= 0 or n < m.

abs :: Int → Int

53

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only

the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

A.2.13 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

54

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

55

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument

is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the

beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t

milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available

within t milliseconds, it returns -1, otherwise it returns the index of the corresponding

handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.

Usually, the message stream comes from an external port. Thus, this operation im-

plements a committed choice over receiving input from an IO handle or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message

stream. Usually, the message stream comes from an external port. Thus, this operation

implements a committed choice over receiving input from IO handles or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

56

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before

returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

A.2.14 Library IOExts

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when

they are assigned to an IORef.

Exported constructors:

57

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams

of the new process (stdin,stdout,stderr) are returned as handles so that they can be

explicitly manipulated. They should be closed with IO.hClose since they are not closed

automatically when the process terminates.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams

of the new process is returned as one handle which is both readable and writable. Thus,

writing to the handle produces input to the process and output from the process can

be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be

used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO

”myaction.lock” act) ensures that the action ”act” is not executed by two processes on

the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to

ground terms before applying this operation.

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an

associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial values.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

58

A.2.15 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

• JSString :: String → JSExp

JSString

– string constant

• JSInt :: Int → JSExp

JSInt

– integer constant

• JSBool :: Bool → JSExp

JSBool

– Boolean constant

• JSIVar :: Int → JSExp

JSIVar

– indexed variable

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx

– array access to index array variable

• JSOp :: String → JSExp → JSExp → JSExp

JSOp

– infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall

– function call

• JSApply :: JSExp → JSExp → JSExp

JSApply

59

– function call where the function is an expression

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda

– (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign

– assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf

– conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch

– switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall

– procedure call

• JSReturn :: JSExp → JSStat

JSReturn

– return statement

• JSVarDecl :: Int → JSStat

JSVarDecl

– local variable declaration

data JSBranch

Exported constructors:

60

• JSCase :: String → [JSStat] → JSBranch

JSCase

– case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault

– default branch

data JSFDecl

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

A.2.16 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

This module reimplements the interface of the module KeyDatabase based on the SQLite database

engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust

the value of the constant path’to’sqlite3.

Programs that use the KeyDatabase module can be adjusted to use this module instead by re-

placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the

declarations of database predicates to use the function persistentSQLite instead of dynamic or

persistent. This module redefines the types Dynamic, Query, and Transaction and although

both implementations can be used in the same program (by importing modules qualified) they

cannot be mixed.

Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,

groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

61

http://sqlite.org/

Exported types:

data Query

Queries can read but not write to the database.

Exported constructors:

data Transaction

Transactions can modify the database and are executed atomically.

Exported constructors:

data Dynamic

Result type of database predicates.

Exported constructors:

data ColVal

Abstract type for value restrictions

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

62

Exported functions:

runQ :: Query a → IO a

Runs a database query in the IO monad.

transformQ :: (a → b) → Query a → Query b

Applies a function to the result of a database query.

runT :: Transaction a → IO (Either a TError)

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as

soon as the transaction is started. After one transaction is started, no other database

connection will be able to write to the database or start a transaction. Other connections

can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might

also be possible to allow multiple simultaneous transactions that lock tables on the first

database access (which is the default in SQLite). However this leads to unpredictable

order in which locks are taken when multiple databases are involved. The current

implementation fixes the locking order by sorting databases by their name and locking

them in order immediately when a transaction begins.

More information on 6 transaction.html”>transactions in SQLite is available online.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similar to runT but a run-time error is raised if the execution

of the transaction fails.

getDB :: Query a → Transaction a

Lifts a database query to the transaction type such that it can be composed with other

transactions. Run-time errors that occur during the execution of the given query are

transformed into transaction errors.

returnT :: a → Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to

ignore results when composing transactions.

errorT :: TError → Transaction a

Aborts a transaction with an error.
6http://sqlite.org/lang

63

failT :: String → Transaction a

Aborts a transaction with a user-defined error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Combines two transactions into a single transaction that executes both in sequence.

The first transaction is executed, its result passed to the function which computes the

second transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.

(|>>) :: Transaction a → Transaction b → Transaction b

Combines two transactions to execute them in sequence. The result of the first trans-

action is ignored.

sequenceT :: [Transaction a] → Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.

sequenceT :: [Transaction a] → Transaction ()

Executes a list of transactions sequentially, ignoring their results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-

action sequentially, and collects their results.

mapT :: (a → Transaction b) → [a] → Transaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-

actions sequentially, and ignores their results.

persistentSQLite :: String → String → [String] → Int → a → Dynamic

This function is used instead of dynamic or persistent to declare predicates whose

facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when

the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a

tuple with a matching arity. Other record types are not supported. If no column names

are provided a table with a single column called info is created. Columns of name

rowid are not supported and lead to a run-time error.

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int → a → Dynamic) → Query [Int]

64

Returns a list of all stored keys. Do not use this function unless the database is small.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Returns a list of all info parts of stored entries. Do not use this function unless the

database is small.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.

(@=) :: Int → a → ColVal

Constructs a value restriction for the column given as first argument

someDBKeys :: (Int → a → Dynamic) → [ColVal] → Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven

value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int → a → Dynamic) → [ColVal] → Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions

for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int → a → Dynamic) → [ColVal] → Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe

to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int → a → Dynamic) → [Int] → [ColVal] → Query

[(Int,b)]

Returns a list of column projections on those entries that match the given value re-

strictions for columns. Safe to use even on large databases if the number of results is

small.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is

not present.

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is

not present.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes the information stored under the given key. If the given key does not exist this

transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

65

Deletes the information stored under the given keys. No error is raised if (some of) the

keys do not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Updates the information stored under the given key. The transaction is aborted with a

KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores new information in the database and yields the newly generated key.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries from the database associated with a predicate.

closeDBHandles :: IO ()

Closes all database connections. Should be called when no more database access will

be necessary.

showTError :: TError → String

Transforms a transaction error into a string.

A.2.17 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise

Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise

Nothing is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as

(Just i), otherwise Nothing is returned.

66

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that

satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4)></4)>

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

67

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits

[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]

== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

A.2.18 Library Maybe

Library with some useful functions on the Maybe datatype

68

Exported functions:

isJust :: Maybe a → Bool

isNothing :: Maybe a → Bool

fromJust :: Maybe a → a

fromMaybe :: a → Maybe a → a

maybeToList :: Maybe a → [a]

listToMaybe :: [a] → Maybe a

catMaybes :: [Maybe a] → [a]

mapMaybe :: (a → Maybe b) → [a] → [b]

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is

interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

monadic sequence for maybe

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

monadic map for maybe

A.2.19 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In

contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to

provide sockets that are addressed by symbolic names rather than numbers.

In standard applications, the server side uses the operations listenOn and socketAccept to provide

some service on a named socket, and the client side uses the operation connectToSocket to request

a service.

69

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to

connectToSocket, this action waits until the socket has been registered with its sym-

bolic name.

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of

the connection. This action waits (possibly forever) until the socket with the symbolic

name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the

symbolic name is not registered, an error is reported.

70

A.2.20 Library Parser

Library with functional logic parser combinators.

Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective

of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser

p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with

representation) at least once.

71

A.2.21 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library

(fill, fillBreak and indent are missing) with a linear-time, bounded implementation by Olaf

Chitil.

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

empty :: Doc

The empty document is, indeed, empty. Although empty has no content, it does have a

’height’ of 1 and behaves exactly like (text "") (and is therefore not a unit of <$>).

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any

newline (’\n’) characters. If the string contains newline characters, the function string

should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting

level. Document (linesep s) behaves like (text s) if the line break is undone by

group.

line :: Doc

The line document advances to the next line and indents to the current nesting level.

Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The linebreak document advances to the next line and indents to the current nesting

level. Document linebreak behaves like empty if the line break is undone by group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, otherwise

it behaves like line.

softline = group line

72

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

softbreak :: Doc

The document softbreak behaves like empty if the resulting output fits the page, other-

wise it behaves like line.

softbreak = group linebreak

group :: Doc → Doc

The group combinator is used to specify alternative layouts. The document (group x)

undoes all line breaks in document x. The resulting line is added to the current line if

that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-

creased by i (See also hang, align and indent).

nest 2 (text "hello" <$> text "world") <$> text "!"

outputs as:

hello

world

!

hang :: Int → Doc → Doc

The hang combinator implements hanging indentation. The document (hang i d)

renders document d with a nesting level set to the current column plus i. The following

example uses hanging indentation for some text:

test = hang 4

(fillSep

(map text

(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator

indents these

words !

The hang combinator is implemented as:

hang i x = align (nest i x)

73

align :: Doc → Doc

The document (align d) renders document ‘d with the nesting level set to the current

column. It is used for example to implement hang.

As an example, we will put a document right above another one, regardless of the

current nesting level:

x $$ y = align (x <$> y)

test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice

world

combine :: Doc → Doc → Doc → Doc

The document (combine x l r) encloses document x between documents l and r using

(<>).

combine x l r = l <> x <> r

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative

operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between.

(<$>) :: Doc → Doc → Doc

The document (x <$> y) concatenates document x and y with a line in between.

(</>) :: Doc → Doc → Doc

The document (x </> y) concatenates document x and y with a softline in between.

This effectively puts x and y either next to each other (with a space in between) or

underneath each other.

(<$$>) :: Doc → Doc → Doc

The document (x<$$> y) concatenates document x and y with a linebreak in between.

(<//>) :: Doc → Doc → Doc

The document (x<//> y) concatenates document x and y with a softbreak in between.

This effectively puts x and y either right next to each other or underneath each other.

74

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Function

f should be like (<+>), (<$>) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with (<$>). If

a group undoes the line breaks inserted by vsep, all documents are separated with a

space.

someText = map text (words ("text to lay out"))

test = text "some" <+> vsep someText

This is layed out as:

some text

to

lay

out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

some text

to

lay

out

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (<+>) as long

as its fits the page, than inserts a line and continues doing that for all documents in

xs.

fillSep xs = foldr (</>) empty xs

sep :: [Doc] → Doc

75

The document (sep xs) concatenates all documents xs either horizontally with (<+>),

if it fits the page, or vertically with (<$>).

sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a

group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<>) as long

as its fits the page, than inserts a linebreak and continues doing that for all documents

in xs.

fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),

if it fits the page, or vertically with (<$$>).

cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last

document.

someText = map text ["words","in","a","tuple"]

test = parens (align (cat (punctuate comma someText)))

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

(words,

in,

a,

tuple)

(If you want put the commas in front of their elements instead of at the end, you should

use tupled or, in general, encloseSep.)

76

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSep l r sep xs) concatenates the documents xs seperated by sep

and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs

test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10

,200

,3000]

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r sep xs) concatenates the documents xs seperated

by sep and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (hEncloseSep l r sep xs) concatenates the documents xs seperated

by sep and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

list :: [Doc] → Doc

The document (list xs) comma seperates the documents xs and encloses them in square

brackets. The documents are rendered horizontally if that fits the page. Otherwise they

are aligned vertically. All comma seperators are put in front of the elements.

tupled :: [Doc] → Doc

The document (tupled xs) comma seperates the documents xs and encloses them in

parenthesis. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All comma seperators are put in front of the elements.

