
INSTITUT FÜR INFORMATIK

Programmiersprachen und
Rechenkonzepte

25. Workshop der GI-Fachgruppe

”Programmiersprachen und Rechenkonzepte“
Bad Honnef, 5.-7. Mai 2008

Michael Hanus, Sebastian Fischer (Hrsg.)

Bericht Nr. 0811
Oktober 2008

CHRISTIAN-ALBRECHTS-UNIVERSITÄT
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Vorwort

Seit 1984 veranstaltet die GI–Fachgruppe ”Programmiersprachen und Rechenkonzepte“, die aus
den ehemaligen Fachgruppen 2.1.3 ”Implementierung von Programmiersprachen“ und 2.1.4

”Alternative Konzepte für Sprachen und Rechner“ hervorgegangen ist, regelmäßig im Frühjahr
einen Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegensei-
tigen Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseiti-
ger Kontakte.
In diesem Forum werden Vorträge und Demonstrationen sowohl bereits abgeschlossener als
auch noch laufender Arbeiten vorgestellt, unter anderem (aber nicht ausschließlich) zu Themen
wie

• Sprachen, Sprachparadigmen

• Korrektheit von Entwurf und Implementierung

• Werkzeuge

• Software-/Hardware-Architekturen

• Spezifikation, Entwurf

• Validierung, Verifikation

• Implementierung, Integration

• Sicherheit (Safety und Security)

• eingebettete Systeme

• hardware-nahe Programmierung

In diesem Technischen Bericht sind die präsentierten Arbeiten des diesjährigen Workshops zu-
sammen gestellt. Allen Teilnehmern des Workshops möchten wir danken, dass sie durch ihre
Vorträge, Papiere und Diskusion den jährlichen Workshop zu einem interessanten Ereignis ma-
chen. Abschließend danken wir auch den Mitarbeitern des Physikzentrums Bad Honnef, die
durch ihre umfassende Betreuung für eine angenehme und anregende Atmosphäre gesorgt ha-
ben.

Kiel, im Oktober 2008 Michael Hanus, Sebastian Fischer
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Task Parallel Skeletons for Divide and Conquer

Michael Poldner and Herbert Kuchen

Department of Information Systems, University of Münster
Leonardo Campus 3, D-48149 Münster
{poldner,kuchen}@uni-muenster.de

Abstract. Algorithmic skeletons intend to simplify parallel program-
ming by providing recurring forms of program structure as predefined
components. We present a fully distributed task parallel skeleton for a
very general class of divide and conquer algorithms for MIMD machines
with distributed memory. This approach is compared to a simple master-
worker design. Based on experimental results for different example appli-
cations such as Mergesort, the Karatsuba multiplication algorithm and
Strassen’s algorithm for matrix multiplication, we show that the distrib-
uted workpool enables good runtimes and in particular scalability. More-
over, we discuss some implementation aspects for the distributed skele-
ton, such as the underlying data structures and load balancing strategy,
in detail. In addition, we present another distributed skeleton which ben-
efits from combining skeletal internal parallelism and stream parallelism.
Based on experimental results for matrix chain multiplication problems,
we show that this approach enables a better processor load and memory
utilization for the engaged solvers, and reduces communication costs.

Key words: Algorithmic Skeletons, parallelism, divide and conquer,
stream processing

1 Introduction

Parallel programming of MIMD machines with distributed memory is typically
based on standard message passing libraries such as MPI [24], which leads to
platform independent and efficient software. However, the programming level is
still rather low and thus error-prone and time consuming. Programmers have to
fight against low-level communication problems such as deadlocks, starvation,
and termination detection. Moreover, the program is split into a set of processes
which are assigned to the different processors, whereas each process only has
a local view of the overall activity. A global view of the overall computation
only exists in the programmer’s mind, and there is no way to express it more di-
rectly on this level. For this reason many approaches have been suggested, which
provide a higher level of abstraction and an easier program development. The
skeletal approach to parallel programming proposes that typical communication
and computation patterns for parallel programming should be offered to the user
as predefined and application independent components, which can be combined
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and nested by the user. These components are referred to as algorithmic skele-
tons [1, 7, 10, 18, 21, 23, 26]. Typically, algorithmic skeletons are offered to the
user as higher-order functions, which get the details of the specific application
problem as argument functions. In this way the user can adapt the skeletons
to the considered parallel application without bothering about low-level imple-
mentation details such as synchronization, interprocessor communication, load
balancing, and data distribution. Efficient implementations of many skeletons
exist, such that the resulting parallel application can be almost as efficient as
one based on low-level message passing.

Depending on the kind of parallelism used, algorithmic skeletons can roughly
be classified into data parallel and task parallel ones. Data parallel skeletons
[5, 21, 22] process a distributed data structure such as a distributed array or
matrix as a whole, e.g. by applying a function to every element or by rotating
or permuting its elements. Task-parallel skeletons [3, 9, 18, 21, 27–30] construct a
system of processes communicating via streams of data. Such a system is mostly
generated by nesting typical building blocks such as farms and pipelines. In the
present paper, we will consider task-parallel skeletons for divide and conquer
problems.

Divide and conquer is a common computation paradigm, in which the so-
lution to a problem is obtained by dividing the original problem into smaller
subproblems and solving the subproblems recursively. Then, solutions for the
subproblems must be combined to form the final solution of the entire prob-
lem. A simple problem is solved directly without dividing it further. Examples
of divide and conquer computations include various sorting methods such as
mergesort and quicksort, computational geometry algorithms such as the con-
struction of the convex hull, combinatorial search such as constraint satisfaction
techniques, graph algorithmic problems such as graph coloring, numerical meth-
ods such as the Karatsuba multiplication algorithm, and linear algebra such as
Strassen’s algorithm for matrix multiplication.

In the present paper we will consider different design, implementation, and
optimization issues of task parallel divide and conquer skeletons in the context of
the skeleton library Muesli [21, 27–30]. Muesli is build on top of MPI [24] in order
to inherit its platform independence. We will show that a master-worker design
is less suited to handle divide and conquer problems on distributed memory ma-
chines. We have implemented a distributed scheme and present its functionality
in detail. We will show that we can achieve a good load balance while minimizing
communication costs. This is supported by several test results of three example
applications. Moreover, we discuss how to optimize the skeleton for processing
streams of divide and conquer problems.

The rest of this paper is structured as follows. In Section 2, we introduce dif-
ferent designs of divide and conquer skeletons in the framework of the skeleton
library Muesli. Initially, we briefly describe a simple centralized design. After-
wards we will focus on a new fully distributed D&C-Skeleton. Moreover, we dis-
cuss how the distributed D&C-Skeleton can be optimized for processing streams
of divide and conquer problems. Section 3 contains experimental results demon-
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Fig. 1. A divide and conquer tree

strating the strength of the distributed design. In addition, selected experimental
results for the stream optimized skeleton are presented. In Section 4 we compare
our approach to related work. In Section 5, we conclude and point out future
work.

2 Divide and Conquer Skeletons

A divide and conquer skeleton is based on an implementation scheme for divide
and conquer and offers it to the user as predefined parallel component. Typically,
the user has to provide the skeleton with four basic operators: divide, combine,
isSimple, and solve. If isSimple indicates that a problem is simple enough,
it can be solved directly by applying solve. Otherwise, the problem is divided
into subproblems by calling divide. Solutions of subproblems can be combined
to the solution of the corresponding parent problem by applying combine.

The computation can be viewed as a process of expanding and shrinking
a tree, in which the nodes represent problem instances and partial solutions,
respectively (Fig.1). Unprocessed subproblems are stored in a work pool and
partial solutions are maintained in a solution pool. In the beginning the work
pool only contains the initial problem, which is of size N , and the solution
pool is empty. In each iteration one such problem is selected from the workpool
corresponding to a particular traversal strategy such as depth first or breadth
first. The problem is either divided into d subproblems, which are stored again in
the workpool, or it is solved, and its solution is stored in the solution pool. It may
happen that a problem of size s is reduced to d subproblems of sizes s1, . . . , sd
with

∑d
i=1 si > s, e.g. for the Karatsuba or Strassen algorithm. At least in this

case, a depth first strategy is recommended in order to avoid memory problems.
The order in which solutions are stored in the solution pool depends on the

implemented traversal strategy. It is recommended to combine partial solutions
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as soon as possible in order to free memory. If the solution pool contains d partial
solutions, which can be combined, they can be replaced by the solution of the
corresponding parent problem. In the end of the computation the workpool is
empty and the solution pool only contains the solution of the initial problem.

2.1 Master/Worker design

The simplest approach to implement a divide and conquer skeleton is a kind of
the master/worker design as depicted in Figure 2. This approach has been used
in [1]. The work pool and the solution pool are maintained by the master, which
distributes problems to the workers and receives subproblems and solutions from
them. When a worker receives a problem, it either solves it or decomposes it into
subproblems. The advantage of a single work and solution pool is that it provides
a good overall picture of the work still to be done. Moreover, the master knows
about all idle workers at any time, which makes it easy to provide each worker
with work. The disadvantage is, that accessing the work pool and the solution
pool tends to be a bottleneck, as the pools can only be accessed by one worker
at a time. This may result in high idle times on the workers’ site. Another dis-
advantage is that the master/worker approach incurs high communication costs,
since each subproblem is sent from its producer to the master and propagated
to its processing worker. Moreover, the communication time required to send a
problem to a worker and to receive in return some subproblems or a solution
may be greater than the time needed to do the computation locally. The master’s
limited memory capacity for maintaining the problems and solutions is another
disadvantage of this architecture. As we have shown in [27, 28], a master/worker
design is less suited for farms and branch and bound skeletons. Thus, it can
be expected that a master/worker design is badly suited to divide and conquer
skeletons as well. For this reason, this approach is not considered any further. A
promising approach is a fully distributed D&C Skeleton, which is discussed in
the following.
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2.2 A fully distributed D&C-Skeleton

Figure 3 illustrates the design of the distributed divide and conquer skeleton
(DCSkeleton) provided by the Muesli skeleton library. It consists of a set of peer
solvers, which exchange subproblems, partial solutions, and work requests. Sev-
eral topologies for connecting the solvers are possible. In our implementation, the
topology for connecting the solvers is exchangeable without having to adapt the
load balancing or termination detection algorithm. To simplify matters in this
paper, we will consider an all-to-all topology. For larger numbers of processors,
topologies like torus or hypercube may reduce the communication overhead.

