
Specialising Functional Patterns

Björn Peemöller
Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany

bjp@informatik.uni-kiel.de

Functional patterns [2] are an extension to the pattern matching in func-
tional logic programming that allows the patterns in function definitions to
also include already defined symbols. They allow more declarative represen-
tations of specifications and support the high-level programming of queries
and transformations of complex data structures. In contrast to standard
pattern matching like in Haskell, functional patterns inherently introduce
non-determinism when used in conjunction with variables in the patterns.
Although this approach fits very well in the setting of functional logic lan-
guages, the non-determinism can cause a notably overhead when defining
deterministic functions using functional patterns. We therefore investigate a
new approach to partially evaluate [1] functional patterns at compile time to
specialise the function definitions to more efficient, or ideally, deterministic
ones.

References

[1] E. Albert, M. Hanus, and G. Vidal, A practical partial evaluation scheme for multi-
paradigm declarative languages, vol. 2002, EAPLS, 2002.

[2] S. Antoy and M. Hanus, Declarative programming with function patterns, Proceedings
of the International Symposium on Logic-based Program Synthesis and Transforma-
tion (LOPSTR’05), Springer LNCS 3901, 2005, pp. 6–22.