77

semiBraces :: [Doc] → Doc

The document (semiBraces xs) seperates the documents xs with semi colons and encloses

them in braces. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All semi colons are put in front of the elements.

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using

(<>).

enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes ’"’.

bquotes :: Doc → Doc

Document (bquotes x) encloses document x with ’’‘ quotes.

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character shouldn’t be a

newline (’\n’), the function line should be used for line breaks.

string :: String → Doc

The document (string s) concatenates all characters in s using line for newline char-

acters and char for all other characters. It is used instead of text whenever the text

contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

78

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote, ’"’.

semi :: Doc

The document semi contains a semi colon, ";".

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

79

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

A.2.22 Library Profile

Preliminary library to support profiling.

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

80

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that

the returned values are very implementation dependent so that one should interpret

them with care!

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful

to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical

operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

81

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,

the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this

evaluation. During the evaluation, the garbage collector is turned off to get the total

space usage.

A.2.23 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a

property is defined by a line of the form prop=value where prop starts with a letter. All other lines

(e.g., blank lines or lines starting with ’#’ are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the

property file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.24 Library Read

Library with some functions for reading special tokens.

This library is included for backward compatibility. You should use the library ReadNumeric which

provides a better interface for these functions.

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the

the number is read up to the first non-digit.

readInt :: String → Int

82

Read a (possibly negative) integer in a string. The string might contain leadings blanks

and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and

the the integer is read up to the first non-heaxdecimal digit.

A.2.25 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain

leadings blanks and the integer is read up to the first non-digit. If the string does not

start with an integer token, Nothing is returned, otherwise the result is (Just (v,s))

where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-digit. If the string does not start with

a natural number token, Nothing is returned, otherwise the result is (Just (v,s)) where

v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain

leadings blanks and the number is read up to the first non-hexadecimal digit. If the

string does not start with a hexadecimal number token, Nothing is returned, otherwise

the result is (Just (v,s)) where v is the value of the number and s is the remaing string

without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-octal digit. If the string does not start

with an octal number token, Nothing is returned, otherwise the result is (Just (v,s))

where v is the value of the number and s is the remaing string without the number

token.

A.2.26 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

83

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. This function is similar to

the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. Note that this function differs

from the prelude function show since it prefixes constructors with their module name

in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!). In case of a

successful parse, the result is a one element list containing a pair of the data term and

the remaining unparsed string.

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. In case of a successful parse, the

result is a one element list containing a pair of the data term and the remaining un-

parsed string.

84

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and

returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and

returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which

might be useful to modify the file with a standard text editor.

A.2.27 Library SearchTree

This library defines a representation of a search space as a tree and various search strategies on

this tree.

Exported types:

data SearchTree

A search tree is a value, a failure, or a choice between to search trees.

Exported constructors:

• Value :: a → SearchTree a

• Fail :: SearchTree a

• Or :: (SearchTree a) → (SearchTree a) → SearchTree a

Exported functions:

getSearchTree :: a → IO (SearchTree a)

Returns the search tree for some expression.

someSearchTree :: a → SearchTree a

85

Internal operation to return the search tree for some expression. Note that this operation

is not purely declarative since the ordering in the resulting search tree depends on the

ordering of the program rules.

isDefined :: a → Bool

Returns True iff the argument is is defined, i.e., has a value.

showSearchTree :: SearchTree a → String

Shows the search tree as an intended line structure

searchTreeSize :: SearchTree a → (Int,Int,Int)

Return the size (number of Value/Fail/Or nodes) of the search tree

allValuesDFS :: SearchTree a → [a]

Return all values in a search tree via depth-first search

allValuesBFS :: SearchTree a → [a]

Return all values in a search tree via breadth-first search

allValuesIDS :: SearchTree a → [a]

Return all values in a search tree via iterative-deepening search.

allValuesIDSwith :: Int → (Int → Int) → SearchTree a → [a]

Return all values in a search tree via iterative-deepening search. The first argument is

the initial depth bound and the second argument is a function to increase the depth in

each iteration.

A.2.28 Library Socket

Library to support network programming with sockets. In standard applications, the server side

uses the operations listenOn and socketAccept to provide some service on a socket, and the client

side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

86

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is

returned.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.29 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not

supported (always returns 0), only included for compatibility reasons.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not

included.

87

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for unde-

fined environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent

shell commands (see system) and visible to subsequent calls to getEnviron (but it is

not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently

executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit

status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given

by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

A.2.30 Library Time

Library for handling date and time information.

88

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day

hour minute second timezone) where timezone is an integer representing the timezone

as a difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC

time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

89

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs

in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).

Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is

independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., ”September 23, 2006”.

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

90

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.31 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing

or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-

sequently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

91

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which

is neutral in the default can be implemented much more efficient

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized

time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

92

Exported functions:

empty :: Queue a

The empty queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqHead :: Queue a → a

The first element of the queue.

deqLast :: Queue a → a

The last element of the queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

deqLength :: Queue a → Int

Returns the number of elements in the queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q,deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then

Nothing else Just (deqLast q,deqInit q) but more efficient.

93

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.

In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the

order predicate le should not satisfy (le x x) for some key x.

Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like

(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of

key, the last corresponding element of the list is taken.

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added

starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM C combines the new element with

the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something

which isn’t there

94

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete

something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right

argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be

taken from the second map.

intersectFM C :: (a → a → b) → FM c a → FM c a → FM c b

Filters only those keys that are bound in both of the given maps and combines the

elements as in addToFM C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

95

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return

default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key

ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key

ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive

order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given

irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially

given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that

will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

96

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).

In this library, graphs are composed and decomposed in an inductive way.

The key idea is as follows:

A graph is either empty or it consists of node context and a graph g’ which are put together by a

constructor (:&).

This constructor (:&), however, is not a constructor in the sense of abstract data type, but more

basically a defined constructing funtion.

A context is a node together withe the edges to and from this node into the nodes in the graph g’.

For examples of how to use this library, cf. the module GraphAlgorithms.

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled

with ()).

Unlabeled node

type LNode a = (Int,a)

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,

a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges

from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

97

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that

node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation

of Graph is hidden.

Exported constructors:

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

98

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the ’Context’ for an arbitrarily-chosen ’Node’ and the remaining

’Graph’.

In order to use graphs as abstract data structures, we also need means to decompose a

graph. This decompostion should work as much like pattern matching as possible. The

normal matching is done by the function matchAny, which takes a graph and yields a

graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty ’Graph’.

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a ’Graph’ from the list of ’LNode’s and ’LEdge’s.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a ’Graph’ from a list of ’Context’s.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled ’Graph’ from the list of ’Node’s and ’Edge’s.

insNode :: (Int,a) → Graph a b → Graph a b

Insert a ’LNode’ into the ’Graph’.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a ’LEdge’ into the ’Graph’.

delNode :: Int → Graph a b → Graph a b

Remove a ’Node’ from the ’Graph’.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an ’Edge’ from the ’Graph’.

insNodes :: [(Int,a)] → Graph a b → Graph a b

Insert multiple ’LNode’s into the ’Graph’.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple ’LEdge’s into the ’Graph’.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple ’Node’s from the ’Graph’.

99

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple ’Edge’s from the ’Graph’.

isEmpty :: Graph a b → Bool

test if the given ’Graph’ is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a ’Graph’ into the ’MContext’ found

for the given node and the remaining ’Graph’.

noNodes :: Graph a b → Int

The number of ’Node’s in a ’Graph’.

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum ’Node’ in a ’Graph’.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given ’Node’. In contrast to ”match”, ”context” causes an

error if the ’Node’ is not present in the ’Graph’.

lab :: Graph a b → Int → Maybe a

Find the label for a ’Node’.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a ’Node’.

suc :: Graph a b → Int → [Int]

Find all ’Node’s that have a link from the given ’Node’.

pre :: Graph a b → Int → [Int]

Find all ’Node’s that link to to the given ’Node’.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given ’Node’.

lpre :: Graph a b → Int → [(Int,b)]

Find all ’Node’s that link to the given ’Node’ and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound ’LEdge’s for the given ’Node’.

inn :: Graph a b → Int → [(Int,Int,b)]

100

Find all inward-bound ’LEdge’s for the given ’Node’.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the ’Node’.

indeg :: Graph a b → Int → Int

The inward-bound degree of the ’Node’.

deg :: Graph a b → Int → Int

The degree of the ’Node’.

gelem :: Int → Graph a b → Bool

’True’ if the ’Node’ is present in the ’Graph’.

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The ’Node’ in a ’Context’.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

The label in a ’Context’.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The ’LNode’ from a ’Context’.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked to or from in a ’Context’.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked to in a ’Context’.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked from in a ’Context’.

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All ’Node’s linked from in a ’Context’, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All ’Node’s linked from in a ’Context’, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

101

All outward-directed ’LEdge’s in a ’Context’.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed ’LEdge’s in a ’Context’.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a ’Context’.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a ’Context’.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a ’Context’.

labNodes :: Graph a b → [(Int,a)]

A list of all ’LNode’s in the ’Graph’.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all ’LEdge’s in the ’Graph’.

nodes :: Graph a b → [Int]

List all ’Node’s in the ’Graph’.

edges :: Graph a b → [(Int,Int)]

List all ’Edge’s in the ’Graph’.

newNodes :: Int → Graph a b → [Int]

List N available ’Node’s, ie ’Node’s that are not used in the ’Graph’.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the ’Node’ labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the ’Edge’ labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

102

A.3.5 Library Random

Library for pseudo-random number generation in Curry.

This library provides operations for generating pseudo-random number sequences. For any given

seed, the sequences generated by the operations in this module should be identical to the sequences

generated by the java.util.Random package.

The algorithm is taken from http://en.wikipedia.org/wiki/Random_number_generation.

There is an assumption that all operations are implicitly executed mod 2^32 (unsigned 32-bit

integers) !!! GHC computes between -2^29 and 2^29-1, thus the sequence is NOT as random as

one would like.

m_w = <choose-initializer>; /* must not be zero */

m_z = <choose-initializer>; /* must not be zero */

uint get_random()

{

m_z = 36969 * (m_z & 65535) + (m_z >> 16);

m_w = 18000 * (m_w & 65535) + (m_w >> 16);

return (m_z << 16) + m_w; /* 32-bit result */

}

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, integer values.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom sequence of values between 0 (inclusive) and the specified

value (exclusive).

nextBoolean :: Int → [Bool]

Returns a pseudorandom sequence of boolean values.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should

only be used as a seed for pseudorandom number sequence and not as a random number

since the precision is limited to milliseconds

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:

Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e.,

one has to provide two explicit order predicates (”lessThan” and ”eq”below) on elements.

103

http://en.wikipedia.org/wiki/Random_number_generation

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates

generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is

((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a

multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for

the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty

tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sort :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

104

A.3.7 Library SetRBT

Library with an implementation of sets as red-black trees.

All the operations on sets are generic, i.e., one has to provide an explicit order predicate (”cmp”

below) on elements.