In the example shown in Fig. 3, n = 5 solvers are used. Each solver maintains
its own local work pool and solution pool. Thus, the work and the solution pool
are distributed among the solvers, which enables the skeleton to process D&C
problems with much higher memory requirements compared to the ones that
can be solved by a skeleton based on a master/worker design. Exactly one of the
solvers, the master solver, serves as an interface to the DCSkeleton. The mas-
ter solver receives new divide and conquer problems from the predecessor and
delivers the solutions to its successor. The code fragment in Figure 4 illustrates
the application of our DCSkeleton in the context of the Muesli skeleton library.
It constructs the process topology shown in Fig. 3.
In a first step the process topology is created using C++ constructors. The

process topology consists of an initial process, a dc process, and a final
process connected by a pipeline skeleton. The initial process is parameter-
ized by a generateProblem method returning the initial D&C problem that is
to be solved. The constructor DistributedDC generates n = 5 solvers, which
are provided with the four basic operators divide, combine, solveSeq, and
isSimple. The function isSimple has to return true if the subproblem size has
reached the threshold T , which indicates that the subproblem can be solved se-
quentially with solveSeq. If only one solver is used, it is recommended to enable
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int main(int argc, char* argv[]) {
InitSkeletons(argc,argv);
// step 1: create process topology
Initial<Problem> initial(generateProblem);
DistributedDC<Problem,Solution>

dc(divide, combine, solveSeq, isSimple, d, 5);
Final<Problem> final(fin);
Pipe pipe(initial,dc,final);
// step 2: start process topology
pipe.start();
TerminateSkeletons();

}

Fig. 4. Example application using a distributed divide and conquer skeleton.

a purely sequential computation by setting T to the size of the initial problem.
The parameter d corresponds to the degree of the D&C tree and describes how
many subproblems are generated by divide and how many subproblems are re-
quired by combine to generate the solution of the corresponding parent problem.

The DC-skeleton consumes a stream of input values and produces a stream
of output values. If the master solver receives a new D&C problem, the com-
munication with the predecessor is blocked until the received problem is solved.
This ensures that the skeleton processes only one D&C problem at a time.

There are different variants for the initialization of the skeleton with the
objective of providing each DCSolver with a certain amount of work within
the startup phase. Our skeleton uses the most common approach, namely root
initialization, i.e. the initial D&C problem is inserted into the local work pool of
the master solver. Subproblems are distributed according to the load balancing
scheme applied by the solvers.

Each solver repeatedly executes two overlapping phases: a communication
phase and a computation phase. The communication phase includes work re-
quests, delegating problems, and sending solutions. Let us first consider the case
in which each solver works locally on the work and solution pool, and no com-
munication due to load balancing issues is needed.

The work pool and the solution pool are implemented in their own classes
in order to allow an easy replacement of the underlying data structures and
algorithms for e.g. the traversal strategy. In our skeleton, the work pool is im-
plemented as a double ended queue (DEQ). Local work is taken from and written
to the head, whereas problems which are delegated within the load distribution
are taken from the tail. Thus, the DEQ behaves as a stack for local computa-
tions. The solution pool is implemented as a sorted array. If there are only local
computations (as it is the case most of the time), it behaves very efficiently as a
stack. Thus, we have preferred this solution to a heap.

Subproblems and partial solutions are encapsulated in Frames, which are each
identified by a unique identifier. Subproblems and their corresponding solutions
are marked with the same id. The initial problem is marked with id = 0. If the
solution pool contains a solution with id = 0, this indicates that the initial prob-
lem has been solved. This problem based termination detection is independent
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Fig. 5. a) A problem is divided into d subproblems; b) Solution pool represented as
sorted array before (left) and after applying combine (right).

from the topology which is used for connecting the solvers. Moreover, it does not
need any communication. The ids for parent nodes, and child nodes respectively,
can for instance be deduced from the formula parentNodeID = childNodeID−1

d ,
with d equal to the degree of the divide and conquer tree (e.g. number of child
nodes).

The solver takes and processes only one problem from the work pool per
iteration. If a problem is divided by the solver, d new subproblems are gener-
ated which are marked with ids in ascending order (Fig.5a). These subproblems
are successively inserted into the workpool again, starting with the subproblem
tagged with the largest id. The subproblem marked with the lowest id is inserted
last. Figure 6 illustrates the status of the workpool after the first four iterations
with d = 2.

If a problem can be directly solved by the solver, the corresponding solution is
written to the solution pool. The partial solutions stored in the solution pool are
kept sorted by the ids in ascending order. Thus, whenever a solution is pushed
to the solution pool, in a first step, the solution is written to the end of the
sorted list, and then, a simple insertion sort is applied to preserve the order, if
necessary.

Keeping the solution pool sorted enables a fast combination of partial so-
lutions due to the fact that only two elements of the solution pool have to be
inspected in order to detect if the top d elements can be combined. Assuming
that a problem marked with the identifier idparent is divided into d subproblems,
as shown in Figure 5a, the leftmost child node is marked with d · idparent + 1,
and the rightmost subproblem is marked with d · idparent+d. After the subprob-
lems are solved, the solution pool contains solutions which are marked with the
same ids than the subproblems. The solution of the most right child of idparent
is stored at index position i and represents the top element of the stack (Fig.
5b). The top d stack elements can be combined if they emanate from the same

7
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parent problem. This is the case iff the subproblem id at index position i−d+1
is d− 1 less than the id at index i. Otherwise, one or more partial solutions are
still missing, and combine can not be applied yet. If a combination is possible,
the partial solutions are removed from, and the solution of the parent problem
is written to the solution pool (Fig. 5b). This event triggers another inspection
of the top d stack elements and a combine call, if applicable.

Let us now consider the communication phase. If several solvers are used,
some load balancing mechanism is required. We have implemented a random
stealing algorithm, which is provably efficient for divide and conquer algorithms
in terms of space, time, and communication [11, 32]. In our case, a solver sends
a work request to a randomly selected neighbour if its work pool is empty. If
the neighbour has more than one subproblem in its work pool, it takes one
(from the tail of the DEQ) and returns it to the requestor. Otherwise it sends
a rejection message, which causes the requestor to ask another neighbour for
some work to share. The advantage is that no communication is performed un-
til a solver finds its own work pool empty, and the system behaves well under
high loads. Moreover, problems which are taken from the tail of the DEQ are
expected to be big since they stem from nodes of the upper levels of the divide
and conquer tree. Thus, the receiver is supplied with a large amount of work.
Obtained problems are processed locally in the same manner as described above.
The corresponding solution must be sent back to the neighbour due to the fact
that it is required there by combine. For this reason the solver records a pair
(problemID, neighbour) for each new problem which is received. If a new so-
lution is combined whose id is equal to a previously recorded problemID, it is
sent back to the corresponding neighbour, which stores it in the solution pool.
Normally, this triggers an insertion sort call in order to restore the order by id.
As a result, there may be combinable solutions deep in the stack, which are not
combined immediately. Sooner or later, these solutions are inevitably combined
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due to the implemented traversal strategy. However, in order to avoid idle times
when the work pool is empty and new work is requested, a solver searches the
solution pool for combinable solutions and combines them, if possible.

2.3 Optimizing the DCSkeleton for streams

MPI is internally based on a two-level communication protocol, the eager proto-
col for sending messages less than 32KB and the rendezvous protocol for larger
messages [29]. For the asynchronous eager protocol the assumption is made that
the receiving process can store the message if it is sent and no receive operation
has been posted by the receiver. In this case the receiving process must pro-
vide a certain amount of buffer space to buffer the message upon its arrival. In
contrast to the eager protocol, the rendezvous protocol writes the data directly
to the receive buffer without intermediate buffering. This synchronous proto-
col requires an acknowledgment from a matching receive in order for the send
operation to transmit the data. This protocol leads to a higher bandwidth but
also to a higher latency due to the necessary handshaking between sender and
receiver. In the following we assume problem sizes greater than 32KB, such as
multiplying at least two 64× 64 integer matrices, which enables the rendezvous
protocol. Moreover, we act on the assumption that the time between the arrivals
of two problems is less than the time for solving it sequentially. Otherwise we
are not able to speed up the overall computation because the divide and conquer
skeleton cannot be a bottleneck of the process system.

Considering task parallel process systems, two forms of parallelism can be
identified. The first one is the skeletal internal parallelism, which follows from
processing one single problem by several workers in parallel. The DCSkeleton
benefits from skeletal internal parallelism by solving one problem by all engaged
solvers in parallel. The second form of parallelism is stream parallelism, which
follows from the possibility of splitting up one data stream into many streams
and processing these streams in parallel. Somewhere in the process system these
streams have to be routed to a common junction point in order to reunite them
again. The farm topology depicted in figure 7, which is offered by the Muesli
skeleton library, benefits from stream parallelism. Each worker of the farm takes
a new problem from its own stream, so that several problems can be processed
independently from each other within the farm at the same time. In this pa-
per, we consider a farm of DCSkeletons which are each configured to a purely
sequential computation as described above.

Many applications require solving several divide and conquer problems in
sequence. Examples here are the 2D or 3D triangulation of several geometric
objects, matrix chain multiplication problems, in which parts of the chain can be
computed independently from each other, or factoring of several large numbers.
Using the Muesli skeleton library, the different tasks can be represented as a
stream, which is routed to either a single DCSkeleton (fig. 3) or a farm (fig. 7).

The DCSkeleton processes one divide and conquer problem by N solvers at
a time, while the fully distributed memory is available for the solution process.
Figure 8 depicts the utilization of the DCSkeleton within the startup, main,
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Fig. 8. utilization of the DCSkeleton

and end phase of solving such a problem. In the beginning, a certain amount
of work has to be generated by divide calls and distributed among all solvers
until each solver is provided with work. For this reason, this skeleton shows high
idle times within the startup phase. In particular when the initial problem is
divided by the master solver, all remaining solvers are idle. Within the main
phase of the computation all solvers are working to full capacity. Moreover, this
phase is characterized by low communication costs due to the fact that the
solvers predominantly work on their local pools, which is essential to achieve
good speedups. Within the end phase, partial solutions have to be collected and
combined to parent solutions. At the end, only the master solver combines the
entire solution, and all other solvers are idle. Thus, the end phase is characterized
by high idle times as well. The duration of the startup and end phase results
from both, the complexity of dividing problems and combining partial solutions,
and the sizes of the subproblems and partial solutions which have to be sent over
the network.

