Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving

Marcus Ermler

University of Bremen, Department for Mathematics and Computer Science

WFLP 2013, September 11, 2013
Motivation

Aim: Application of graph transformation for the verification of Haskell programs via structural induction.

Questions:

1. Is graph transformation a useful approach in this context?
2. How to tackle the nondeterminism of function equation application in automatic verification?

Answers:

1. **graph transformation** has been successfully applied to term rewriting (term graph rewriting/CLEAN/SPARKLE)
2. heuristics, exhaustive search, parallelization, SAT solving

⇒ We use graph transformation units and SAT solving to verify Haskell programs.
Considered a small subset of Haskell

- predefined data types like Int, Char, String, Lists

- functions defined by functions equations without guards or local definitions

- higher order functions

- in preparation: lambda abstractions, control structures, self-defined data types
Translating Haskell programs into Trees

- edge labeled directed graphs without multiple edges and with a finite set of typed node. For a finite set Σ of labels and a set \mathcal{T} of types: $G = (V, E, t)$ where $V = \{1, \ldots, n\} = [n]$, $E \subseteq V \times \Sigma \times V$, and $t : V \rightarrow \mathcal{T}$.

- rectangles for function names; outermost function name is the root; circles for constants and variables (leafs)

- outgoing edges are labeled with argument positions

Example: $\text{length} \ (\ [\] \ ++ \ ys)$ is expressed via

![Diagram](attachment:image.png)
Graph transformational rules

- rule $r = (L \rightarrow R)$: left-hand side L and right-hand side R
- translation of Haskell function equations $l = r$ into rules: $\text{tree}(l) \rightarrow \text{tree}(r)$
- for technical reasons: only edge addition and deletion, node addition and deletion is realized via a simple trick
 \Rightarrow in drawings: node labels instead of labeled loops

Example: The function equation $[] +\ ys = ys$ (denoted by $(++)_1$) is translated into

\[
\begin{align*}
\text{[]} & \quad \text{++} \quad \text{ys} \\
\text{ys} & \quad \rightarrow \\
\text{del} & \quad \text{ys} \quad \rightarrow \\
\text{[}\text{]} & \quad \rightarrow \\
\end{align*}
\]
Rule application and derivations

- injective graph morphisms for matching of subgraphs (structure-, label-, and type-preserving morphisms)
- application of a rule: find a match of $g(L)$ in a graph G, delete the edges of $g(L)$, and add the edges of $g(R)$

Example: mapping $g = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4\}$ for $(++)_1$
Graph transformation units

- **graph transformation units**: \(gtu = (I, P, C, T) \) where \(I \) and \(T \) are graph class expressions, \(R \) is a set of rules, and \(C \) is a control condition.

- **graph class expressions**: for example, the class of all undirected graphs, also single graphs allowed.

- **control conditions**: guide the rule application, restrict the nondeterminism of units; we use regular expressions.

- **Semantics of** \(gtu = (I, P, C, T) \): all derivations from initial to terminal graphs that are allowed by the control condition \(\Rightarrow \) such derivations are called *successful*.
From graphs to SAT

- graphs in derivation steps are represented via variables for their edges:
 \[E(n, m) = \{ \text{edge}(v, a, v', k) \mid (v, a, v') \in [n] \times \Sigma \times [n], k \in [m] \} \]
 where \(n \) is the graph size and \(m \) the maximum derivation step.

- single graph in the \(k \)th derivation step expressed via edges that are in the graph and edges that are not in the graph:

\[
\text{graph}(G, k) = \bigwedge_{(v, a, v') \in E_G} \text{edge}(v, a, v', k) \quad \land \quad \bigwedge_{(v, a, v') \in ([n] \times \Sigma \times [n]) \setminus E_G} \neg \text{edge}(v, a, v', k).
\]
rule application is expressed via five formulas: morph, rem, add, keep, and apply

The matching of a rule r in a graph G_{k-1} with respect to a mapping g is expressed via:

$$\text{morph}(r, g, k) = \text{morph}(r, g, k) \iff \bigwedge_{(v, a, v') \in E_L} \text{edge}(g(v), a, g(v'), k - 1),$$

further formulas for derivation steps, single derivations, and all derivations up to a certain bound

morph, rem, add, keep, and apply can be converted in at most quadratic time to CNF, all other formulas are already in CNF
Hypothesis is given as list property: \(p(xs) = (l(xs) = r(xs)) \)

Definition

Let \(p(xs) = (l(xs) = r(xs)) \) be a list property with induction variable \(xs \) and let \(P \) be a set of graph transformational rules representing Haskell function equations. Then the base case unit and the inductive step unit are defined as follows.