Exported types:

type SetRBT a = RedBlackTree a

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences

in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements

of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all

elements of the first set contained in the second set into a new set, which order is taken

from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

105

A.3.8 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

Exported functions:

quickSort :: (a → a → Bool) → [a] → [a]

Quicksort.

mergeSort :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use ’Prelude.<=’).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use ’Prelude.compare’).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use ’Prelude.<=’).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use ’Prelude.compare’).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-

guished and Umlauts are sorted as vocals.

A.3.9 Library TableRBT

Library with an implementation of tables as red-black trees:

A table is a finite mapping from keys to values. All the operations on tables are generic, i.e.,

one has to provide an explicit order predicate (”cmp” below) on elements. Each inner node in the

red-black tree contains a key-value association.

106

Exported types:

type TableRBT a b = RedBlackTree (a,b)

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.10 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here7 for a

description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into

a list of children of the same type and recombine new children to a new value of the

original type.

7http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

107

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children

can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.

The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible.

On each member of the family of the result the given function will yield Nothing.

Proceeds bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as

long as possible. Similar to ’evalFamily’.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

108

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.4 Libraries for Web Applications

A.4.1 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index

access (e.g., ”A-Z”) to these entities.

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields

True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple

text layout.

109

A.4.2 Library HTML

Library for HTML and CGI programming. This paper contains a description of the basic ideas

behind this library.

The installation of a cgi script written with this library can be done by the command

makecurrycgi -m initialForm -o /home/joe/public_html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,

/home/joe/public html/prog.cgi is the desired location of the compiled cgi script, and

initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where

makecurrycgi is a shell script stored in pakcshome/bin).

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the

corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

data HtmlExp

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s

– a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs

– a structure with a tag, attributes, and HTML expressions inside the structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref

– an input element (described by the first argument) with a cgi reference

110

http://www.informatik.uni-kiel.de/~mh/papers/PADL01.html

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr

– an input element (first arg) with an associated event handler (tpyically, a submit button)

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of

HTML forms.

Exported constructors:

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs

– an HTML form with title t, optional parameters (e.g., cookies) ps, and contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c

– an answer in an arbitrary format where t is the content type (e.g., ”text/plain”) and c

is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)

are its name and value and optional parameters (expiration date, domain, path (e.g.,

the path ”/” makes the cookie valid for all documents on the server), security) which

are collected in a list.

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params

– a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s

– a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s

– a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s

111

– a JavaScript statement to be executed when the form is submitted (i.e., <form ...

onsubmit=”s”>)

• FormTarget :: String → FormParam

FormTarget s

– a name of a target frame where the output of the script should be represented (should

only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc

– the encoding scheme of this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he

– HTML expression to be included in form header

• MultipleHandlers :: FormParam

MultipleHandlers

– indicates that the event handlers of the form can be multiply used (i.e., are not deleted

if the form is submitted so that they are still available when going back in the browser;

but then there is a higher risk that the web server process might overflow with unused

events); the default is a single use of event handlers, i.e., one cannot use the back button

in the browser and submit the same form again (which is usually a reasonable behavior

to avoid double submissions of data).

• BodyAttr :: (String,String) → FormParam

BodyAttr ps

– optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

112

The data type for representing HTML pages. The constructor arguments are the title,

the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc

– the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s

– a URL for a CSS file for this page

• PageJScript :: String → PageParam

PageJScript s

– a URL for a Javascript file for this page

Exported functions:

defaultEncoding :: String

The default encoding used in generated web pages.

defaultBackground :: (String,String)

The default background for generated web pages.

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

A URL for a CSS file for a HTML form.

form :: String → [HtmlExp] → HtmlForm

113

A basic HTML form for active web pages with the default encoding and a default

background.

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as

the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser

together with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together

with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

answerEncText :: String → String → HtmlForm

A textual result instead of an HTML form as a result for active web pages where the

encoding is given as the first parameter.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

Adds sound to given HTML form. The functions adds two different declarations for

sound, one invented by Microsoft for the internet explorer, one introduced for netscape.

As neither is an official part of HTML, addsound might not work on all systems and

browsers. The greatest chance is by using sound files in MID-format.

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

114

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page with the default encoding.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like

<,>,&,”) which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain

special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

h4 :: [HtmlExp] → HtmlExp

Header 4

h5 :: [HtmlExp] → HtmlExp

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

emphasize :: [HtmlExp] → HtmlExp

115

Emphasize

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,”) are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

anchor :: String → [HtmlExp] → HtmlExp

An anchor for hypertext reference inside a document

ulist :: [[HtmlExp]] → HtmlExp

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

116

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a

table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class

defined in a style definition (see styleSheet) or in an external style sheet (see form

and page parameters FormCSS and PageCSS).

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined

in an external style sheet.

blockstyle :: String → [HtmlExp] → HtmlExp

Provides a style for a block of HTML elements. The style argument is the name of

a style class defined in an external style sheet. This element is used (in contrast to

”style”) for larger blocks of HTML elements since a line break is placed before and

after these elements.

inline :: [HtmlExp] → HtmlExp

117

Joins a list of HTML elements into a single HTML element. Although this construction

has no rendering, it is sometimes useful for programming when several HTML elements

must be put together.

block :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a block. A line break is placed before and after

these elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,

otherwise ”” is returned.

checkedbox :: CgiRef → String → HtmlExp

A checkbox that is initially checked with a reference and a value. The value is returned

if checkbox is on, otherwise ”” is returned.

radio main :: CgiRef → String → HtmlExp

A main button of a radio (initially ”on”) with a reference and a value. The value is

returned of this button is on. A complete radio button suite always consists of a main

button (radiomain) and some further buttons (radioothers) with the same reference.

Initially, the main button is selected (or nothing is selected if one uses radiomainoff

instead of radio main). The user can select another button but always at most one

button of the radio can be selected. The value corresponding to the selected button is

returned in the environment for this radio reference.

118

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially ”off”) with a reference and a value. The value is

returned of this button is on.

radio other :: CgiRef → String → HtmlExp

A further button of a radio (initially ”off”) with a reference (identical to the main

button of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are

shown in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item

in this list. The names are shown in the selection and the value is returned for the

selected name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

A selection button with a reference and a list of name/value/flag pairs. The names are

shown in the selection and the value is returned if the corresponding name is selected.

If flag is True, the corresonding name is initially selected. If more than one name has

been selected, all values are returned in one string where the values are separated by

newline (’\n’) characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be

used with care since it may cause conflicts with the CGI-based implementation of this

library.

htmlQuote :: String → String

Quotes special characters (<,>,&,", umlauts) in a string as HTML special characters.

htmlIsoUmlauts :: String → String

Translates umlauts in iso-8859-1 encoding into HTML special characters.

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

showHtmlExps :: [HtmlExp] → String

119

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

Transforms a single HTML expression into string representation.

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script is

called with URL ”http://.../script.cgi?parameter”, then ”parameter” is returned by

this I/O action. Note that an URL parameter should be ”URL encoded” to avoid the

appearance of characters with a special meaning. Use the functions ”urlencoded2string”

and ”string2urlencoded” to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are

represented in the form of name/value pairs since no other components are important

here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

120

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

htmlSpecialChars2tex :: String → String

Convert special HTML characters into their LaTeX representation, if necessary.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-

ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-

ument. The variable ”packages” holds the packages to add to the latex document e.g.

”ngerman”

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page. The variable ”packages”

holds the packages to add to the latex document (e.g., ”ngerman”).

germanLatexDoc :: [HtmlExp] → String

show german latex document

intForm :: IO HtmlForm → IO ()

Execute an HTML form in ”interactive” mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in ”interactive” mode with various parameters.

A.4.3 Library HtmlParser

This module contains a very simple parser for HTML documents.

121

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is

a well structured document, the list of HTML expressions should contain exactly one

element.

A.4.4 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted

to the local environment.

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC

– recipient of a carbon copy

• BCC :: String → MailOption

BCC

– recipient of a blind carbon copy

• TO :: String → MailOption

TO

– recipient of the email

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are

allowed, e.g., more than one CC option for multiple recipient of carbon copies.

Important note: The implementation of this operation is based on the command ”mailx”

and must be adapted according to your local environment!

122

A.4.5 Library Markdown

Library to translate markdown documents into HTML or LaTeX. The slightly restricted subset of

the markdown syntax recognized by this implementation is documented in this page.

Exported types:

type MarkdownDoc = [MarkdownElem]

A markdown document is a list of markdown elements.

data MarkdownElem

The data type for representing the different elements occurring in a markdown docu-

ment.

Exported constructors:

• Text :: String → MarkdownElem

Text s

– a simple text in a markdown document

• Emph :: String → MarkdownElem

Emph s

– an emphasized text in a markdown document

• Strong :: String → MarkdownElem

Strong s

– a strongly emphaszed text in a markdown document

• Code :: String → MarkdownElem

Code s

– a code string in a markdown document

• HRef :: String → String → MarkdownElem

HRef s u

– a reference to URL u with text s in a markdown document

• Par :: [MarkdownElem] → MarkdownElem

Par md

– a paragraph in a markdown document

• CodeBlock :: String → MarkdownElem

CodeBlock s

123

http://en.wikipedia.org/wiki/Markdown
http://www.informatik.uni-kiel.de/~pakcs/markdown_syntax.html

– a code block in a markdown document

• UList :: [[MarkdownElem]] → MarkdownElem

UList mds

– an unordered list in a markdown document

• OList :: [[MarkdownElem]] → MarkdownElem

OList mds

– an ordered list in a markdown document

• Quote :: [MarkdownElem] → MarkdownElem

Quote md

– a quoted paragraph in a markdown document

• HRule :: MarkdownElem

HRule

– a hoirzontal rule in a markdown document

• Header :: Int → String → MarkdownElem

Header l s

– a level l header with title s in a markdown document

Exported functions:

fromMarkdownText :: String → [MarkdownElem]

Parse markdown document from its textual representation.

removeEscapes :: String → String

Remove the backlash of escaped markdown characters in a string.

markdownText2HTML :: String → [HtmlExp]

Translate a markdown text into a (partial) HTML document.

markdownText2CompleteHTML :: String → String

Translate a markdown text into a complete HTML text that can be viewed as a stan-

dalone document by a browser.

markdownText2LaTeX :: String → String

Translate a markdown text into a (partial) LaTeX document. All characters with a

special meaning in LaTeX, like dollar or ampersand signs, are quoted.

124

markdownText2LaTeXWithFormat :: (String → String) → String → String

Translate a markdown text into a (partial) LaTeX document where the first argument is

a function to translate the basic text occurring in markdown elements to a LaTeX string.

For instance, one can use a translation operation that supports passing mathematical

formulas in LaTeX style instead of quoting all special characters.

markdownText2CompleteLaTeX :: String → String

Translate a markdown text into a complete LaTeX document that can be formatted as

a standalone document.

formatMarkdownAsPDF :: String → IO ()

Format a file containing markdown text as PDF.

A.4.6 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs). In contrast

to the original WUI library, this library does not use functional patterns and, thus, has a different

interface.

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

code attached (for future extensions).