Processing streams of divide and conquer problems can be seen as a sequence
of several startup, main, and end phases. If the arrival rate of new problems is
high, the master solver quickly becomes a bottleneck of the system, because all
engaged solvers, which are running idle within an end phase of a computation
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have to wait for new work which is not delegated to them until the following
startup phase. This is caused by the fact that the master solver represents the
only interface to the skeleton. The more solvers are used in the skeleton, the
faster a problem will be solved in the main phase of the computation. If the
arrival rate of new problems is low, the DCSkeleton can be adapted to this rate
by adjusting the number of engaged solvers. Thus, the overall time for processing
all problems in the stream is the sum of the subtracted times for solving the single
problems.

The stream processing can be optimized by overlapping phases of high work-
load with phases of poor workload. In case of the DCSkeleton we find high work
load within the main phases and poor workload within the startup und end
phases of the computation. If the solution of a divide and conquer problem is in
its startup or end phase, only few or even no subproblems exist in the system
which can be distributed among the solvers. As shown in figure 9, the phases can
be overlapped if more than one divide and conquer problem is processed by the
skeleton at a time. If the computation of a solution is in its startup or end phase,
the processing of another problem may be in its main phase. This leads to a more
balanced processor load due to the fact that the amount of work is increased
within the skeleton and thus idle times are reduced. The number of problems
which are prepared for load distribution increases linearly with the number of
divide and conquer problems solved in parallel. Thus, a less fine-granular de-
composition of each divide and conquer problem is necessary to guarantee a
sufficient amount of work for all solvers the more divide and conquer problems
are solved in parallel. By generating fewer but bigger subproblems the efficiency
of the skeleton can be increased not only by reducing the number of divide
and combine operator calls, but also by raising the sequential proportion of the
computation by applying solve on larger problems.

Figure 10 illustrates the design of an optimized divide and conquer skeleton
for stream processing (StreamDC), which is based on the DCSkeleton. In con-
trast to the DCSkeleton it consists of n master solvers receiving new divide and
conquer problems from the predecessor. Each solver maintains a multi-part work
and solution pool to distinguish between subproblems which emanate from dif-
ferent initial problems. If the workpool stores subproblems which emanate from
problems received from another solver, these problems are processed first. In this
case, a master solver delegating a subproblem is supplied with its corresponded
partial solution more quickly. This speeds up the overall computation time of
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an internally distributed problem, and an adequate supply of new work to the
skeleton is guaranteed by receiving new initial problems from the predecessor
more quickly as well.

If the arrival rate of new problems is low, this skeleton behaves like a DCSkele-
ton. An idle master solver sends work requests and receives subproblems from
its neighbors. If the arrival rate of problems is high, each of the master solvers
receives new problems from its predecessor, which increases the amount of work
within the skeleton. For larger number of processors, this leads to a faster propa-
gation of work to idle solvers in the beginning of the computation, and increases
the utilization of solvers during the whole computation as shown above. Thus,
by applying the StreamDC skeleton with application specific parameters, it can
be configured to be a hybrid of a pure stream processing farm and the DCSkele-
ton. It can be adapted to the arrival rate and the size of the divide and conquer
problems which are to be solved so that the distributed memory utilization is
improved. For this reason, the StreamDC is able to solve problems, which cannot
be solved by a sequential DCSkeleton used in farms due to the lack of memory. In
comparison to the DCSkeleton the new StreamDC skeleton benefits from over-
lapping the startup and end phases of solving single problems by solving several
problems in parallel. Moreover, fewer problems must be prepared for load dis-
tribution which reduces divide and combine operator calls and increases the
sequential part of the computation.

3 Applications and Experimental Results

The parallel test environment for our experiments is an IBM workstation cluster
[33] of sixteen uniform PCs connected by a Myrinet [25]. Each PC has an Intel
Xeon EM64T processor (3.6 GHz), 1 MB L2 cache, and 4 GB memory, running
Redhat Enterprise Linux 4, gcc version 3.4.6, and the MPICH-GM implementa-
tion of MPI.
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#Solvers Strassen Karatsuba Mergesort
1 295,94 43,52 43,19
2 146,52 22,10 28,25
3 98,13 14,94 24,78
4 73,93 11,41 22,79
5 59,86 9,32 21,91
6 50,58 7,89 21,04
7 42,85 6,92 20,60
8 38,53 6,16 20,03
9 34,92 5,58 19,95

10 32,10 5,14 19,79
11 29,82 4,76 19,58
12 27,72 4,47 19,42
13 26,28 4,18 19,27
14 24,79 3,96 19,15

Table 1. Runtimes for Strassen, Karatsuba, and Mergesort (in seconds).
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Fig. 11. Speedup for the Mergesort, Karatsuba, and Strassen algorithm.

In order to evaluate the performance and scalability of the distributed di-
vide and conquer skeleton, we have considered three problems with different
complexity classes. At first, we have implemented the standard mergesort algo-
rithm [19], which is in O(N logN), to sort randomly generated integer arrays
of size N = 226 = 67108864. Moreover, we have implemented the Karatsuba
multiplication algorithm for big integers (O(N log2 3), where log2 3 ≈ 1, 58). The
Karatsuba algorithm [20] reduces a multiplication of two N -digit integers to
three multiplications of N

2 -digit integers. In our experiments we have gener-
ated two numbers with 220 = 1048576 digits for each test run. Finally, we have
implemented Strassen’s algorithm for matrix multiplication (O(N log2 7), where
log2 7 ≈ 2, 808) in order to multiply two randomly generated 4096×4096 integer
matrices. The Strassen algorithm [31] reduces a multiplication of two N × N
matrices to seven multiplications of N

2 × N
2 matrices. The algorithms differ not

only in their complexity classes, but also in the dynamically generated divide
and conquer tree, which is of degree d = 2 for mergesort, d = 3 for Karatsuba,
and d = 7 for Strassen. Note that the skeleton behaves non-deterministically in
the way the load is distributed. Generating only a few big subproblems can lead
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1 2 3 4
8193 8192 8191 8191
4096 4096 4096 4096

2 1 0 0
0 1 1 1
5 9 17 26

4,24 4,24 4,28 4,29
4,65 3,57 2,98 2,98
1,79 1,39 1,10 1,10
10,68 9,19 8,36 8,37

1 2 3 4 5 6 7 8
3580 3707 3737 3664 3704 3727 3671 3734
2466 2469 2490 2492 2446 2443 2391 2486
18 16 10 10 16 15 4 7
7 9 12 12 12 16 17 11
43 57 60 56 95 95 98 58

5,19 5,20 5,25 5,24 5,14 5,14 5,24 5,20
0,24 0,19 0,18 0,16 0,16 0,15 0,15 0,16
0,22 0,18 0,19 0,17 0,18 0,16 0,15 0,17
5,65 5,57 5,63 5,58 5,48 5,46 5,54 5,53

1 2 3 4 5 6 7 8
2450 2482 2549 2410 2415 2364 2477 2461
2100 2128 2184 2123 2109 2065 2027 2071
11 8 7 13 15 18 11 5
10 12 1 12 12 13 16 12
79 88 26 83 73 81 84 74

29,56 30,67 30,93 30,22 29,82 29,53 29,76 29,76
0,88 0,66 0,65 0,62 0,62 0,60 0,59 0,53
2,75 2,01 2,13 2,03 2,03 2,00 2,02 1,84
33,19 33,34 33,71 32,87 32,47 32,14 32,37 32,13

solver

time for combine
time for divide
Σ time

a) Mergesort

b) Karatsuba

c) Strassen

distributed problems
received problems
# work requests
time for solve

processed problems
solved problems

processed problems
solved problems
distributed problems
received problems
# work requests
time for solve
time for combine
time for divide
Σ time

processed problems
solved problems
distributed problems
received problems

solver

solver

# work requests
time for solve
time for combine
time for divide
Σ time

Table 2. Distribution of problems, work requests, and computation time for the Merge-
sort, Karatsuba, and Strassen algorithm

to an unbalanced workload and to high idle times. In order to get reliable results,
we have repeated each run up to 50 times and computed the average runtimes,
which are shown in Table 1. Figure 11 depicts the corresponding speedups.

Table 2 shows for a typical run the number of subproblems, which are distrib-
uted and received by the solvers, as well as the number of work requests, which
have been sent by each solver. Moreover, the table shows the number of subprob-
lems, which are processed locally by each solver, as well as the number of simple
problems emanating from them, which are solved sequentially. As one can see,
only few work requests have been sent. In our skeleton, the master solver under-
takes the task of dividing the initial problem and combining the entire solution.
At this time, all other solvers are idle. Thus, most of the work requests were
sent within the startup and the end phase. However, despite of the low number
of work requests and distributed subproblems, we noticed a well-balanced work
distribution in all considered example applications. This is due to the fact that
each solver fetches most problems from its own workpool, such that they require
no communication. This is essential for achieving good runtimes and speedups.
Note that this not only applies to divide and conquer but also to other skele-
tons with a similar characteristic such as branch and bound and other search
skeletons [27].
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Fig. 12. Speedups for StreamDC, DCSkeleton and a sequential farm processing matrix
multiplication problems

As one would expect, the skeleton reaches the lowest speedups for Mergesort.
In this case, combining the entire solution takes a good deal of the overall com-
putation time, which cannot be distributed among the solvers. This is supported
by Table 2a, which shows the time for divide, solve, and combine consumed
by the solvers in case of an equal distribution of the subproblems among the
solvers. While the time for solving the subproblems is identically for all solvers,
the master solver (solver 1) shows clearly higher computation times for combine
and divide. Moreover, solving a problem locally is often faster than delegating
it to a solver, because sending and receiving subproblems causes high communi-
cation costs. In our case, the best runtimes can be achieved if the threshold T for
6 ≤ p ≤ 14 processors is chosen to be T = 262144 leading to 256 subproblems.
For the Karatsuba and Strassen algorithms, the speedups are clearly better than
for Mergesort, because the relation of computation time to communication time
is significantly better (i.e. higher).

