
Estimating Resource Bounds for
Nested Transactions with Join Synchronization

Thi Mai Thuong Tran1, Martin Steffen1, and Hoang Truong2

1 Department of Informatics, University of Oslo, Norway
2 University of Engineering and Technology, VNU Hanoi

Software Transactional Memory (STM) has recently been introduced to concurrent
programming languages as an alternative for lock-based synchronization, enabling an
optimistic form of synchronization for shared memory. Supporting nested and multi-
threaded transactions is an advanced feature of recent transactional models. Multi-
threaded transactions mean that inside one transaction there can be more than one thread
running in parallel. Nesting of transactions means that a parent transaction may contain
one or more child transactions which must commit before their parent. Additionally, if a
transaction commits, all threads spawned inside must join via a commit. To achieve iso-
lation, each transaction operates via reads and writes on its own local copy of the mem-
ory, e.g., a local log is used to record these operations to allow validation or potentially
rollbacks at commit time. The logs are a critical factor of memory resource consump-
tion of STM. As each transaction operates on its own log of the variables it accesses,
a crucial factor in the memory consumption is the number of thread-local transactional
memories (i.e., logs) that may co-exist at the same time in parallel threads. Note that the
number of logs neither corresponds to the number of transactions running in parallel (as
transactions can contain more than one thread) nor to the number of parallel threads,
because of the nesting of transactions. A main complication is that parallel threads do
not run independently; instead, executing a commit in a transaction may lead to a form
of implicit join synchronization with other threads inside the same transaction.

In this paper, we develop a type and effect system for statically approximating the
resource consumption in terms of the maximum number of logs of a program. In the
analysis, we use a variant of Featherweight Java extended with transactional constructs
known as Transactional Featherweight Java (TFJ) The language features non-lexical
starting and ending a transaction, concurrency, choice and sequencing. The analysis
is compositional, i.e., syntax-directed. The analysis is multi-threaded in that, due to
synchronization, it does not analyze each thread in isolation, but needs to take their in-
teraction into account. This complicates the effect system considerably, as the synchro-
nization is implicit in the use of commit-statements and connected to the nestedness of
the transactions.

http://www.ifi.uio.no
http://www.uio.no
http://uet.vnu.edu.vn

	Estimating Resource Bounds for Nested Transactions with Join Synchronization