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

Exported constructors:

125

http://www.informatik.uni-kiel.de/~pakcs/WUI

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

126

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

127

WUI combinator for pairs.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

128

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

129

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

A.4.7 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the

program ”wget” is in your path, otherwise the implementation must be adapted to the

local installation.

A.4.8 Library XML

Library for processing XML data.

Warning: the structure of this library is not stable and might be changed in the future!

130

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

• XText :: String → XmlExp

XText

– a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem

– an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc

– the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl

– the url of the DTD for a document

131

Exported functions:

tagOf :: XmlExp → String

Returns the tag of an XML element (or empty for a textual element).

elemsOf :: XmlExp → [XmlExp]

Returns the child elements an XML element.

textOf :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function

when transforming XML expressions into other data structures.

For instance, textOf [XText ”xy”, XElem ”a” [] [], XText "bc"] == "xy bc"

textOfXml :: [XmlExp] → String

Included for backward compatibility, better use textOf!

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-

sion, if possible. If file or parse errors occur, Nothing is returned.

readFileWithXmlDocs :: String → IO [XmlExp]

132

Reads a file with an arbitrary sequence of XML documents and returns the list of

corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well

structured document, the list of XML expressions should contain exactly one element.

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the

XML document.

A.4.9 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be rep-

resented as algebraic datatypes and vice versa. See here8 for a description of this library.

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions

8http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

133

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns

the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the

representation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

Takes an XML converter and an XML expression and returns a corresponding Curry

value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer values. Integer values must not be used in repe-

titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions

and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in

repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repeti-

tions and do not represent XML elements.

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element

that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

134

Takes a value and returns an XML converter for this value which is not represented as

XML data. Empty XML data must not be used in repetitions and does not represent

an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that

represents an attribute. Attributes must not be used in repetitions and do not represent

an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

Creates a converter for arbitrary optional XML data. Optional XML data must not be

used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter

that represents repetitions of this data. Repetitions must not be used in other repeti-

tions and do not represent XML elements.

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used

in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in

repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be

used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

Creates an XML converter for string attributes. String attributes must not be used in

repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used

in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

135

Creates an XML converter for integer elements. Integer elements may be used in repe-

titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in

repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-

tions.

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in

repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given

value. The created element may be used in repetitions.

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.

The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.

The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions but does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

136

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

137

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

138

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

139

A.5 Libraries for Meta-Programming

A.5.1 Library AbstractCurry

Library to support meta-programming in Curry.

This library contains a definition for representing Curry programs in Curry (type ”CurryProg”)

and an I/O action to read Curry programs and transform them into this abstract representation

(function ”readCurry”).

Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of

2003.

Assumption: an abstract Curry program is stored in file with extension .acy

Exported types:

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-

ified to avoid name clashes. The first component is the module name and the second

component the unqualified name as it occurs in the source program.

type CTVarIName = (Int,String)

The data type for representing type variables. They are represented by (i,n) where i is

a type variable index which is unique inside a function and n is a name (if possible, the

name written in the source program).

type CVarIName = (Int,String)

Data types for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form (CProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are im-

ported, typedecls, opdecls, functions: see below

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CVisibility

Exported constructors:

• Public :: CVisibility

140

• Private :: CVisibility

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

data CConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• CCons :: (String,String) → Int → CVisibility → [CTypeExpr] → CConsDecl

data CTypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

141

data COpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-

sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in AbstractCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

External functions are represented as (CFunc name arity type (CExternal s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and a list of rules.

A function declaration with the constructor CmtFunc is similarly to CFunc but has

a comment as an additional first argument. This comment could be used by pretty

printers that generate a readable Curry program containing documentation comments.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → CRules →
CFuncDecl

• CmtFunc :: String → (String,String) → Int → CVisibility → CTypeExpr →
CRules → CFuncDecl

data CRules

A rule is either a list of formal parameters together with an expression (i.e., a rule in flat

form), a list of general program rules with an evaluation annotation, or it is externally

defined

142

Exported constructors:

• CRules :: CEvalAnnot → [CRule] → CRules

• CExternal :: String → CRules

data CEvalAnnot

Data type for classifying evaluation annotations for functions. They can be either

flexible (default), rigid, or choice.

Exported constructors:

• CFlex :: CEvalAnnot

• CRigid :: CEvalAnnot

• CChoice :: CEvalAnnot

data CRule

The most general form of a rule. It consists of a list of patterns (left-hand side), a list of

guards (”success” if not present in the source text) with their corresponding right-hand

sides, and a list of local declarations.

Exported constructors:

• CRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CExpr → [CLocalDecl] → CLocalDecl

• CLocalVar :: (Int,String) → CLocalDecl

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

143

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CExpr → [CBranchExpr] → CExpr

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

• CSLet :: [CLocalDecl] → CStatement

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

data CBranchExpr

Data type for representing branches in case expressions.

Exported constructors:

• CBranch :: CPattern → CExpr → CBranchExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a

float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

144

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract

Curry program. Thus, the argument is the file name without suffix ”.curry” or ”.lcurry”)

and the result is a Curry term representing this program.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-

stract Curry program. Thus, the argument is the file name without suffix ”.curry” or

”.lcurry”) and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads a typed Curry program from a file (with extension ”.acy”)

with respect to some parser options. This I/O action is used by the standard action

readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads an untyped Curry program from a file (with extension ”.uacy”)

with respect to some parser options. For more details see function ’readCurryWith-

ParseOptions’

abstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding AbstractCurry program.

untypedAbstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding untyped AbstractCurry program.

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ”.acy” format. In

contrast to readCurry, this action does not parse a source program. Thus, the argument

must be the name of an existing file (with suffix ”.acy”) containing an AbstractCurry

program in ”.acy” format and the result is a Curry term representing this program. It

is currently predefined only in Curry2Prolog.

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ”.acy” format. The first argument must

be the name of the target file (with suffix ”.acy”).

145

A.5.2 Library AbstractCurryPrinter

A pretty printer for AbstractCurry programs.

This library defines a function ”showProg” that shows an AbstractCurry program in standard

Curry syntax.

Exported functions:

showProg :: CurryProg → String

Shows an AbstractCurry program in standard Curry syntax. The export list contains

the public functions and the types with their data constructors (if all data constructors

are public), otherwise only the type constructors. The potential comments in function

declarations are formatted as documentation comments.

showTypeDecls :: [CTypeDecl] → String

Shows a list of AbstractCurry type declarations in standard Curry syntax.

showTypeDecl :: CTypeDecl → String

Shows an AbstractCurry type declaration in standard Curry syntax.

showTypeExpr :: Bool → CTypeExpr → String

Shows an AbstractCurry type expression in standard Curry syntax. If the first argument

is True, the type expression is enclosed in brackets.

showFuncDecl :: CFuncDecl → String

Shows an AbstractCurry function declaration in standard Curry syntax.

showExpr :: CExpr → String

Shows an AbstractCurry expression in standard Curry syntax.

showPattern :: CPattern → String

A.5.3 Library CompactFlatCurry

This module contains functions to reduce the size of FlatCurry programs by combining the main

module and all imports into a single program that contains only the functions directly or indirectly

called from a set of main functions.

146

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose

– for more output

• Main :: String → Option

Main

– optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports

– optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs

– optimize w.r.t. given list of initially required functions

• Required :: [RequiredSpec] → Option

Required

– list of functions that are implicitly required and, thus, should not be deleted if the

corresponding module is imported

• Import :: String → Option

Import

– module that should always be imported (useful in combination with option InitFuncs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

147

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun requires reqfun) specifies that the use of the function ”fun” implies the application

of function ”reqfun”.

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function ”fun” should be always present if the

corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be

generated by external functions like ”==” or ”=:=” on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from

a set of main functions and writes it into a FlatCurry file. This is done by merging all

imported FlatCurry modules and removing the imported functions that are definitely

not used.

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a

set of main functions. This is done by merging all imported FlatCurry modules (these

are loaded demand-driven so that modules that contains no potentially called functions

are not loaded) and removing the imported functions that are definitely not used.

A.5.4 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The

source string is classified into the following categories:

• moduleHead - module interface, imports, operators

• code - the part where the actual program is defined

• big comment - parts enclosed in {- ... -}

• small comment - from ”–” to the end of a line

• text - a string, i.e. text enclosed in ”...”

• letter - the given string is the representation of a character

• meta - containing information for meta programming

For an example to use the state scanner cf. addtypes, the tool to add function types to a given

program.

148

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

Exported functions:

isSmallComment :: Token → Bool

test for category ”SmallComment”

isBigComment :: Token → Bool

test for category ”BigComment”

isComment :: Token → Bool

test if given token is a comment (big or small)

isText :: Token → Bool

test for category ”Text” (String)

isLetter :: Token → Bool

test for category ”Letter” (Char)

isCode :: Token → Bool

test for category ”Code”

isModuleHead :: Token → Bool

test for category ”ModuleHead”, ie imports and operator declarations

149

isMeta :: Token → Bool

test for category ”Meta”, ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to

know whether a given part of code is at the beginning of a line or in the middle. The

state scanner organizes the code in such a way that every string categorized as ”Code”

always starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-

ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program

after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

A.5.5 Library FlatCurry

Library to support meta-programming in Curry.

This library contains a definition for representing FlatCurry programs in Curry (type ”Prog”)

and an I/O action to read Curry programs and transform them into this representation (function

”readFlatCurry”).

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to

avoid name clashes. The first component is the module name and the second component

the unqualified name as it occurs in the source program.

type TVarIndex = Int

The data type for representing type variables. They are represented by (TVar i) where

i is a type variable index.

type VarIndex = Int

150

Data type for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(Prog modname imports typedecls functions opdecls translation_table)

where modname is the name of this module, imports is the list of modules names that

are imported, typedecls, opdecls, functions, translation of type names and con-

structor/function names are explained see below

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

• Private :: Visibility

data TypeDecl

Data type for representing definitions of algebraic data types.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

151

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

data OpDecl

Data type for operator declarations. An operator declaration fix p n in Curry corre-

sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

152

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name k type (Rule [i1,...,ik] e))

and represents the function name with definition

name :: type

name x1...xk = e

where each ij is the index of the variable xj.

Note: the variable indices are unique inside each function declaration and are usually

numbered from 0

External functions are represented as

(Func name arity type (External s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

data Rule

A rule is either a list of formal parameters together with an expression or an ”External”

tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or

rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

153

Data type for classifying combinations (i.e., a function/constructor applied to some

arguments).

Exported constructors:

• FuncCall :: CombType

FuncCall

– a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall

– a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall

– a partial call to a function (i.e., not all arguments are provided) where the parameter is

the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall

– a partial call to a constructor (i.e., not all arguments are provided) where the parameter

is the number of missing arguments

data Expr

Data type for representing expressions.