In order to evaluate the performance and scalability of the StreamDC skele-
ton, we have considered Strassen’s algorithm for matrix multiplication in order
to multiply two randomly generated 1024 × 1024 integer matrices. The stream
consists of 20 matrix multiplication problems, which represents single matrix
multiplications when solving a matrix chain multiplication problem A1 · . . . ·An
[2, 16, 17]. Figure 12 depicts the corresponding speedups for the StreamDC, the
DCSkeleton and the farm of sequential DCSkeletons. The StreamDC skeleton,
which combines stream parallelism with internal task parallelism, is clearly su-
perior to the DCSkeleton, which only provides internal task parallelism. This
is by the fact that idle phases are reduced by overlapping the startup and end
phases of a solution. Moreover, the number of subproblems is reduced which are
prepared for load distribution. Thus, the overhead for divide and combine op-
erator calls is decreased as well. The speedups for the farm show a kind of stairs
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effect which is caused by a bad load balance due to the fact that the number
of problems in the stream is only a little higher than the number of solvers. In
this case the solvers are provided with a highly unbalanced amount of work. In
contrast to the StreamDC skeleton, the farm is not able to do a load balancing.

4 Related work

Some related work on algorithmic skeletons for divide and conquer can be found
in the literature. Recent skeleton libraries such as eSkel [9], skeTo [23], and
MaLLBba [1, 12] include skeletons for divide and conquer. The MaLLBa im-
plementation of the divide and conquer skeleton presented in [1] is based on
a farm (master-slave) strategy. The distributed approach discussed in [12] of-
fers the same user interface as the MaLLBa skeleton and can be integrated into
the MaLLBa framework. The implementation differs considerably from our ap-
proach. The work and the solution pool are represented as a pointer based tree
structure. Additionally, a queue with the nodes waiting to be explored is kept.
Moreover, a global load balancing algorithm has been implemented, which causes
high message traffic and requires a complicated communication protocol to cope
with starvation problems. Unfortunately, no runtimes of the considered example
applications are presented. In [8], Cole suggests to offer divide and combine as
independent skeletons. But this approach has not been implemented in eSkel.
The eSkel Butterfly-Skeleton [9] is based on group partitioning and supports di-
vide and conquer algorithms in which all activity occurs in the divide phase. In
contrast to our approach, the number of processors used for the Butterfly skele-
ton starts from a power of two due to the group partitioning strategy. The skeTo
library [23] only provides data parallel skeletons and is based on the theory of
Constructive Algorithmics. Restricted data parallel approaches are discussed in
[4, 13]. In [13], a processor topology called N-graph is presented, which is used
for a parallel implementation of a divide and conquer skeleton in a functional
context. Hermann presents different general and special forms of divide and con-
quer skeletons in context of the purely functional programming language HDC,
which is a subset of Haskel [14]. A distributed divide and conquer scheme is not
considered there. A mixed data and task parallel approach can be found in [6].

5 Conclusions

We have considered two implementation schemes for divide and conquer skele-
tons. After briefly analyzing a centralized master/worker scheme as used in
MaLLBa [1], we have focused on a distributed scheme. Important issues have
been the demand-driven work-distribution scheme as well as an efficient approach
to the combination of available partial solutions using a sorted array. Based on
experimental results for Mergesort, the Karatsuba algorithm, and Strassen’s al-
gorithm, we have shown that our approach leads to good runtimes and speedups,
and that it minimizes the communication overhead. Only very few problems need

16



to be exchanged between the different solvers. Moreover, we present a new divide
and conquer skeleton optimized for stream processing. By applying the skeleton
with application specific parameters, it can be configured to be a hybrid of a
pure stream processing farm and the DCSkeleton, and it can range between both
extremes. In comparison to the DCSkeleton the new StreamDC skeleton benefits
from overlapping the startup and end phases of solving single problems by solv-
ing several problems in parallel. The advantage is, that only few problems must
be prepared for load distribution which reduces divide and combine operator
calls and increases the sequential part of the computation. As we have shown,
the new StreamDC skeleton is clearly superior to the DCSkeleton. In comparison
to a farm of sequentially working DCSkeletons it offers a better scalability, which
is advantageous in particular when only few divide and conquer problems have to
be solved. Moreover, the complete sharing of the distributed memory is a great
advantage compared to a farm, in which the solvers only have access to their own
local memory. Thus, the new StreamDC is able to solve problems, which cannot
be solved by a sequential DCSkeleton used in farms due to the lack of memory.
In future work we intend to investigate alternative stream based implementation
schemes of skeletons for branch and bound and other search algorithms.
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Extended Ex
eptions for Contingen
iesThorsten van EllenCarl von Ossietzky University of OldenburgSoftware Engineering Group26111 Oldenburg, Germanythorsten.van.ellen�informatik.uni-oldenburg.deAbstra
t. The set of situations that are spe
i�
ation 
ompliant usuallyis 
alled normal and won't be subdivided, but in this work a new fun-damental re�nement will be de�ned. The set of normal situations shallbe subdivided into two subsets on the basis of spe
ial 
riteria. Only onesubset shall be 
alled normal. The situations of the other subset shallbe 
alled 
ontingen
ies. Results of fun
tion 
alls that are 
ontingen
ies,e.g., DiskFull, are work refusals from the point of view of the 
aller. Theyrestrain the 
aller from rea
hing his post
onditions whi
h leads to a spe
-i�
ation violation. Therefore, 
ontingen
ies must be handled to preventspe
i�
ation violations. But a su

essful handling is only reasonable ifsubsequent resumption is possible. In this work, signi�
ant properties of
ontingen
ies will be presented that hamper their handling. To handle
ontingen
ies, 
onventional ex
eption me
hanisms 
an be used, but area

ompanied by 
onsiderable de�
its for that purpose. For example, a
orre
t resumption after a su

essful handling is extremely di�
ult ifthe language does not support it dire
tly. Therefore, extended ex
eptionme
hanisms are drafted here that should solve these de�
its. A system-ati
 inspe
tion and handling of 
ontingen
ies 
an diagnose and avoidsubsets of spe
i�
ation violations e�e
tively before runtime.1 MotivationMany programming languages o�er ex
eption me
hanisms, but only allow thetermination of the exe
ution or a part of it in the 
ase of an error (terminationmodel). Only few languages o�er language me
hanisms for resumption (resump-tion model) [1℄, be
ause resumption is 
ontroversial.For example, the added value of resumption is 
hallenged by empiri
al re-sear
h [2℄. The empiri
al resear
h 
ould not �nd examples that argue for resump-tion. Up to now it was di�
ult to �nd good examples for resumption systemat-i
ally. Exa
tly that should happen here. By de�ning the new term 
ontingen
y,many examples 
an be found for whi
h resumption might be reasonable.With the term 
ontingen
y, the spa
e of errors is divided to make the situa-tions that are treatable a

essible for 
omplete handling. Conventional ex
eptionhandling is not able to make this distin
tion and therefore, su�
ient handlingand resumption is not possible. It will be 
lari�ed that 
ontingen
ies must behandled to avoid errors and resumption is needed. Perhaps a new orientation
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and dis
ussion of errors, ex
eptions, handling and resumption originates withthis new per
eption.2 OverviewSe
tion 3 explains some terms and reasons why 
ontingen
ies must espe
iallybe regarded. Se
tion 4 presents the obje
tives of this work. Se
tion 5 
lari�esproperties of 
ontingen
ies and suggests why handling of 
ontingen
ies within
onventional programming languages with ex
eption handling is reasonable. Se
-tion 6 pinpoints some signi�
ant de
i�ts of ex
eption handling for 
ontingen
ies.It will also be illustrated that some alternative handling approa
hes 
an't beapplied a
ross the board. A

ordingly, se
tion 7 proposes extended ex
eptionme
hanisms. Se
tion 8 
ompares less distributed me
hanisms to the me
hanismsproposed here regarding their suitability. Finally, se
tion 9 
omes to 
on
lusions.3 TermsThis se
tion des
ribes some essential terms.Partially, errors are de�ned as states, e.g., by [3℄. But not only unintentionalstates exist, that should be 
alled errors, e.g., if a tra�
 light shows red andgreen at the same time, but also unintentional transitions, e.g., if a tra�
 light
hanges dire
tly from green to red, where no unintentional state is involved (see�gure 1). .

Fig. 1. Valid and invalid tra�
 light transitionsTherefore, the term situation should be used instead of state here and bede�ned as following:De�nition 1. Situation: A situation is a sequen
e of n states where n > 0.
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A situation 
an be a sequen
e 
onsisting of a single state and for the sake ofsimpli
ity situations 
an be illustrated as states.De�nition 2. Spe
i�
ation: A spe
i�
ation is a 
omplete de
ription of all sit-uations that are allowed for a system, without 
ontradi
tions of itself.Example 1. A spe
i�
ation of a fun
tion 
an be 
omposed of a pre- and post-
ondition. The pre
ondition for a tra�
 light des
ribes the valid states, thepost
ondition the valid transitions starting from the valid states.A spe
i�
ation that allows a situation at one pla
e and forbids the samesituation at the same time at another pla
e, e.g., by pre
onditions, 
ontradi
tsitself.A spe
i�
ation of a non-trivial system, e.g., with the spe
i�
ation languageB, is usually modular, similar to program 
ode. A spe
i�
ation usually 
ontainsmodules that build upon ea
h other or are dependent on ea
h other respe
tively,and share work or tasks that have to be 
ompleted.De�nition 3. Error: An error is a situation the 
onditions of whi
h 
ontradi
tthe spe
i�
ation.An error or spe
i�
ation violation o

urs, for example, if the situation doesnot 
omply with the pre
onditions or post
onditions, as Meyer states [4℄.Example 2. A dire
t tra�
 light transition from green to red is an error.The new term 
ontingen
y should be de�ned as follows:De�nition 4. Contingen
y: A 
ontingen
y is a situation that is des
ribedwithin the spe
i�
ation of a module and represents a result where the essentialwork of the module other modules depend on was not performed.Example 3. If a fax should be sent via a modem 
ontrolled by software, thetelephone line 
an be busy (BusyLine). Usually, a busy tone is not avoidable,even not by 
hanging the program 
ode of the software.Contingen
ies are results of modules that indi
ate that the module 
ould orshould not ful�ll its usual work. Su
h situations are no errors or spe
i�
ationviolations, be
ause they are unavoidable or intentional behaviors and therefore
an be found within the spe
i�
ation. Contingen
ies are exa
tly and su�
ientlydes
ribed within the spe
i�
ation and therefore spe
i�
ation 
ompliant. If noadditional spe
i�
 measures are taken, the expe
tations of dependent moduleswon't be ful�lled and they 
an't rea
h their post
onditions so that as a resulta spe
i�
ation violation will appear. From the perspe
tive of the dependentmodule, 
ontingen
ies are blo
kades or work refusals whose potential appearan
eis known in advan
e.Contingen
ies di�er from normal situations in that normal situations withoutadditional spe
i�
 measures do not ne
essarily run into spe
i�
ation violations.
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4 Obje
tivesContingen
ies must be handled, if following spe
i�
ation violations should beavoided. The obje
tives of this paper are� to distinguish 
ontingen
ies from normal situations and errors and� to determine 
ontingen
ies before runtime,� to allow a simple 
ommuni
ation, spe
i�
 handling and simple resumptionafter a su

