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Functional patterns [2] are an extension to the pattern matching in func-
tional logic programming that allows the patterns in function definitions to
also include already defined symbols. They allow more declarative represen-
tations of specifications and support the high-level programming of queries
and transformations of complex data structures. In contrast to standard
pattern matching like in Haskell, functional patterns inherently introduce
non-determinism when used in conjunction with variables in the patterns.
Although this approach fits very well in the setting of functional logic lan-
guages, the non-determinism can cause a notably overhead when defining
deterministic functions using functional patterns. We therefore investigate a
new approach to partially evaluate [1] functional patterns at compile time to
specialise the function definitions to more efficient, or ideally, deterministic
ones.
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