Remarks:

if-then-else expressions are represented as function calls:

(if e1 then e2 else e3)

is represented as

(Comb FuncCall ("Prelude","if_then_else") [e1,e2,e3])

Higher-order applications are represented as calls to the (external) function apply. For

instance, the rule

app f x = f x

is represented as

154

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

A conditional rule is represented as a call to an external function cond where the first

argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = success

is represented as

(Rule [0]

(Comb FuncCall ("Prelude","cond")

[Comb FuncCall ("Prelude","=:=") [Var 0, Lit (Intc 2)],

Comb FuncCall ("Prelude","success") []]))

Exported constructors:

• Var :: Int → Expr

Var

– variable (represented by unique index)

• Lit :: Literal → Expr

Lit

– literal (Int/Float/Char constant)

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb

– application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

• Free :: [Int] → Expr → Expr

Free

– introduction of free local variables

• Or :: Expr → Expr → Expr

Or

– disjunction of two expressions (used to translate rules with overlapping left-hand sides)

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case

– case distinction (rigid or flex)

155

data BranchExpr

Data type for representing branches in a case expression.

Branches ”(m.c x1...xn) -> e” in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-

stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either

an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

156

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry

program. Thus, the argument is the file name without suffix ”.curry” (or ”.lcurry”) and

the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which reads a FlatCurry program from a file with respect to some parser

options. This I/O action is used by the standard action readFlatCurry. It is currently

predefined only in Curry2Prolog.

flatCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

flatCurryIntName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ”.fcy” format. In contrast to

readFlatCurry, this action does not parse a source program. Thus, the argument must

be the name of an existing file (with suffix ”.fcy”) containing a FlatCurry program in

”.fcy” format and the result is a FlatCurry term representing this program.

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry program, i.e., a FlatCurry program

containing only ”Public” entities and function definitions without rules (i.e., external

functions). The argument is the file name without suffix ”.curry” (or ”.lcurry”) and the

result is a FlatCurry term representing the interface of this program.

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ”.fcy” format. The first argument must be

the name of the target file (with suffix ”.fcy”).

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,

names not defined in this module (except for names defined in the prelude) are prefixed

with their module name.

157

A.5.6 Library FlatCurryGoodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

158

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

159

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

160

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

161

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

162

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

funcType :: FuncDecl → TypeExpr

get type of function

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

163

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

164

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

165

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of varoables in let declaration

letBody :: Expr → Expr

get body of let declaration

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

166

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → Expr → a

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

167

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

is expression a partial constructor call?

isGround :: Expr → Bool

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

168

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

get literal from literal pattern

isConsPattern :: Pattern → Bool

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

169

A.5.7 Library FlatCurryRead

This library defines operations to read a FlatCurry programs or interfaces together with all its

imported modules in the current load path.

Exported functions:

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is

the name of the main module (possibly with a directory prefix).

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.

The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The

argument is the name of the main module (possibly with a directory prefix). If there is

no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead of

the interface.

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given

load path. The arguments are a load path and the name of the main module. If there

is no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead

of the interface.

A.5.8 Library FlatCurryShow

Some tools to show FlatCurry programs.

This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg,

showFlatType, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurryType,

showCurryExpr,...).

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

170

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.5.9 Library FlatCurryXML

This library contains functions to convert FlatCurry programs into corresponding XML expressions

and vice versa. This can be used to store Curry programs in a way independent from PAKCS or

to use the PAKCS back end by other systems.

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

A.5.10 Library FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-

hand side of a function definition).

171

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases

in this expression. If the expression has rigid as well as flex cases (which cannot be the

case for source level programs but might occur after some program transformations),

the result ConflictFR is returned.

A.5.11 Library PrettyAbstract

Library for pretty printing AbstractCurry programs. In contrast to the library AbstractCur-

ryPrinter, this library implements a better human-readable pretty printing of AbstractCurry pro-

grams.

Exported functions:

preludePrecs :: [((String,String),(CFixity,Int))]

the precedences of the operators in the Prelude module

prettyCProg :: Int → CurryProg → String

(prettyCProg w prog) pretty prints the curry prog prog and fits it to a page width of

w characters.

prettyCTypeExpr :: String → CTypeExpr → String

(prettyCTypeExpr mod typeExpr) pretty prints the type expression typeExpr of the

module mod and fits it to a page width of 78 characters.

prettyCTypes :: String → [CTypeDecl] → String

(prettyCTypes mod typeDecls) pretty prints the type declarations typeDecls of the

module mod and fits it to a page width of 78 characters.

172

prettyCOps :: [COpDecl] → String

(prettyCOps opDecls) pretty prints the operators opDecls and fits it to a page width

of 78 characters.

showCProg :: CurryProg → String

(showCProg prog) pretty prints the curry prog prog and fits it to a page width of 78

characters.

printCProg :: String → IO ()

(printCProg modulname) pretty prints the typed Abstract Curry program of modulname

produced by AbstractCurry.readCurry and fits it to a page width of 78 characters.

The output is standard io.

printUCProg :: String → IO ()

(printUCProg modulname) pretty prints the untyped Abstract Curry program of

modulname produced by AbstractCurry.readUntypedCurry and fits it to a page width

of 78 characters. The output ist standard io.

cprogDoc :: CurryProg → Doc

(cprogDoc prog) creates a document of the Curry program prog and fits it to a page

width of 78 characters.

cprogDocWithPrecedences :: [((String,String),(CFixity,Int))] → CurryProg → Doc

(cprogDocWithPrecedences precs prog) creates a document of the curry prog prog and

fits it to a page width of 78 characters, the precedences precs ensure a correct bracketing

of infix operators

precs :: [COpDecl] → [((String,String),(CFixity,Int))]

generates a list of precedences

173

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax

is intended to simplify the writing of texts whose source is readable and can be easily formatted,

e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only

internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.

Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two or * characters:

emphasize

emphasize

__strong__

strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).

If one wants to put a link under a text, one can put the text in square brackets directly followed

by the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or , in

the output document, it should be escaped with a backslash, i.e., a backslash followed by a special

character in the source text is translated into the given character (this also holds for program code,

see below). For instance, the input text

word

produces the output ” word ”. The following backslash escapes are recognized:

\ backslash

‘ backtick

* asterisk

_ underscore

{} curly braces

[] square brackets

174

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses

hash symbol

+ plus symbol

- minus symbol (dash)

. dot

blank

! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list

elements (where the star can be preceded by blanks). The individual list elements must contain

the same indentation, as in

* First list element

with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one

could nest lists. Thus, the input text

- Color:

+ Yellow

+ Read

+ Blue

- BW:

+ Black

+ White

is formatted as

• Color:

175

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by

a dot and at least one blank. All following lines belonging to the same numbered item must have

the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second

element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is

> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input

line by at least four spaces where all following lines must have at least the same indentation as the

first non-blank character of the first line:

f x y = let z = (x,y)

in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)

in (z,z)

The visually structure a document, one can also put a line containing only blanks and at least three

dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

176

B.3 Headers

The are two forms to mark headers. In the first form, one can ”underline” the main header in the

source text by equal signs and the second-level header by dashes:

First-level header

==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,

where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

177

C Auxiliary Files

During the translation and execution of a Curry program with KiCS2, various intermediate repre-

sentations of the source program are created and stored in different files which are shortly explained

in this section. In general, it is not necessary to know about these auxiliary files because they are

automatically generated and updated. You should only remember the command for deleting all

auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of KiCS2 create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where

all functions are global (i.e., lambda lifting has been performed) and pattern matching is

translated into explicit case/or expressions (compare Appendix A.1). This representation

might be useful for other back ends and compilers for Curry and is the basis doing meta-

programming in Curry. This file is implicitly generated when a program is compiled with

KiCS2. The FlatCurry representation of a Curry program is usually generated by the front-

end after parsing, type checking and eliminating local declarations. If dir is the directory

where the Curry program is stored, the corresponding FlatCurry program is stored in the

directory “dir/.curry”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-

tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all

functions omitted (i.e., “external”). This representation is useful for providing a fast access

to module interfaces. This file is implicitly generated when a program is compiled with KiCS2

and stored in the same directory as prog.fcy.

Curry_prog.nda: This file contains some information about the determinism behavior of operations

that is used by the KiCS2 compiler (see [5] for more details about the use of this information).

If dir is the directory where the Curry program is stored, the corresponding Haskell program

is stored in the directory “dir/.curry/.kics2”.

Curry_prog.info: This file contains some information about the top-level functions of module prog

that are used by the interactive environment, like determinism behavior or IO status. This

file is stored in the same directory as Curry_prog.nda.

Curry_prog.hs: This file contains a Haskell program as the result of translating the Curry program

with the KiCS2 compiler. This file is stored in the same directory as Curry_prog.nda.

Curry_prog.o: This file contains the object code of the Haskell program Curry_prog.hs when the

latter program is compiled in order to execute it. This file is stored in the same directory as

Curry_prog.hs.

Curry_prog.hi: This file contains the interface of the Haskell program Curry_prog.hs when the

latter program is compiled in order to execute it. This file is stored in the same directory as

Curry_prog.hs.

prog: This file contains the executable after compiling and saving a program with KiCS2 (see

command “:save” in Section 2.2).

178

D External Operations

Currently, KiCS2 has no general interface to external operations, i.e., operations whose semantics is

not defined by program rules in a Curry program but by some code written in another programming

language. Thus, if an external operation should be added to the system, this operation must be

declared as external in the Curry source code and an implementation for this external operation

must be provided for the run-time system. An external operation is defined as follows in the Curry

source code:

1. Add a type declaration for the external operation somewhere in a module defining this oper-

ation (usually, the prelude or some system module).

2. For external operations it is not allowed to define any rule since their semantics is determined

by an external implementation. Instead of the defining rules, you have to write

f external

below the type declaration for the external operation f.

Furthermore, an implementation of the external operation must be provided in the target language

of the KiCS2 compiler, i.e., in Haskell, and inserted in the compiled code. In order to simplify this

task, KiCS2 follows some code conventions that are described in the following.

Assume you want to implement your own concatenation for strings in a module String. The

name and type of this string concatenation should be

sconc :: String → String → String

Since the primitive Haskell implementation of this operation does not now anything about the

operational mechanism of Curry (e.g., needed narrowing, non-deterministic rewriting), the argu-

ments need to be completely evaluated before the primitive implementation is called. This can be

easily obtained by the prelude operation ($##) that applies an operation to the normal form of the

given argument, i.e., this operation evaluates the argument to its normal form before applying the

operation to it.9 Thus, we define sconc by

sconc :: String → String → String

sconc s1 s2 = (prim_sconc $## s1) $## s2

prim_sconc :: String → String → String

prim_sconc external

so that it is ensured that the external operation prim_sconc is always called with complete evaluated

arguments.

In order to define the Haskell code implementing prim_sconc, one has to satisfy the naming

conventions of KiCS2. The KiCS2 compiler generates the following code for the external opera-

tion prim_sconc (note that the generated Haskell code for the module String is stored in the file

.curry/kics2/Curry_String.hs):

9There is also a similar prelude operation ($#) which evaluates the argument only to head-normal form. This is

a bit more efficient and can be used for unstructured types like Bool.

179

d_C_prim_sconc :: Curry_Prelude.OP_List Curry_Prelude.C_Char

→ Curry_Prelude.OP_List Curry_Prelude.C_Char

→ ConstStore

→ Curry_Prelude.OP_List Curry_Prelude.C_Char

d_C_prim_sconc x1 x2 x3500 = external_d_C_prim_sconc x1 x2 x3500

The type constructors OP_List and C_Char of the prelude Curry_Prelude10 correspond to the Curry

type constructors for lists and characters. The Haskell operation external_d_C_prim_sconc is the

external operation to be implemented in Haskell by the programmer. The additional argument

of type ConstStore represents the current set of constraints when this operation is called. This

argument is intended to provide a more efficient access to binding constraints and can be ignored

in standard operations.