essful handling.� Additionally, the 
ontext should be enabled to overwrite handlers.� This should also be true for side e�e
ts that do not reside within the digitalmemory or do not work with ACID-transa
tions and without 
ompensationme
hanisms.� Furthermore, information hiding should be kept and� 
ompli
ations of interfa
es, 
umbersome 
leanups and partial repititionsshould be avoided.Only sequential operations should be regarded.5 Properties of Contingen
iesThe following se
tion presents signi�
ant properties of 
ontingen
ies and de-s
ribes why handling of 
ontingen
ies within 
onventional programming lan-guages with ex
eption handling is reasonable.5.1 Contingen
ies are very NumerousContingen
ies 
an be very numerous alone within one single fun
tion.Example 4. Alone at the 
all of a fun
tion to load or save a �le several 
ontingen-
ies 
an o

ur, e.g., Drive/Dir/File-NotFound/Lo
ked/NameInvalid, DiskNotIn-Drive (e.g., USB-Sti
k), DiskNotFormatted, DiskFull, EndOfFile, NoAvailable-FileHandles, NetworkDis
onne
ted et
.Contingen
ies are littered over very many fun
tions within the whole systemand all levels.Example 5. Examples are UnknownPhoneNumber, Parti
ipantTemporarilyU-navailable, OutOfPaper, OutOfInk, PaperJam, Con
urrentA

ess, ClassNot-Found, OutOfMemory, A

ountInvalid, PasswordInvalid et
.A severe reason seems to subje
t the previous examples, where the system
an not 
ontinue work quasi physi
ally, but 
ontingen
ies 
an also 
orrespondto arbitrary semanti
 requirements where the fun
tion or system should not
ontinue its work although it would physi
ally be possible.
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Example 6. To avoid �nan
ial risks and damages, banking houses avoid that
ustomers 
an overdraw their a

ount arbitrarily. They de�ne a limit that 
anbe di�erent for ea
h 
ustomer. If the limit is ex
eeded, the automati
 teller ma-
hines refuse to work and also withdrawals as part of superordinated, automati
pro
esses are refused. Further examples are PasswordExpired, A

ountLo
ked,Drive/Dir/File-ReadOnly, QuotaOver�ow et
.The following example from the database domain shall illustrate how numer-ous 
ontingen
ies a
tually are within everyday life. Presumably 
ontingen
iesaren't less numerous within operating systems or other 
omplex environmentslike ERP systems, only less do
umented and apparent. This shows how impor-tant it is to handle these situations expli
itly.Example 7. Ora
le maintains a do
umentation ([5℄) of all problem messages ofthe Ora
le database. It en
ompasses over 2000 pages, ea
h with several mes-sages. Hen
e, it do
uments several thousands of entries and mostly 
ontainsdetailed and spe
i�
 (not abstra
ted) and therefore helpful hints for ea
h singleknown situation that 
an o

ur at runtime. These entries are not at all onlyerrors where the database is within an unknown or unde�ned state, be
ause thiswould be disastrous for the database and Ora
le. Rather, substantial amounts ofthem are numerous 
ontingen
ies that are re
ognized, inter
epted and 
ommuni-
ated at runtime su

essfully and do
umented (quasi spe
i�ed) before runtime.At runtime, they leave the database within a su�
iently de�ned state that isadditionally still ready for full operation.But usually the tasks of the 
aller or user are aborted with a 
orrespondingmessage. If the superordinated tasks have not been prepared for the 
ontingen
y,their post
onditions 
an not be ful�lled anymore and a spe
i�
ation violationo

urs.This example illustrates that Ora
le databases a
tually 
ontain very many
ontingen
ies. However, not all of them 
an o

ur, if the 
alling program isimplemented 
orre
tly, e.g., the message ORA-01747 ("`invalid 
olumn"') 
an'to

ur, if all DDL and DML statements are 
onsistent.5.2 Contingen
ies are UnavoidableRefusals to work usually will be avoided intuitively at system development, onlythe unavoidable or semanti
ally required ones remain as 
ontingen
ies.5.3 Contingen
ies are Better Treatable than ErrorsIf a fun
tion 
an or should not ful�ll its work under 
onditions that are de-s
ribed within the spe
i�
ation exa
tly, then this is a 
ontingen
y (no error)and is known in advan
e. If the fun
tion 
ommuni
ates the 
ontingen
y to the
aller spe
i�
ally, e.g., as spe
ial value or ex
eption, it is possible to handleit within su�
iently de�ned system environments and 
ir
umstan
es. Handling
ontingen
ies is therefore easier than handling errors, be
ause errors violate thespe
i�
ation and are not des
ribed su�
iently within the spe
i�
ation. Hen
e,the system environment and 
ir
umstan
es of errors are only ne
essarily de�ned.
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5.4 Use Ex
eptions for Contingen
iesIf every 
aller would handle every 
ontingen
y immediately, the same problemwould o

ur that is already known as "error 
ode handling", i.e., every line ofnormal 
ode would be mixed with many 
ode lines for handling many 
ontin-gen
ies. The handling 
ode would be highly redundant for handling the same
ontingen
ies at many pla
es. Error 
ode handling has been found impra
ti
ableand has been repla
ed by ex
eption handling. To avoid error 
ode handling for
ontingen
ies, too, 
ontingen
ies 
an also be 
ommmuni
ated and handled withex
eptions.5.5 Contingen
ies Dis
lose Implementation Details and Must NotBe Abstra
tedWhen passed to the 
allers in the 
aller hierar
hy, 
ontingen
ies dis
lose imple-mentation details not immediately, but mostly after a few 
all levels. (This isalso true for ex
eptions that represent errors).Sin
e it is mandatory to handle 
ontingen
ies to avoid following spe
i�
ationviolations, it must be assured that they remain unambiguous and won't be ab-stra
ted. If di�erent 
ontingen
ies are proje
ted onto one abstra
t 
ontingen
y,e.g., OutOfMemory and DiskFull onto OutOfResour
e, the di�erent 
onditionsof the di�erent 
ontingen
ies 
an't be distinguished and spe
i�
 handling is nolonger possible.Example 8. A spe
i�
 handling for OutOfMemory like swapping is neither ap-pli
able for DiskFull nor for the abstra
tion of both OutOfResour
e.An abstra
tion of 
ontingen
ies to keep the information hiding prin
iple andto hide implementation se
rets is therefore not re
ommended, be
ause it wouldproje
t the 
ontingen
y of the 
urrent implementation and the potential 
on-tingen
ies of future implementations onto one abstra
ted situation for whi
h a
urrent handling won't be appropriate automati
ally.5.6 Contingen
ies A

umulateIn the �gure 2 routines are symbolized by small letters. Part A) illustrates: ifin routine m whi
h is 
alled by routine g and i an ex
eption o

urs (error or
ontingen
y), that won't be handled within g and i, the ex
eption will be passedto the next 
aller. Part B) illustrates: if ea
h routine generates three spe
ialdi�erent ex
eptions, that won't be handled, then within the higher 
all levelsan in
reasing number of ex
eptions a

umulate. At the end all ex
eptions thathaven't been handled 
an be found within the main routine. This a

umulationof unhandled ex
eptions in
reases with the 
all hierar
hy depth and broadnessof the program or system. The a

umulation exists independently of the usedlanguage me
hanism. It's the same with error 
odes. It seems as if this was thedriving for
e for repla
ing error 
ode handling by ex
eptions.
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Fig. 2. A

umulation6 De�
its of Conventional Ex
eption Me
hanismsThis se
tion outlines de�
its of 
onventional ex
eption me
hanisms to easilyhandle 
ontingen
ies su

essfully and 
ontinue exe
ution afterwards. It also illus-trates that alternative approa
hes to resume exe
ution after su

essful handlingare not appli
able a
ross the board.Contingen
ies 
an be handled more easily than errors and must be handled, iffollowing spe
i�
ation violations have to be avoided. To handle them, they mustbe marked and be as
ertainable at development time. Conventional languageshave no me
hanisms to determine all ex
eptions that 
an o

ur synta
ti
allywithin a 
ode fragment at development time, although that should be no 
omplexproblem.Repairs of the lower 
all levels from the higher 
all levels require knowledgeof and a

ess to the implementation details of the lower levels within the higherlevels. In the following example it is not possible to manipulate the variable
urrentPath with 
onventional me
hanisms:Example 9.void main(String[℄ args) { // GUI-a

ess heretry {doTasks(args);} 
at
h (HardDiskFull) {String alternative =AskUserForAlternative.exe
ute().result();// set/repair alternative, but where and how?}}// many 
all levels lower:void saveEditedData(Data edited)throws HardDiskFull { // No GUI hereif (getFree(
urrentPath) < edited.size()) {
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throw new HardDiskFull(getFree(
urrentPath),edited.size());} // ... writing data on disk} After a su

essful handling the program should be resumed to ful�ll thepost
onditions, but only few languages exist that o�er resumption me
hanisms[1℄. Languages that only o�er the termination model raise the following hurdlesthat 
ompli
ate and restri
t resumption in many 
ases:� Repairs of the lower 
all levels after an ex
eption require knowledge of theimplementation details, whi
h violates the information hiding prin
iple. Toallow arbitrary repairs of the lower 
all levels via interfa
es, e.g., partialstates [6℄, extreme interfa
e 
ompli
ations would be required.� No me
hanisms are known to handle side e�e
ts that 
an't be 
ontrolled viaACID transa
tions or 
ompensations, e.g., irreversible physi
al side e�e
ts.� Partial repetitions generate performan
e and time losses.Language me
hanisms for resumption are the only known and generally appli-
able option to bypass the latter hurdles. The only language of those that o�erresumption is Common Lisp and its language family that allow multiple resump-tion alternatives even on di�erent 
all levels and, furthermore, to parametrizethem.But even these don't o�er a me
hanism to override handlings quasi polymor-phi
, to exploit additional 
ontext knowledge and a