- **Base**
 \[
 \text{base}(p([])) = (\text{tree}(l([])), P, P^*, \text{tree}(r([])))
 \]

- **Step**
 \[
 \text{step}(p(x:xs)) = (\text{tree}(l(x:xs)), P_{\text{step}}, C_{\text{step}}, \text{tree}(r(x:xs)))
 \]

where

- \(\text{hyp}_1 = (\text{tree}(l(xs)) \rightarrow \text{tree}(r(xs))) \),
- \(\text{hyp}_2 = (\text{tree}(r(xs)) \rightarrow \text{tree}(l(xs))) \),
- \(P_{\text{step}} = P \cup \{ \text{hyp}_1, \text{hyp}_2 \} \), and
- \(C_{\text{step}} = P^* ; (\text{hyp}_1 | \text{hyp}_2) ; P^*. \)
Theorem

Let $p(xs)$ be a property, $\text{base}(p([]))$ be a base case unit, and $\text{step}(p(x:xs))$ be an inductive step unit. If there is a successful derivation in $\text{base}(p([]))$ as well as in $\text{step}(p(x:xs))$, then the property holds.
Example: a length property

Hypothesis: \(\text{length} (xs ++ ys) = \text{length} xs + \text{length} ys \)
for all lists \(xs \) and \(ys \).
Base case: length ([] ++ ys) = length [] + length ys

base

initial: \(tree(\text{length} ([] ++ ys)) \)

rules:

\(\text{tree}([] ++ xs) \rightarrow \text{tree}(xs) \) \[(++)_1 \]
\(\text{tree}(0) \rightarrow \text{tree}(\text{length} []) \) \[\text{length}_1' \]
\(\text{tree}(x) \rightarrow \text{tree}(0 + x) \) \[\text{identity}_{\text{add}} \]

cond.:

\(((++)_1 \mid \text{length}_1' \mid \text{identity}_{\text{add}})^* \)

terminal: \(\text{tree}(\text{length} [] + \text{length} ys) \)
A sample derivation for proving the base case

\[l_{base} = tree(length ([] ++ ys)) \]

\[\overset{\text{length}}{\begin{array}{ccc}
1 & 1 & 2 \\
[] & +++ & ys \\
\end{array}} = \overset{\text{length}}{\begin{array}{ccc}
1 & 1 & \overset{\text{identity}_{add}}{ys} \\
\end{array}} \]

\[\overset{\text{length}}{\begin{array}{ccc}
1 & + & 2 \\
\overset{\text{length}}{1} & 1 & \overset{\text{length}}{ys} \\
\end{array}} = \overset{\text{length}}{\begin{array}{ccc}
1 & 1 \\
\overset{\text{length}}{[]} & ++ & \overset{\text{length}}{ys} \\
\end{array}} \overset{\text{tree}(length \ [] + length \ ys)}{= T_{base}} \]
Inductive step: length (x:xs ++ ys) = length (x:xs) + length ys, x::a

initial: \(tree(length (x:xs ++ ys)) \)

rules:
- \(tree(x:xs ++ ys) \rightarrow tree(x:(xs++ys)) \) \[\text{[++2]}\]
- \(tree(length (x:xs)) \rightarrow tree(1 + length xs) \) \[\text{[length2]}\]
- \(tree(x + (y + z)) \rightarrow tree((x + y) + z) \) \[\text{[assoc_add]}\]

hypothesis

cond.: \(((++)_2 | length_2 | length'_2 | assoc_{add})^* ; hypothesis \)

\[((++)_2 | length_2 | length'_2 | assoc_{add})^* \]

terminal: \(tree(length x:xs + length ys) \)
Hypothesis: \(\text{length} (xs ++ ys) = \text{length} xs + \text{length} ys \)
for all lists \(xs \) and \(ys \).