If String.curry contains the code of the Curry function sconc described above, the Haskell

code implementing the external operations occurring in the module String must be in the file

External_String.hs which is located in the same directory as the file String.curry. The KiCS2

compiler appends the code contained in External_String.hs to the generated code stored in the

file .curry/kics2/Curry_String.hs.11

In order to complete our example, we have to write into the file External_String.hs a definition

of the Haskell function external_d_C_prim_sconc. Thus, we start with the following definitions:

import qualified Curry_Prelude as CP

external_d_C_prim_sconc :: CP.OP_List CP.C_Char → CP.OP_List CP.C_Char

→ ConstStore → CP.OP_List CP.C_Char

First, we import the standard prelude with the name CP in order to shorten the writing of type decla-

rations. In order to write the final code of this operation, we have to convert the Curry-related types

(like C_Char) into the corresponding Haskell types (like Char). Note that the Curry-related types

contain information about non-deterministic or constrained values (see [5, 4]) that are meaningless

in Haskell. To solve this conversion problem, the implementation of KiCS2 provides a family of

operations to perform these conversions for the predefined types occurring in the standard prelude.

For instance, fromCurry converts a Curry type into the corresponding Haskell type, and toCurry

converts the Haskell type into the corresponding Curry type. Thus, we complete our example with

the definition (note that we simply ignore the final argument representing the constraint store)

external_d_C_prim_sconc s1 s2 _ =

toCurry ((fromCurry s1 ++ fromCurry s2) :: String)

Here, we use Haskell’s concatenation operation “++” to concatenate the string arguments. The

type annotation “:: String” is necessary because “++” is a polymorphic function so that the type

inference system of Haskell has problems to determine the right instance of the conversion function.

The conversion between Curry types and Haskell types, i.e., the family of conversion operation

fromCurry and toCurry, is defined in the KiCS2 implementation for all standard data types. In

particular, it is also defined on function types so that one can easily implement external Curry I/O

10Note that all translated Curry modules are imported in the Haskell code fully qualified in order to avoid name

conflicts.
11If the file External_String.hs contains also some import declarations at the beginning, these import declara-

tions are put after the generated import declarations.

180

actions by using Haskell I/O actions. For instance, if we want to implement an external operation

to print some string as an output line, we start by declaring the external operations in the Curry

module String:

printString :: String → IO ()

printString s = prim_printString $## s

prim_printString :: String → IO ()

prim_printString external

Next we add the corresponding implementation in the file External_String.hs (where C_IO and

OP_Unit are the names of the Haskell representation of the Curry type constructor IO and the

Curry data type “()”, respectively):

external_d_C_prim_printString :: CP.OP_List CP.C_Char → ConstStore

→ CP.C_IO CP.OP_Unit

external_d_C_prim_printString s _ = toCurry putStrLn s

Here, Haskell’s I/O action putStrLn of type “String -> IO ()” is transformed into a Curry I/O

action “toCurry putStrLn” which has the type

CP.OP_List CP.C_Char → CP.C_IO CP.OP_Unit

When we compile the Curry module String, KiCS2 combines these definitions in the target program

so that we can immediately use the externally defined operation printString in Curry programs.

As we have seen, KiCS2 transforms a name like primOP of an external operation into the name

external_d_C_primOP for the Haskell operation to be implemented, i.e., only a specific prefix is

added. However, this is only valid if no special characters occur in the Curry names. Otherwise (in

order to generate a correct Haskell program), special characters are translated into specific names

prefixed by “OP_”. For instance, if we declare the external operation

(<&>) :: Int → Int → Int

(<&>) external

the generated Haskell module contains the code

d_OP_lt_ampersand_gt :: Curry_Prelude.C_Int → Curry_Prelude.C_Int

→ ConstStore → Curry_Prelude.C_Int

d_OP_lt_ampersand_gt x1 x2 x3500 = external_d_OP_lt_ampersand_gt x1 x2 x3500

so that one has to implement the operation external_d_OP_lt_ampersand_gt in Haskell. If in doubt,

one should look into the generated Haskell code about the names and types of the operations to

be implemented.

Finally, note that this method to connect functions implemented in Haskell to Curry programs

provides the opportunity to connect also operations written in other programming languages to

Curry via Haskell’s foreign function interface.