ess. Therefore, the followingJava example 
an not override the handling of the ex
eption PaperJam withinthe method print by the handling in the method printAdvan
ed.Example 10.publi
 void print(Obje
t do
ument, int fromPage) {try {// print ...} 
at
h (PaperJamDete
ted jamDete
ted) {// Default handling: 
an
el and logginglogger.error(�Paper jam: aborting print.�);}}publi
 void printAdvn
(Obje
t do
, int fromPage) {try {print(do
ument, fromPage);} 
at
h (PaperJamDete
ted jamDete
ted) {// Advan
ed NOT possible: automati
ally repair!advan
edPaperEmitter.removeJam();printAdvan
ed(do
ument, jamDete
ted.atPage());}}
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7 Solving with Extended Ex
eption Me
hanismsSin
e using ex
eptions for 
ontingen
ies is reasonable and 
onventional ex
eptionhandling shows de�
its for 
ontingen
ies and resumption, extended ex
eptionme
hanisms are sket
hed for the language Java that o�er handling and resump-tion of 
ontingen
ies. The 
on
epts are transferable for other languages. Signif-i
ant ideas are 
oined by the language Common Lisp [7℄ and partially modi�edand extended. At �rst an example illustrating the extended me
hanisms follows.Afterwards, the me
hanisms are explained in more detail.7.1 Summarizing ExampleThe following example was 
oined by [8℄ and shows all extended me
hanisms in
onjun
tion.

Fig. 3. Example with log-�lesIt will be presented within the �gure 3 and as sour
e 
ode within example11. Within the example multiple log-�les should be read. Within the log-�les aremultiple lines that should be 
he
ked for whether they are well-formed. For thispurpose two nested loops are used. The �rst loop iterates over the �les. The se
-ond loop iterates over the entries of one �le. Both loops are implemented withintwo separated methods analyseLogs and parseFile, of whi
h the �rst 
allsthe se
ond. For ea
h line of the �les a third method parseEntry will be 
alled,that 
he
ks whether the line is well-formed. If not, it signals the 
ontingen
yMalformedLine by the new keyword signal (see se
tion 7.2).Both loops o�er an option to resume whi
h abstra
tion 
orresponds to the a
-
ording implementation level, i.e., the loop within analyseLogs o�ers skipFileand the loop within parseFile o�ers skipEntry, ea
h without parameter. The
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o�ers are introdu
ed by the new keyword offer (see se
tion 7.5). They are ad-ditional interfa
es with name and optional parameters that are a side entran
eto the 
orresponding method.Furthermore, both loops de
ide what should happen in the 
ase that a lineis not well-formed (MalformedLine). For the 
hoi
e of the 
ontingen
y the newkeyword de
ide is used (see se
tion 7.4). Within the handling of the 
hosen
ontingen
y the 
hoi
e of the repair and resumption o�er is done with the newkeyword resume (see se
tion 7.6).Within the method parseFile the repair o�er returnEntry is 
alled andthe element defaultEntry is passed as parameter, whi
h only exists there. Thisway both involved levels 
an 
ooperate (see se
tion 7.8).Two possibilities to de
ide or handle the 
ontingen
y MalformedLine ontwo di�erent 
all levels exist within the example. The higher method overridesthe de
ision of the lower method, therefore, the de
ision with resumption ofskipEntry is 
hosen (see se
tion 7.7).Example 11.void analyzeLogs(Files openFiles) {for (File file: openFiles) {try {use(parseFile(file));} offer skipFile() {
ontinue; // nothing else to do} de
ide (MalformedLine x) {if (x.firstSta
kFrame().startsWith("mylib"))resume skipEntry();}}}Entries parseFile(File openFile) {Entry defaultEntry = new Entry();Entries result;while (!openFile.EOF()) {Entry entry = null;try {String logTxt = openFile.line();entry = parseEntry(logTxt);} offer skipEntry() {// entry = null;} de
ide (MalformedLine) {// entry = null;resume returnEntry(defaultEntry);}
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if (entry != null)result.add(entry);}return result;}Entry parseEntry(String logTxt) {if (entryIsWellFormed(logTxt)) {return new Entry(logTxt);} else {try {signal new MalformedLine(logTxt);} offer reparse(String in) {return parseEntry(in); // retry other value} offer returnEntry(Entry out) {return out; // default value}}} Additionally, the method parseEntry 
ontains two parametrized repair o�ersthat present further appli
ations of o�ers, e.g., repetition by re
ursive 
alls with
hange input data (reparse) and return of default results (returnEntry).7.2 Mark and Re
ognize Contingen
ies before RuntimeContingen
ies with su�
iently de�ned 
onditions shall be distinguished fromerrors with only ne
essarily de�ned 
onditions. For this purpose, 
ontingen
iesshall be marked with the new keyword signal and distinguished from errors withthe known keyword throw. As a result, all 
ontingen
ies that o

ur synta
ti
allywithin a 
ode fragment, in
luding all 
alled levels, 
an be determined beforeruntime.7.3 Choose Contingen
ies Intera
tivelyIn non-trivial 
ases not all 
ontingen
ies 
an or should be handled everywhere,therefore, it should be possible to 
hoose arbitrary 
ontingen
ies at arbitrarypla
es. Due to the expe
ted huge amount of 
ontingen
ies [5℄ only an intera
tive
hoi
e seems reasonable, i.e., the 
hoi
e should not be supported by synta
ti
alme
hanisms, but by 
ooperation of all 
orresponding parser or 
ompiler respe
-tively, and development environments. The development environment shouldo�er a sorting and �ltering by diverse 
riteria, e.g., by type, 
lass hierar
hy, lo-
ation, 
all 
hain, frequen
y, already registered o

urren
e and the existen
e ofhandlings of the 
ontingen
y et
.
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7.4 Distinguish Handling with and without Possibility ofResumptionWhen the 
ontingen
y is 
hosen, the handling 
an be developed. The sta
k mustnot be unwound, if a resumption should be possible. To distinguish whether thesta
k is already unwound or not, instead of using the keyword 
at
h where thesta
k is already unwound, the new keyword de
ide should be used for signaled
ontingen
ies where the sta
k is not unwound. If multiple 
all levels of the 
all
hain exist that 
an handle the 
ontingen
y, the handling that is the topmostin the 
all 
hain is exe
uted. In this way, the handling 
an be overridden quasipolymorphi
ally along the 
all 
hain.7.5 Alternatives for ResumptionMultiple di�erent possibilities for resumption of 
ontingen
ies 
an be de�nedat every arbitrary level with separate name and parameters. These resumptionpossibilities are introdu
ed with the new keyword offer whi
h is followed by aname and formal parameter de
larations with usual notation. These o�ers areside entran
es into the interrupted methods that are still on the sta
k. Theyare like pro
edures (without result value), be
ause they should resume and notreturn. O�ers are only available for handlings of 
ontingen
ies (de
isions). Theyare additional interfa
es and 
an keep the information hiding prin
iple as 
on-ventional interfa
es.7.6 ResumptionTo 
all o�ers from de
isions the new keyword resume is used, followed by thename and the required a
tual parameters with usual notation. If multiple o�erswith the same name and parameters on di�erent 
all levels exist, the topmosto�er is 
hosen. For this reason the resumption is not always �xed to the levelwhere the 
ontingen
y is signaled originally. In this way, o�ers 
an be overridenquasi polymorphi
ally along the 
all 
hain. When the o�er and its level is 
hosenthe sta
k will be unwound till there.7.7 Reversal of Sear
h Dire
tionBy reversing the sear
h dire
tion for handlings top-down in 
ontrast to the 
on-ventional sear
h dire
tion bottom-up, it be
omes possible to override handlings,as it was intended by the example 10.7.8 Cooperation of LevelsFurthermore, the approa
h presented here enables the 
ooperation of theinvolved levels, e.g., to use the 
ontext knowledge of the de
ision level(advan
edPaperEmitter of example 10 or the user interfa
e of the example9) and also to repair the implementation (
urrentPath of example 9) on theo�er level without violating its information hiding.
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8 Comparison of Alternative Me
hanismsIn this se
tion the presented approa
h will be 
ompared to alternative languagesand me
hanisms. The rows of the table 1 list the features of the presented ap-proa
h. The 
olumns show whi
h features are supported by the alternatives.Features CommonLisp Java with Re-sumption (Call-ba
ks) [9℄ Closures Conti-nuations AOPDistin
tion of 
ontingen
ies - - - - -As
ertaining 
ontingen
ies - - - - -Intera
tive 
hoi
e - - - - -Reverse sear
h dire
tion - - - - -Cooperation of involved levels x x x x -Resumption x x x x -Resumption at arbitrary level x - - - -Multiple o�ers x x x - -A

ess to de
ision level afterre
ognition x - x x -Repair of o�er level x x x - -Parametrizing of o�er/repair x x x - -Table 1. Comparison of alternative languages and me
hanisms (x = possible, - = notpossible)Note for AOP: join points for throw statements are unknown, therefore, it
an't be avoided that the sta
k is unwound, hen
e, resumption isn't possible.9 Con
lusionsContingen
ies are known but undesired results and are spe
i�ed as well as thedesired results.In this light, 
ontingen
ies are the situations that 
an really be handled andwhere resumption is very reasonable. Hen
e, 
ontingen
ies are the true ex
ep-tions. Based on their only ne
essary de�ned 
onditions, errors are more di�
ultto handle reasonably or even spe
i�
ally.The systemati
 
onsideration and handling of 
ontingen
ies 
an diagnose andavoid subsets of spe
i�
ation violations e�e
tively before runtime. Furthermore,spe
i�
ation violations are not dete
ted by symptoms, but on the basis of theirsour
es. Therefore, partially extensive analyses to draw 
on
lusions from thesymptoms to the sour
es 
an be saved.
31



