
A Type and Effect System for Parallelization

Manuel Geffken

April 19, 2012

As general purpose multicore processors are be-
coming ubiquitous programmers want to make use
of this latent processing power to meet the require-
ments of today’s applications. This gives rise to a
strong demand for parallel programming to exploit
the application’s inherent potential for task paral-
lelism.

In parallel programming one typically tries to
achieve determinism by avoiding data races. How-
ever, in the presence of shared mutable state and
aliasing avoiding data races is difficult to achieve
because the programmer is often unaware of the
exact nature of the side effects caused by a func-
tion. Thus, inherent task parallelism is both hard
to spot and utilize in practice.

A typical approach to avoiding race conditions is
a type system statically enforcing the uniqueness
of distinct memory regions1 by prohibiting cross-
region aliasing.

We define a type and effect system in the con-
text of JVM-based languages that allows to reason
about a method’s effects on its reachable heap in
the presence of subtyping, method overriding and
virtual method calls without requiring a whole pro-
gram analysis. We do not impose additional restric-
tions on the programmer beyond the definition of
effect annotations. In particular, we require no ex-
plicit definition of statically checked unique mem-
ory regions.

In short, our system allows method effect anno-
tations expressing the following properties in terms
of its reachable heap:

1Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig,
Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Jef-
frey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen
Vakilian. A type and effect system for deterministic parallel
Java. In ACM SIGPLAN Conf. on Object-Oriented Prog.,
Systs., Langs., and Apps. (OOPSLA), pages 97-116, New
York, NY, USA, 2009. ACM Press.

• Access permission contracts (APCs) describe
read and write access to fields of objects.

• Abstract heap effects specify how the method
changes heap aliasing.

• Abstract return effects approximate the
method’s return value regarding the method’s
reachable heap.

These effect annotions use sets of access paths to
identify objects on the method’s reachable heap.
All access paths refer to the heap at method in-
vokation time. They start with a method’s formal
parameter followed by a sequence of field names.
We use type-based abstraction for newly heap-
allocated storage. The effect annotations are de-
signed to be composable accross method calls. If
the object trees refered to in the APCs are guar-
anteed to be alias-free, we can statically determine
tasks with race-free data access.

However, even incomplete information from a
may-alias analysis might turn out to be sufficient
to guarantee data race freedom in many cases as
only certain classes of aliasing regarding the access
paths need to be excluded. Furthermore, the alias-
analysis-friendly nature of Java-like languages and
the additional information from the effect annota-
tions can be exploited to maximize the preciseness
we get out of such an analysis. Where it seems
promising, gaps in the analysis result can be filled
with selected runtime alias tests.

We hope that we can exploit a reasonable amount
of the application’s inherent potential for task par-
allelism by providing the type system with ex-
haustive information about a method’s effects only,
rather than also limiting the allowed aliasing be-
tween data structures, which imposes limitations
on all parts of the program refering to these data
structures.

1