181

Index

<, 71

*., 39

+., 39

---, 19

-., 39

.kics2rc, 12

/., 39

//, 92

:!, 9

:&, 98

:add, 7

:browse, 9

:cd, 8

:edit, 8

:eval, 8

:fork, 9

:help, 7

:interface, 9

:load, 7

:programs, 8

:quit, 8

:reload, 7

:save, 9

:set, 9

:set path, 6

:show, 8

:source, 9

:type, 8

:usedimports, 9

@author, 19

@cons, 19

@param, 19

@return, 19

@version, 19

<*>, 71

<+>, 74

<//>, 74

</>, 74

<:, 35

<=:, 35

<$$>, 74

<$>, 74

<>, 74

>:, 35

>=:, 35

>>-, 69

>>>, 71

\\, 67

aBool, 135

abs, 53

AbstractCurry, 30

abstractCurryFileName, 145

aChar, 135

adapt, 135

addAttr, 119

addAttrs, 119

addCanvas, 51

addCookies, 114

addDays, 90

addFormParam, 114

addHeadings, 117

addHours, 90

addListToFM, 94

addListToFM C, 94

addMinutes, 90

addMonths, 90

addPageParam, 115

addRegionStyle, 51

address, 116

addSeconds, 90

addSound, 114

addToFM, 94

addToFM C, 94

addYears, 90

aFloat, 135

aInt, 135

align, 74

allC, 35

allDBInfos, 65

allDBKeyInfos, 65

allDBKeys, 64

182

allValuesBFS, 86

allValuesDFS, 86

allValuesIDS, 86

allValuesIDSwith, 86

allVars, 168

allVarsInFunc, 164

allVarsInProg, 159

allVarsInRule, 165

alwaysRequired, 148

anchor, 116

andC, 35

angles, 78

answerEncText, 114

answerText, 114

anyC, 35

appendStyledValue, 51

appendValue, 51

applyAt, 92

args, 11

argTypes, 162

Array, 91

assertEqual, 32

assertEqualIO, 32

assertIO, 32

Assertion, 32

assertSolutions, 32

assertTrue, 32

assertValues, 32

aString, 135

atan, 39

attr, 135

backslash, 80

baseName, 38

bfs, 10

bindings, 11

binomial, 53

bitAnd, 54

bitNot, 54

bitOr, 54

bitTrunc, 54

bitXor, 54

blink, 116

block, 118

blockstyle, 117

bold, 116

bquotes, 78

braces, 78

brackets, 78

BranchExpr, 156

branchExpr, 169

branchPattern, 169

breakline, 117

buildGr, 99

Button, 52

button, 118

CalendarTime, 89

calendarTimeToString, 90

CanvasItem, 47

CanvasScroll, 52

caseBranches, 167

caseExpr, 167

CaseType, 153

caseType, 166

cat, 76

categorizeByItemKey, 109

catMaybes, 69

CBranchExpr, 144

CConsDecl, 141

center, 116

CEvalAnnot, 143

CExpr, 143

CFixity, 142

CFuncDecl, 142

CgiEnv, 110

CgiRef, 110

char, 78, 134

checkAssertion, 33

checkbox, 118

checkedbox, 118

childFamilies, 108

children, 108

choices, 10

chooseColor, 53

cleancurry, 5

cleanDB, 66

CLiteral, 144

183

CLocalDecl, 143

ClockTime, 89

clockTimeToInt, 90

closeDBHandles, 66

Cmd, 52

cmp, 11

cmpChar, 106

cmpList, 106

cmpString, 106

code, 116

col, 49

colon, 79

Color, 48

ColVal, 62

combArgs, 166

combine, 74, 92

combineSimilar, 92

combName, 166

CombType, 153

combType, 166

comma, 79

Command, 52

comment

documentation, 19

compareCalendarTime, 91

compareClockTime, 91

compareDate, 91

compose, 75

computeCompactFlatCurry, 148

concurrency, 6

ConfCollection, 46

ConfigButton, 52

ConfItem, 42

connectToCommand, 58

connectToSocket, 70, 87

connectToSocketRepeat, 70

connectToSocketWait, 70

cons, 93

consArgs, 161

consArity, 160

ConsDecl, 152

consName, 160

consVisibility, 160

Context, 97

context, 100

Context’, 98

cookieForm, 114

CookieParam, 112

coordinates, 120

COpDecl, 142

cos, 39

CPattern, 144

cprogDoc, 173

cprogDocWithPrecedences, 173

createDirectory, 37

CRule, 143

CRules, 142

CStatement, 144

ctDay, 89

ctHour, 89

ctMin, 89

ctMonth, 89

ctSec, 89

ctTZ, 89

CTVarIName, 140

ctYear, 89

CTypeDecl, 141

CTypeExpr, 141

Curry mode, 13

CurryDoc, 19

currydoc, 20

CURRYPATH, 6, 26

CurryProg, 140

CurryTest, 24

currytest, 24

CVarIName, 140

CVisibility, 140

cyclic structure, 14

database programming, 26

daysOfMonth, 91

debugTcl, 49

Decomp, 98

defaultBackground, 113

defaultEncoding, 113

defaultRequired, 148

deg, 101

deg’, 102

184

delEdge, 99

delEdges, 100

delete, 67, 104

deleteBy, 67

deleteDBEntries, 65

deleteDBEntry, 65

deleteRBT, 105, 107

delFromFM, 94

delListFromFM, 95

delNode, 99

delNodes, 99

deqHead, 93

deqInit, 93

deqLast, 93

deqLength, 93

deqReverse, 93

deqTail, 93

deqToList, 93

dfs, 9

digitToInt, 34

dirName, 38

dlist, 117

Doc, 72

documentation comment, 19

documentation generator, 19

doesDirectoryExist, 36

doesFileExist, 36

domain, 161

doneT, 63

dot, 80

dquote, 79

dquotes, 78

Dynamic, 62

eBool, 136

eChar, 136

Edge, 97

edges, 102

eEmpty, 136

eFloat, 136

eInt, 135

element, 134

elemFM, 96

elemIndex, 66

elemIndices, 66

elemRBT, 105

elemsOf, 132

eltsFM, 96

Emacs, 13

emap, 102

emphasize, 115

empty, 71, 72, 93, 99, 104, 134

emptyDefaultArray, 92

emptyErrorArray, 92

emptyFM, 94

emptySetRBT, 105

emptyTableRBT, 107

encapsulated search, 5

enclose, 78

encloseSep, 77

Encoding, 131

entity relationship diagrams, 26

EntryScroll, 52

eOpt, 136

eqFM, 95

equal, 101

equals, 80

ERD2Curry, 26

erd2curry, 26

eRep, 136

eRepSeq1, 137

eRepSeq2, 137

eRepSeq3, 138

eRepSeq4, 138

eRepSeq5, 139

eRepSeq6, 139

errorT, 63

eSeq1, 136

eSeq2, 137

eSeq3, 137

eSeq4, 138

eSeq5, 139

eSeq6, 139

eString, 136

evalChildFamilies, 108

evalChildFamiliesIO, 109

evalFamily, 108

evalFamilyIO, 109

185

even, 54

Event, 45

exclusiveIO, 58

execCmd, 58

existsDBKey, 64

exitGUI, 50

exitWith, 88

exp, 39

expires, 114

Expr, 154

external operation, 179

factorial, 53

failT, 64

family, 108

fileSize, 36

fileSuffix, 38

fillCat, 76

fillEncloseSep, 77

fillSep, 75

filterFM, 95

find, 66

findIndex, 66

findIndices, 67

first, 11

Fixity, 152

FlatCurry, 30

flatCurry2Xml, 171

flatCurry2XmlFile, 171

flatCurryFileName, 157

flatCurryIntName, 157

FlexRigidResult, 172

float, 79, 134

FM, 94

fmSortBy, 96

fmToList, 96

fmToListPreOrder, 96

focusInput, 51

fold, 108

foldChildren, 109

foldFM, 95

form, 113

formatMarkdownAsPDF, 125

formCSS, 113

formEnc, 113

FormParam, 111

freeExpr, 166

freeVars, 166

fromJust, 69

fromMarkdownText, 124

fromMaybe, 69

funcArgs, 164

funcArity, 163

funcBody, 164

FuncDecl, 152

funcName, 163

funcRHS, 164

funcRule, 163

functional pattern, 14

funcType, 163

funcVisibility, 163

garbageCollect, 81

garbageCollectorOff, 81

garbageCollectorOn, 81

GDecomp, 98

gelem, 101

generateCompactFlatCurryFile, 148

germanLatexDoc, 121

getAllFailures, 31

getAllSolutions, 31

getAllValues, 31

getArgs, 87

getAssoc, 58

getClockTime, 89

getContents, 57

getContentsOfUrl, 130

getCookies, 120

getCPUTime, 87

getCurrentDirectory, 37

getCursorPosition, 51

getDB, 63

getDBInfo, 65

getDBInfos, 65

getDirectoryContents, 37

getElapsedTime, 87

getEnviron, 88

getFileInPath, 38

186

getFlexRigid, 172

getHostname, 88

getLocalTime, 89

getModificationTime, 37

getOneSolution, 31

getOneValue, 31

getOpenFile, 52

getOpenFileWithTypes, 52

getPID, 88

getProcessInfos, 81

getProgName, 88

getRandomSeed, 103

getSaveFile, 53

getSaveFileWithTypes, 53

getSearchTree, 85

getUrlParameter, 120

getValue, 50

ghc, 10, 11

ghci, 11

Global, 40

global, 40

GlobalSpec, 40

gmap, 102

Graph, 98

group, 67, 73

groupBy, 68

GuiPort, 41

h1, 115

h2, 115

h3, 115

h4, 115

h5, 115

Handle, 55

hang, 73

hcat, 76

hClose, 55

headedTable, 117

hempty, 115

hEncloseSep, 77

hFlush, 56

hGetChar, 57

hGetContents, 57

hGetLine, 57

hiddenfield, 119

hIsEOF, 56

hIsReadable, 57

hIsWritable, 57

hPrint, 57

hPutChar, 57

hPutStr, 57

hPutStrLn, 57

hReady, 56

href, 116

hrule, 117

hSeek, 56

hsep, 75

HtmlExp, 110

HtmlForm, 111

HtmlHandler, 110

htmlIsoUmlauts, 119

HtmlPage, 112

htmlQuote, 119

htmlSpecialChars2tex, 121

htxt, 115

htxts, 115

hWaitForInput, 56

hWaitForInputOrMsg, 56

hWaitForInputs, 56

hWaitForInputsOrMsg, 56

i2f, 39

idOfCgiRef, 113

ids, 10

ilog, 53

image, 117

imageButton, 118

indeg, 101

indeg’, 102

init, 68

inits, 68

inline, 117

inn, 100

inn’, 102

insEdge, 99

insEdges, 99

insertBy, 68

insertMultiRBT, 105

187

insertRBT, 105

insNode, 99

insNodes, 99

int, 78, 134

integer, 10

interactive, 7

interactive, 10

intersect, 67

intersectFM, 95

intersectFM C, 95

intersectRBT, 105

intersperse, 67

intForm, 121

intFormMain, 121

intToDigit, 34

IOMode, 55

IORef, 57

ioref, 10

isAbsolute, 38

isAlpha, 33

isAlphaNum, 34

isBigComment, 149

isCase, 167

isCode, 149

isComb, 167

isCombTypeConsCall, 165

isCombTypeConsPartCall, 166

isCombTypeFuncCall, 165

isCombTypeFuncPartCall, 165

isComment, 149

isConsCall, 168

isConsPartCall, 168

isConsPattern, 169

isDefined, 86

isDigit, 34

isEmpty, 72, 93, 100, 104

isEmptyFM, 96

isEmptyTable, 107

isEOF, 56

isExternal, 164

isFree, 167

isFuncCall, 168

isFuncPartCall, 168

isFuncType, 162

isGround, 168

isHexDigit, 34

isInfixOf, 68

isJust, 69

isLet, 167

isLetter, 149

isLit, 167

isLower, 33

isMeta, 150

isModuleHead, 149

isNothing, 69

isOctDigit, 34

isOr, 167

isPosix, 88

isPrefixOf, 68

isqrt, 53

isRuleExternal, 165

isSmallComment, 149

isSpace, 34

isSuffixOf, 68

isTCons, 162

isText, 149

isTVar, 162

isTypeSyn, 160

isUpper, 33

isVar, 167

isWindows, 88

italic, 116

JSBranch, 60

jsConsTerm, 61

JSExp, 59

JSFDecl, 61

JSStat, 60

keyOrder, 96

keysFM, 96

KiCS2, 7

kics2, 7

kics2rc, 12

lab, 100

lab’, 101

labEdges, 102

labNode’, 101

188

labNodes, 102

labUEdges, 102

labUNodes, 102

langle, 79

last, 68

lbrace, 79

lbracket, 79

LEdge, 97

leqChar, 106

leqCharIgnoreCase, 106

leqLexGerman, 106

leqList, 106

leqString, 106

leqStringIgnoreCase, 106

let, 14

letBinds, 166

letBody, 166

line, 72

linebreak, 72

linesep, 72

list, 77

list2CategorizedHtml, 109

ListBoxScroll, 52

listenOn, 70, 87

listenOnFresh, 87

listToDefaultArray, 92

listToDeq, 93

listToErrorArray, 92

listToFM, 94

listToMaybe, 69

litem, 116

Literal, 156

literal, 166

LNode, 97

log, 39

lookup, 104

lookupFileInPath, 38

lookupFM, 96

lookupRBT, 107

lookupWithDefaultFM, 96

lparen, 79

LPath, 98

lpre, 100

lpre’, 101

lsuc, 100

lsuc’, 101

MailOption, 122

mainWUI, 130

mapChildFamilies, 108

mapChildFamiliesIO, 109

mapChildren, 108

mapChildrenIO, 109

mapFamily, 108

mapFamilyIO, 109

mapFM, 95

mapMaybe, 69

mapMMaybe, 69

mapT, 64

mapT , 64

markdown, 19

MarkdownDoc, 123

MarkdownElem, 123

markdownText2CompleteHTML, 124

markdownText2CompleteLaTeX, 125

markdownText2HTML, 124

markdownText2LaTeX, 124

markdownText2LaTeXWithFormat, 125

match, 100

matchAny, 99

matchHead, 93

matchLast, 93

matrix, 49

max3, 54

maxFM, 96

maxlist, 54

maybeToList, 69

MContext, 97

MenuItem, 46

mergeSort, 106

min3, 54

minFM, 96

minlist, 54

minusFM, 95

missingArgs, 166

missingCombArgs, 166

mkGraph, 99

mkUGraph, 99

189

modules, 6

multipleSelection, 119

nbsp, 115

neighbors, 100

neighbors’, 101

nest, 73

newDBEntry, 66

newDBKeyEntry, 66

newIORef, 58

newNodes, 102

newTreeLike, 104

nextBoolean, 103

nextInt, 103

nextIntRange, 103

nmap, 102

noChildren, 108

Node, 97

node’, 101

nodeRange, 100

nodes, 102

noindex, 21

noNodes, 100

nub, 67

nubBy, 67

odd, 54

olist, 116

onlyindex, 21

OpDecl, 152

openFile, 55