Referen
es1. Gar
ia, A.F., Rubira, C.M.F., Romanovsky, A., Xu, J.: A 
omparative study ofex
eption handling me
hanisms for building dependable obje
t-oriented software.The Journal of Systems and Software 59(2) (2001) 197�2222. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley Longman (April1994) ISBN 0201543303.3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basi
 
on
epts and taxon-omy of dependable and se
ure 
omputing. IEEE Trans. Dependable Se
. Comput.1(1) (2004) 11�334. Meyer, B.: Obje
t-Oriented Software Constru
tion. Prenti
e-Hall, In
., Upper Sad-dle River, NJ, USA (1988)5. Ora
le: Ora
le9 i database error messages, release 2 (9.2) part no. a96525-01. (2002)http://download.ora
le.
om/do
s/
d/B10501_01/server.920/a96525.pdf.6. Miller, R., Tripathi, A.: Issues with ex
eption handling in obje
t-oriented systems.Le
ture Notes in Computer S
ien
e 1241 (1997) 85�1037. Pitman, K.M.: Ex
eptional situations in lisp. In: Pro
eedings for the First EuropeanConferen
e on the Pra
ti
al Appli
ation of Lisp (EUROPAL'90), Cambridge, UK(1990)8. Seibel, P.: Pra
ti
al Common Lisp. Apress (September 2004) PDFat http://www.apress.
om/resour
e/freeebook/9781590592397 and HTML athttp://gigamonkeys.
om/book/.9. Gruler, A., Heinlein, C.: Ex
eption handling with resumption: Design and imple-mentation in java. In: PLC. (2005) 165�171

32



Männliche und weibliche Doppelstudenten:
ein Härtetest für Programmiersprachen

Christian Heinlein

Studiengang Informatik
Fakultät Elektronik und Informatik

Hochschule Aalen −− Technik und Wirtschaft
vorname.nachname@htw−aalen.de

Abstract. Vererbung und Subtyp-Polymorphie sind zwei wesentliche Konzep-
te, die objektorientierte Programmiersprachen von klassischen prozeduralen
Sprachen unterscheiden. Mit Hilfe einfacher Vererbung, die von allen objekt-
orientierten Sprachen angeboten wird, lassen sich z. B. Männer, Frauen und Stu-
denten jeweils als Untertypen eines allgemeineren, eventuell abstrakten Ober-
typs Person definieren. Um männliche und weibliche Studenten möglichst ein-
fach und direkt definieren zu können, ohne bereits vorhandene Definitionen
wiederholen zu müssen, benötigt man mehrfache Vererbung, die jedoch nur von
wenigen Sprachen (z.B. C++, Eiffel und CLOS) unterstützt wird und in der
Praxis zu zahlreichen Komplikationen führt (z.B. Namenskonflikte, Unterschei-
dung von virtuellen und nicht-virtuellen Basisklassen etc.). Um schließlich
Klassen definieren zu können, die die Eigenschaften anderer Klassen mehrfach
besitzen −− wie z. B. Doppelstudenten, die quasi zweimal Student in unter-
schiedlichen Studiengängen sind −−, benötigt man wiederholte Vererbung, die
von keiner gängigen Sprache direkt unterstützt wird, aber z. B. durch künstliche
Hilfsklassen in C++ oder durch Umbenennen von Features in Eiffel erreicht
werden kann. Spätestens beim Versuch, mehrfache und wiederholte Vererbung
miteinander zu kombinieren −− um beispielsweise männliche und weibliche
Doppelstudenten zu modellieren −−, stößt man jedoch an die Grenzen gängiger
Programmiersprachen.
Mit Hilfe sogenannter offener Typen und bidirektionaler Relationen, einem
Kernkonzept meiner Forschungsarbeit über „verbesserte prozedurale Program-
miersprachen“, lassen sich nicht nur mehrfache und wiederholte Vererbung ein-
facher handhaben als mit heutigen objektorientierten Sprachen, sie erlauben
darüber hinaus auch deren beliebige Kombination, d. h. die erwähnten männli-
chen und weiblichen Doppelstudenten lassen sich ohne Probleme definieren.
Der Schlüssel zu dieser erhöhten Flexibilität liegt in der Kombination der übli-
cherweise inkompatiblen Konzepte von Vererbung und Aggregation zu einem
einzigen einheitlichen Konzept.

1 Einfache, mehrfache und wiederholte Vererbung in C++

Abbildung 1 zeigt eine Vererbungshierarchie mit einer WurzelklassePerson , direk-
ten UnterklassenMann, Frau und Stud (Student/in) sowie indirekten Unterklassen
MnlStud (männlicher Student),WblStud (weiblicher Student) undDplStud (Dop-
pelstudent). Ein Doppelstudent sei hierbei ein Student, der in zwei Studiengängen
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PersonPerson

MannMann FrauFrauStudStud

MnlStudMnlStud WblStudWblStudDplStudDplStud

MnlDplStudMnlDplStud WblDplStudWblDplStud

Abbildung 1: Beispiel einer Vererbungshierarchie

(z. B. Mathematik und Informatik) gleichzeitig eingeschrieben ist und dementspre-
chend zwei unabhängigeStud -Teile (mit Daten wie Studiengang, Matrikelnummer,
bis jetzt erworbenen Credit points etc.) besitzen soll. Außerdem soll einDplStud -Ob-
jekt zweifach polymorph alsStud -Objekt verwendbar sein, um beispielsweise als
Mathematikstudent in eine Liste aller Mathematikstudenten und als Informatikstudent
in eine Liste aller Informatikstudenten eingetragen werden zu können.

Abbildung 2 skizziert C++-Code zur Implementierung der bis jetzt beschriebenen
Klassen sowie die polymorphe Verwendung eines Doppelstudenten in seinen beiden
Studentenrollen. Zur Implementierung der Klassen ist folgendes anzumerken:

• Das Schlüsselwort struct ist äquivalent zuclass , mit dem einzigen Unterschied,
dass alle Bestandteile einer so definierten Klasse automatisch öffentlich sind.

• Die konkreten Daten und Operationen der Klassen sind für die weiteren Betrachtun-
gen irrelevant.

• Damit Objekte der KlassenMnlStud undWblStud jeweils nurein Person -Teilob-
jekt enthalten, obwohl sie indirekt jeweils zweimal von Person abgeleitet sind,
mussPerson einevirtuelle Basisklasse vonMann, Frau undStud sein [4].

• Um eine Klasse wieDplStud zu definieren, die zweimal von derselben Basisklasse
Stud abgeleitet werden soll, benötigt man künstliche ZwischenklassenStudTeil1
undStudTeil2 [4].
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// Personen.
struct Person { ...... };

// Männer, Frauen und Studenten als spezielle Personen.
struct Mann : virtual Person { ...... };
struct Frau : virtual Person { ...... };
struct Stud : virtual Person { ...... };

// Männliche und weibliche Studenten
// als Kombination von Mann/Frau und Stud.
struct MnlStud : Mann, Stud { ...... };
struct WblStud : Frau, Stud { ...... };

// Doppelstudenten.
struct StudTeil1 : Stud {};
struct StudTeil2 : Stud {};
struct DplStud : StudTeil1, StudTeil2 { ...... };

// Ein Doppelstudent, z. B. ein Mathe−Info−Student.
DplStud* ds = new DplStud(...);

// Polymorphe Verwendung des ersten Stud−Teils.
Stud* s1 = (StudTeil1*)ds;
list<Stud*> mathe_studs; mathe_studs.push_back(s1);

// Polymorphe Verwendung des zweiten Stud−Teils.
Stud* s2 = (StudTeil2*)ds;
list<Stud*> info_studs; info_studs.push_back(s2);

Abbildung 2: C++-Code zur teilweisen Implementierung der Vererbungshierarchie

Die ebenfalls in Abb. 1 dargestellten KlassenMnlDplStud und WblDplStud sollen
männliche bzw. weibliche Doppelstudenten repräsentieren, die polymorph sowohl als
normale Doppelstudenten als auch zweifach als männliche bzw. weibliche Studenten
verwendbar sein sollen, damit beispielsweise ein männlicher Mathe-Info-Student ei-
nerseits wie ein gewöhnlicher Mathe-Info-Student (und damit auch als gewöhnlicher
Mathe- und als gewöhnlicher Info-Student) und andererseits sowohl als männlicher
Mathe-Student (und auf diese Weise wiederum auch als normaler Mathe-Student) als
auch als männlicher Info-Student (und damit auch wiederum als normaler Info-Stu-
dent) verwendet werden kann. Trotzdem soll ein männlicher Doppelstudent, wie in
Abb. 3 gezeigt, insgesamt natürlich nur zwei verschiedeneStud -Teilobjekte besitzen.
(Diese Abbildung sollte am besten dreidimensional betrachtet werden: die „obere“
EbenePerson − Stud|Stud − DplStud beschreibt einen gewöhnlichen Doppelstu-
denten mit einem Person- und zwei Studententeilen, während die „untere“ Ebene
Mann − MnlStud|MnlStud − MnlDplStud die zugehörigen männlichen Spezialisie-
rungen enthält.)

Damit ein männlicher Doppelstudent einerseits als gewöhnlicher Doppelstudent und
andererseits zweifach als männlicher Student verwendbar ist, muss die Klasse
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PersonPerson

StudStud StudStud

DplStudDplStud

MannMann

MnlStudMnlStud MnlStudMnlStud

MnlDplStudMnlDplStud

Abbildung 3: Teilobjekte einesMnlDplStud -Objekts

MnlDplStud sowohl von DplStud als auch zweifach (via Hilfsklassen
MnlStudTeil1 undMnlStudTeil2 ) von MnlStud abgeleitet werden:

struct MnlStudTeil1 : MnlStud {};
struct MnlStudTeil2 : MnlStud {};
struct MnlDplStud : DplStud, MnlStudTeil1, MnlStudTeil2 {};

Damit enthält ein Objekt dieser Klasse jedoch insgesamt vier unabhängigeStud -Teil-
objekte! Um dies zu vermeiden, könnte man versuchen, einzelne nicht-virtuelle Un-
terklassenbeziehungen durch virtuelle zu ersetzen. Doch egal welche Kombination
von virtuellen und nicht-virtuellen Basisklassen man wählt, man erreicht nie die in
Abb. 3 dargestellte Struktur von MnlDplStud -Objekten, d. h. dieses Vererbungspro-
blem scheint in C++ unlösbar zu sein.

Andere Sprachen mit Mehrfachvererbung (konkret wurden CLOS und Eiffel unter-
sucht) scheitern zum Teil bereits an der adäquaten Modellierung von Doppelstuden-
ten.