⇒ the \textit{hypothesis}-rule:
A sample derivation for the inductive step

\[I_{step} = \]

Towards a Verification Framework for Haskell by Combining Graph Transformation Units and SAT Solving
Lemmata1:

1. $\text{length } (xs ++ ys) = \text{length } xs + \text{length } ys$
2. $xs ++ (ys ++ zs) = (xs ++ ys) ++ zs$
3. $xs ++ [] = xs$
4. $[] ++ (xs ++ []) = xs$

<table>
<thead>
<tr>
<th>Lemma</th>
<th>Strategy</th>
<th>Base case</th>
<th>Inductive step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>induction</td>
<td>8 sec</td>
<td>90 sec</td>
</tr>
<tr>
<td>2.</td>
<td>induction</td>
<td>0.3 sec</td>
<td>17 sec</td>
</tr>
<tr>
<td>3.</td>
<td>induction</td>
<td>1 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>4.</td>
<td>direct proof</td>
<td>0 sec</td>
<td></td>
</tr>
</tbody>
</table>

1tested under Ubuntu 10.04 LTS on an AMD 2.0 GHz with 4GB RAM where lemma 4 is proven by a direct proof via lemma 3.
Summary

- graph transformational approach for structural induction proofs
- experiments nurture the hope that our approach can be employed for verification proofs

Outlook:

- more Haskell features step-by-step or via preprocessing described in Giesl et al., Automated termination proofs for Haskell by term rewriting, 2011
- automatic translation of functional programs into rules and units (in preparation)
Questions?
Previous work

- translation of graph transformational derivation process into propositional formulas (presented on ICGT 2010)

- introducing SATaGraT (SAT solver assists Graph Transformation Engine) on AGTIVE 2011

- using SAT solving to find a successful derivation

- applied on NP-complete graph problems

- bottleneck: conversion into conjunctive normal form
Very simple example:

\[I = \text{tree}(\text{length } ([] \:++ \:x:xs)) \]

\[P = \{(++)_1\} \]

\[C = (++)_1 \]

\[T = \text{tree}(\text{length } (x:xs)) \]
The application of a rule r to a graph G_{k-1} with respect to a mapping g is expressed via

- **matching:**
 \[
 \text{morph}(r, g, k) = \text{morph}(r, g, k) \iff \bigwedge_{(v, a, v') \in E_L} \text{edge}(g(v), a, g(v'), k - 1),
 \]

- **edge deletion:**
 \[
 \text{rem}(r, g, k) = \text{rem}(r, g, k) \iff \bigwedge_{(v, a, v') \in E_L - E_R} \neg \text{edge}(g(v), a, g(v'), k),
 \]

- **edge addition:**
 \[
 \text{add}(r, g, k) = \text{add}(r, g, k) \iff \bigwedge_{(v, a, v') \in E_R} \text{edge}(g(v), a, g(v'), k),
 \]

- **kept edges:**
 \[
 \text{keep}(r, g, k) = \text{keep}(r, g, k) \iff \left(\bigwedge_{(v, a, v') \notin g(E_L \cup E_R)} \left(\text{edge}(v, a, v', k - 1) \iff \text{edge}(v, a, v', k) \right) \right)
 \]
 where $g(E_L \cup E_R) = \{(g(v), a, g(v')) | (v, a, v') \in E_L \cup E_R\}$.
whole application of a rule r to G_{k-1} with respect to graph morphism g is described by

$$\text{apply}(r, g, k) = \text{apply}(r, g, k) \iff (\text{morph}(r, g, k) \land \text{rem}(r, g, k) \land \text{add}(r, g, k) \land \text{keep}(r, g, k))$$

Theorem

$G_{k-1} \underset{r, g}{\longrightarrow} G_k$ if and only if it there is a satisfying assignment to

$$\text{graph}(G_{k-1}, k-1) \land \text{apply}(r, g, k) \land \text{graph}(G_k, k).$$

- further formulas for derivation steps, single derivations, and all derivations up to a certain bound
- morph, rem, add, keep, and apply can be converted in at most quadratic time to CNF, all other formulas are already in CNF