operation

external, 179

opFixity, 162

opName, 162

opPrecedence, 162

opt, 135

optimize, 11

Option, 147

option

in source file, 12

orC, 35

orExps, 166

out, 100

out’, 101

outdeg, 101

outdeg’, 102

page, 115

pageCSS, 114

pageEnc, 114

PageParam, 113

par, 10, 115

parens, 78

parseHtmlString, 122

Parser, 71

ParserRep, 71

parseXmlString, 133

partition, 35, 67

password, 118

patArgs, 169

patCons, 169

patExpr, 169

Path, 98

path, 6, 9

pathSeparatorChar, 37

patLiteral, 169

Pattern, 156

pattern

functional, 14

permute, 34

persistentSQLite, 64

plainCode, 150

plusFM, 95

plusFM C, 95

popup message, 51

pow, 53

prdfs, 9

pre, 100, 116

pre’, 101

precs, 173

preludePrecs, 172

pretty, 80

prettyCOps, 173

prettyCProg, 172

prettyCTypeExpr, 172

prettyCTypes, 172

printCProg, 173

190

printMemInfo, 81

printUCProg, 173

ProcessInfo, 80

profileSpace, 82

profileSpaceNF, 82

profileTime, 82

profileTimeNF, 82

Prog, 151

progFuncs, 158

progImports, 158

progName, 158

progOps, 158

program

documentation, 19

testing, 24

progTypes, 158

ProtocolMsg, 32

punctuate, 76

pureio, 10

QName, 140, 150

Query, 62

Queue, 92

quickSort, 106

radio main, 118

radio main off, 119

radio other, 119

range, 161

rangle, 79

rbrace, 79

rbracket, 79

readAbstractCurryFile, 145

readCompleteFile, 58

readCSV, 36

readCSVFile, 36

readCSVFileWithDelims, 36

readCSVWithDelims, 36

readCurry, 30, 145

readCurryWithParseOptions, 145

readFileWithXmlDocs, 132

readFlatCurry, 30, 157

readFlatCurryFile, 157

readFlatCurryInt, 157

readFlatCurryIntWithImports, 170

readFlatCurryIntWithImportsInPath, 170

readFlatCurryWithImports, 170

readFlatCurryWithImportsInPath, 170

readFlatCurryWithParseOptions, 157

readGlobal, 40

readHex, 83

readHtmlFile, 122

readInt, 82, 83

readIORef, 58

readNat, 82, 83

readOct, 83

readPropertyFile, 82

readQTerm, 85

readQTermFile, 85

readQTermListFile, 85

readScan, 150

readsQTerm, 84

readsTerm, 84

readsUnqualifiedTerm, 84

readTerm, 84

readUnqualifiedTerm, 84

readUnsafeXmlFile, 132

readUntypedCurry, 145

readUntypedCurryWithParseOptions, 145

readXmlFile, 132

ReconfigureItem, 44

RedBlackTree, 104

redirect, 114

removeDirectory, 37

removeEscapes, 124

removeFile, 37

removeRegionStyle, 51

renameDirectory, 37

renameFile, 37

Rendering, 125

renderList, 130

renderTaggedTuple, 130

renderTuple, 129

rep, 135

replace, 68

replaceChildren, 108

replaceChildrenIO, 109

repSeq1, 136

191

repSeq2, 137

repSeq3, 137

repSeq4, 138

repSeq5, 138

repSeq6, 139

RequiredSpec, 147

requires, 148

resetbutton, 118

resultType, 162

returnT, 63

rnmAllVars, 168

rnmAllVarsInFunc, 164

rnmAllVarsInProg, 159

rnmAllVarsInRule, 165

rnmAllVarsInTypeExpr, 162

rnmProg, 159

rotate, 93

round, 39

row, 49

rparen, 79

rts, 11

Rule, 153

ruleArgs, 164

ruleBody, 165

ruleExtDecl, 165

runConfigControlledGUI, 49

runControlledGUI, 49

runFormServerWithKey, 120

runFormServerWithKeyAndFormParams, 120

runGUI, 49

runGUIwithParams, 49

runHandlesControlledGUI, 50

runInitControlledGUI, 50

runInitGUI, 49

runInitGUIwithParams, 49

runInitHandlesControlledGUI, 50

runJustT, 63

runPassiveGUI, 49

runQ, 63

runT, 63

satisfy, 71

scan, 150

sClose, 70, 87

SearchTree, 85

searchTreeSize, 86

SeekMode, 55

seeText, 51

selection, 119

selectionInitial, 119

semi, 79

semiBraces, 78

sendMail, 122

sendMailWithOptions, 122

sep, 75

separatorChar, 37

seq1, 136

seq2, 137

seq3, 137

seq4, 138

seq5, 138

seq6, 139

seqStrActions, 33

sequenceMaybe, 69

sequenceT, 64

sequenceT , 64

setAssoc, 58

setConfig, 50

setCurrentDirectory, 37

setEnviron, 88

setInsertEquivalence, 104

SetRBT, 105

setRBT2list, 105

setValue, 50

showCProg, 173

showCSV, 36

showCurryExpr, 171

showCurryId, 171

showCurryType, 171

showCurryVar, 171

showExpr, 146

showFlatFunc, 171

showFlatProg, 170

showFlatType, 170

showFuncDecl, 146

showGraph, 102

showHtmlExp, 120

showHtmlExps, 119

192

showHtmlPage, 120

showJSExp, 61

showJSFDecl, 61

showJSStat, 61

showLatexDoc, 121

showLatexDocs, 121

showLatexDocsWithPackages, 121

showLatexDocWithPackages, 121

showLatexExp, 121

showLatexExps, 121

showMemInfo, 81

showPattern, 146

showProg, 146

showQNameInModule, 157

showQTerm, 84

showSearchTree, 86

showTerm, 84

showTError, 66

showTestCase, 33

showTestCompileError, 33

showTestEnd, 33

showTestMod, 33

showTypeDecl, 146

showTypeDecls, 146

showTypeExpr, 146

showXmlDoc, 132

showXmlDocWithParams, 132

sin, 39

singleton variables, 5

sizedSubset, 35

sizeFM, 95

sleep, 88

snoc, 93

Socket, 70, 86

socketAccept, 70, 87

socketName, 70

softbreak, 73

softline, 72

some, 71

someDBInfos, 65

someDBKeyInfos, 65

someDBKeyProjections, 65

someDBKeys, 65

someSearchTree, 85

sort, 104

sortBy, 68

sortRBT, 105

source-file option, 12

space, 80

splitBaseName, 38

splitDirectoryBaseName, 38

splitFM, 95

splitPath, 38

splitSet, 35

sqrt, 39

squote, 79

squotes, 78

standardForm, 114

standardPage, 115

star, 71

stderr, 55

stdin, 55

stdout, 55

string, 78, 134

string2urlencoded, 120

stringList2ItemList, 109

stripSuffix, 38

Style, 47

style, 117

styleSheet, 117

subset, 34

suc, 100

suc’, 101

suffixSeparatorChar, 37

supply, 10

system, 88

table, 117

TableRBT, 107

tableRBT2list, 107

tabulator stops, 5

tagOf, 132

tails, 68

tan, 39

tConsArgs, 161

tConsName, 161

teletype, 116

terminal, 71

193

TError, 62

TErrorKind, 62

testing programs, 24

testScan, 150

text, 72

textarea, 118

TextEditScroll, 52

textfield, 118

textOf, 132

textOfXml, 132

textstyle, 117

time, 11

toCalendarTime, 90

toClockTime, 90

toDayString, 90

Token, 149

Tokens, 149

toLower, 34

toTimeString, 90

toUpper, 34

toUTCTime, 90

trace, 91

Transaction, 62

transformQ, 63

transformWSpec, 126

transpose, 67

Traversable, 107

trBranch, 168

trCombType, 165

trCons, 160

tree2list, 104

trExpr, 167

trFunc, 163

trOp, 162

trPattern, 169

trProg, 158

trRule, 164

trType, 159

trTypeExpr, 161

truncate, 39

tupled, 77

TVarIndex, 150

tVarIndex, 161

typeConsDecls, 159

TypeDecl, 151

TypeExpr, 152

typeName, 159

typeParams, 159

typeSyn, 160

typeVisibility, 159

UContext, 98

UDecomp, 98

UEdge, 97

ufold, 102

UGr, 98

ulist, 116

union, 67

unionRBT, 105

unitFM, 94

UNode, 97

unsafePerformIO, 91

unscan, 150

unsetEnviron, 88

untypedAbstractCurryFileName, 145

UPath, 98

Update, 158

update, 92, 104

updateDBEntry, 66

updateFile, 58

updatePropertyFile, 82

updateRBT, 107

updateValue, 50

updateXmlFile, 133

updBranch, 169

updBranches, 168

updBranchExpr, 169

updBranchPattern, 169

updCases, 168

updCombs, 167

updCons, 161

updConsArgs, 161

updConsArity, 161

updConsName, 161

updConsVisibility, 161

updFM, 95

updFrees, 168

updFunc, 163

194

updFuncArgs, 164

updFuncArity, 163

updFuncBody, 164

updFuncName, 163

updFuncRule, 164

updFuncType, 164

updFuncTypes, 162

updFuncVisibility, 164

updLets, 168

updLiterals, 167

updOp, 163

updOpFixity, 163

updOpName, 163

updOpPrecedence, 163

updOrs, 168

updPatArgs, 169

updPatCons, 169

updPatLiteral, 169

updPattern, 169

updProg, 158

updProgExps, 159

updProgFuncs, 159

updProgImports, 159

updProgName, 158

updProgOps, 159

updProgTypes, 159

updQNames, 168

updQNamesInConsDecl, 161

updQNamesInFunc, 164

updQNamesInProg, 159

updQNamesInRule, 165

updQNamesInType, 160

updQNamesInTypeExpr, 162

updRule, 165

updRuleArgs, 165

updRuleBody, 165

updRuleExtDecl, 165

updTCons, 162

updTVars, 162

updType, 160

updTypeConsDecls, 160

updTypeName, 160

updTypeParams, 160

updTypeSynonym, 160

updTypeVisibility, 160

updVars, 167

urlencoded2string, 120

v, 10

validDate, 91

variables

singleton, 5

VarIndex, 150

varNr, 166

vcat, 76

verbatim, 116

verbosity, 10

Visibility, 151

vsep, 75

w10Tuple, 128

w11Tuple, 128

w12Tuple, 128

w4Tuple, 128

w5Tuple, 128

w6Tuple, 128

w7Tuple, 128

w8Tuple, 128

w9Tuple, 128

waitForSocketAccept, 70, 87

wCheckBool, 127

wCheckMaybe, 129

wConstant, 126

wEither, 129

where, 14

wHidden, 126

wHList, 129

Widget, 41

WidgetRef, 47

wInt, 126

withCondition, 126

withError, 126

withRendering, 126

wJoinTuple, 129

wList, 129

wListWithHeadings, 129

wMatrix, 129

wMaybe, 129

195

wMultiCheckSelect, 127

wPair, 127

wRadioBool, 127

wRadioMaybe, 129

wRadioSelect, 127

wRequiredString, 126

wRequiredStringSize, 127

writeAbstractCurryFile, 145

writeAssertResult, 33

writeCSVFile, 36

writeFCY, 157

writeGlobal, 40

writeIORef, 58

writeQTermFile, 85

writeQTermListFile, 85

writeXmlFile, 132

writeXmlFileWithParams, 132

wSelect, 127

wSelectBool, 127

wSelectInt, 127

wString, 126

wStringSize, 126

wTextArea, 127

WTree, 126

wTree, 129

wTriple, 128

wui2html, 130

WuiHandler, 125

wuiHandler2button, 126

wuiInForm, 130

WuiSpec, 125

wuiWithErrorForm, 130

XAttrConv, 133

XElemConv, 133

xml, 132

xml2FlatCurry, 171

XmlDocParams, 131

XmlExp, 131

xmlFile2FlatCurry, 171

xmlRead, 134

XmlReads, 133

xmlReads, 134

xmlShow, 134

XmlShows, 133

xmlShows, 134

XOptConv, 133

XPrimConv, 133

XRepConv, 133

xtxt, 132

196

	Title
	Contents
	Preface
	Overview of KiCS2
	General Use
	Restrictions
	Modules in KiCS2

	Using the Interactive Environment of KiCS2
	Invoking KiCS2
	Command of KiCS2
	Option of KiCS2
	Source-File Options
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Records
	Record Type Declaration
	Record Construction
	Field Selection
	Field Update
	Records in Pattern Matching
	Export of Records
	Restrictions in the Usage of Records

	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryTest: A Tool for Testing Curry Programs
	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Technical Problems
	Bibliography
	Libraries of the KiCS2 Distribution
	AbstractCurry and FlatCurry: Meta-Programming in Curry
	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library Combinatorial
	Library Constraint
	Library CSV
	Library Directory
	Library FileGoodies
	Library Float
	Library Global
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library KeyDatabaseSQLite
	Library List
	Library Maybe
	Library NamedSocket
	Library Parser
	Library Pretty
	Library Profile
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SearchTree
	Library Socket
	Library System
	Library Time
	Library Unsafe

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal

	Libraries for Web Applications
	Library CategorizedHtmlList
	Library HTML
	Library HtmlParser
	Library Mail
	Library Markdown
	Library WUI
	Library URL
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry
	Library AbstractCurryPrinter
	Library CompactFlatCurry
	Library CurryStringClassifier
	Library FlatCurry
	Library FlatCurryGoodies
	Library FlatCurryRead
	Library FlatCurryShow
	Library FlatCurryXML
	Library FlexRigid
	Library PrettyAbstract

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	Auxiliary Files
	External Operations
	Index