2 Vererbung mit offenen Typen und bidirektionalen Relationen

Typen und Attrib ute. Offene Typen [3, 2] sind ein alternatives Datenmodell für pro-
zedurale und objektorientierte Programmiersprachen, das im Rahmen des Projekts
APPLEs (Advanced Procedural Programming Language Elements) [1] an der Univer-
sität Ulm entwickelt wurde. Ihr Grundprinzip besteht darin, dass Typ- und Attributde-
klarationen syntaktisch voneinander getrennt werden. Dadurch ist es möglich, die At-
tribute eines Typs inkrementell zu definieren, d. h. je nach Bedarf schrittweise zu ei-
nem vorhandenen Typ hinzuzufügen. Alle so definierten Attribute eines Typs sind op-
tional, d. h. ein konkretes Objekt des Typs muss nicht notwendigerweise Werte für alle
Attribute des Typs besitzen. Wenn man auf ein nicht vorhandenes Attribut zugreift, er-
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hält man als Ergebnis einen wohldefinierten Nullwert, der die Abwesenheit eines ech-
ten Werts anzeigt. Die Objekte offener Typen besitzen Referenzsemantik, ähnlich wie
Objekte in Java, es gibt eine automatische Speicherbereinigung, und offene Typen
sind statisch typsicher.

Abbildung 4 zeigt die Definition eines offenen TypsPerson mit zwei einwertigen At-
tributenname und vorname (jeweils vom Typ string ) und einem benutzerdefinier-
ten Konstruktor zur Erzeugung und Initialisierung einesPerson -Objekts sowie eine
schematische Darstellung des so erzeugten Objektsp.

typename Person; // Offener Typ.
Person −> string name; // Einwertiges Attribut.
Person −> string vorname; // Dto.

// Konstruktor erzeugt Person−Objekt und initialisiert
// Attribut vorname mit v und Attribut name mit n.
Person (string v, string n) { // Konstruktor.

return Person(@vorname, v)(@name, n);
}

// Aufruf des Konstruktors und Verwendung des Objekts p.
p = Person("Christian", "Heinlein");
print(p@vorname, p@name);

p

Person

"Heinlein"
name

"Christian"
vorname

Abbildung 4: Offener Typ mit Attributen und Konstruktor

Bidir ektionale Relationen. Neben ein- und mehrwertigen Attributen, bieten offene
Typen auch eine direkte Unterstützung fürbidirektionale Relationen, d. h. Paare von
Attributen, die zueinander inverse Abbildungen darstellen. Das besondere hierbei ist,
dass bei einer Änderung einer Richtung einer Relation die Gegenrichtung automatisch
mitgeändert wird. Abbildung 5 zeigt neben zwei weiteren offenen Typen Auto und
Motor zwei unterschiedliche Arten von Relationen sowie eine exemplarische Bezie-
hungsstruktur zwischen Objekten. (Bei einer anonymen Relation fehlen die Namen
der beiden Attribute; in diesem Fall können die jeweiligen Typnamen als „Rollenna-
men“ verwendet werden.) Wie am Anfang dieses Abschnitts erwähnt, sind Attribute
und damit auch Relationen grundsätzlich optional, d. h. ein Auto muss nicht notwen-
digerweise mit einem Motor in Beziehung stehen und umgekehrt.
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typename Auto;
Person besitzer <−>> Auto autos; // 1:N−Relation.

typename Motor;
Auto <−> Motor; // Anonyme 1:1−Relation.

Person

Auto
autos

besitzer Motor

Auto

autos
besitzer

Motor

Abbildung 5: Bidirektionale Relationen

Einfache „Vererbung“. Interessanterweise lassen sich mit bidirektionalen Relatio-
nen auch Vererbungsbeziehungen modellieren, ohne dass man hierfür spezielle Verer-
bungsmechanismen benötigt. Die einzige notwendige Erweiterung sind sog.automati-
sche Relationen, die vom Compiler bei Bedarf automatisch angewandt werden, um
ein Objekt des einen Typs in ein Objekt des anderen Typs umzuwandeln (ähnlich wie
in objektorientierten Sprachen ein Objekt eines Untertyps bei Bedarf automatisch in
ein Objekt eines Obertyps umgewandelt wird).

Abbildung 6 zeigt, wie sich auf diese WeiseStud quasi als Untertyp von Person
definieren lässt und wie ein Student schrittweise aus einemPerson - und einem
Stud -Teilobjekt zusammengesetzt werden kann. Abbildung 7 zeigt zwei benutzerde-
finierte Konstruktoren, die diese Objektkonstruktion kapseln, einen Aufruf des zwei-
ten Konstruktors sowie typische „objektorientierte“ Verwendungen einesStud -Ob-
jekts. (Die Zweckmäßigkeit des ersten Konstruktors wird später ersichtlich.)

Mehrfache Vererbung. Abbildung 8 zeigt am BeispielMnlStud , wie sich mehrfa-
che Vererbung mit bidirektionalen Relationen modellieren lässt. Die verschiedenen
Konstruktoren des Typs und die zugehörigen Abbildungen zeigen, dass man je nach
Bedarf sowohl nicht-virtuelle als auch virtuelle Basisklassen nachbilden kann, wobei
zur Implementierung des letzten Konstruktors die Konstruktion von Mann und Stud
„aus existierenden Teilobjekten“ (erster Konstruktor in Abb. 7) verwendet wird.

Wiederholte Vererbung. Die Abbildungen 9 und 10 zeigen die Definition der Typen
DplStud und MnlDplStud sowie die zugehörigen Konstruktoren. Im Gegensatz zur
C++-Lösung fällt auf, dass keinerlei künstliche Hilfsklassen benötigt werden und dass
sich männliche Doppelstudenten problemlos definieren lassen.
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typename Stud; // Offener Typ.
Stud −> string fach; // Attribut.
Stud −> integer matr; // Attribut.
Stud <−>! Person; // Automat. 1:1−Relationen zu Person.

// Person− und Stud−Objekt erzeugen und miteinander verbinden.
Person p = Person(@vname, "Christian")(@name, "Heinlein");
Stud s = Stud(@fach, "Info")(@matr, 123456);
s(@Person, p);

Person

"Heinlein"
name

"Christian"
vname

Stud

123456
matr

"Info"
fach

p

s

Abbildung 6: Einfache Vererbung mit bidirektionalen Relationen

// Konstruktion eines Studenten aus einem exist. Person−Obj.
Stud (Person p, string f, integer m) {

return Stud(@Person, p)(@fach, f)(@matr, m);
}

// Konstruktion eines Studenten aus atomaren Werten.
Stud (string v, string n, string f, string m) {

// Obigen Konstruktor aufrufen.
return Stud(Person(v, n), f, m);

}

// Aufruf des zweiten Konstr. und Verwendung des Objekts s.
Stud s = Stud("Christian", "Heinlein", "Info", 123456);
print(s@fach, s@matr);

// Polymorphe Verwendung von Stud s als Person p.
print(s@name); // Entspricht: print(s@Person@name)
Person p = s; // Entspricht: Person p = s@Person;

// Dynamischer Typtest: Ist p ein Student?
if (p@Stud) {

print(p@Stud@matr); // Expliziter "Downcast" Person −> Stud.
}

Abbildung 7: Konstruktion und Verwendung einesStud -Objekts
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typename Mann;
Mann −> boolean bart;
Mann <−>! Person; // Automatische 1:1−Beziehung zu Person.

// Konstruktoren analog zu Stud.
Mann (Person p, boolean b) { ...... }
Mann (string v, string n, boolean b) { ...... }

typename MnlStud;
MnlStud <−>! Mann; // Automatische 1:1−Beziehung zu Mann.
MnlStud <−>! Stud; // Automatische 1:1−Beziehung zu Stud.

// Konstruktion aus existierenden Teilobjekten.
MnlStud (Mann m, Stud s) {

return MnlStud(@Mann, m)(@Stud, s);
}

// Konstr. aus atomaren Werten ("schizophren", Abb. links).
MnlStud (string v1, string n1, boolean b,

string v2, string n2, string f, integer m) {
Mann m = Mann(v1, n1, b);
Stud s = Stud(v2, n2, f, m);
return MnlStud(m, s); // Ersten Konstruktor aufrufen.

}

// Konstruktion aus atomaren Werten (normal, Abb. rechts).
MnlStud (string v, string n, boolean b, string f, integer m)
{

Person p = Person(v, n);
Mann m = Mann(p, b);
Stud s = Stud(p, f, m);
return MnlStud(m, s); // Ersten Konstruktor aufrufen.

}

Person

Mann Stud

MnlStudMnlStud

Mann

Person

Stud

Person

Abbildung 8: Mehrfache Vererbung mit bidirektionalen Relationen
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typename DplStud;
DplStud <−> Stud StudTeil1; Stud StudTeil1 <−>! Person;
DplStud <−> Stud StudTeil2; Stud StudTeil1 <−>! Person;

// Konstruktion aus existierenden Teilobjekten.
DplStud (Stud s1, Stud 2) {

return DplStud(@StudTeil1, s1)(@StudTeil2, s2);
}

// Konstruktion aus atomaren Werten.
DplStud (string v, string n, string f1, integer m1,

string f2, integer m2) {
Stud s1 = Stud(Person(), f1, m1);
Stud s2 = Stud(Person(), f2, m2);
Person p = Person(v, n)(@StudTeil1, s1)(@StudTeil2, s2);
return DplStud(s1, s2); // Obigen Konstruktor aufrufen.

}

Abbildung 9: Doppelstudenten

3 Zusammenfassung

Anhand des Beispiels männlicher (und weiblicher) Doppelstudenten wurde gezeigt,
dass sich bestimmte Vererbungsprobleme mit gängigen Programmiersprachen
(höchstwahrscheinlich) nicht lösen lassen. Offene Typen und bidirektionale Relatio-
nen hingegen bieten die notwendige Flexibilität, um derartige Probleme zu lösen, da
Objekte von „Untertypen“ nach Belieben aus Objekten der „Obertypen“ zusammen-
gesetzt werden können.
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typename MnlDplStud;
MnlDplStud <−>! DplStud;
MnlDplStud <−> MnlStud MnlStudTeil1;

MnlStud MnlStudTeil1 <−>! Mann;
MnlDplStud <−> MnlStud MnlStudTeil2;

MnlStud MnlStudTeil2 <−>! Mann;

// Konstruktion aus existierenden Teilobjekten.
MnlDplStud (DplStud ds, MnlStud ms1, MnlStud ms2) {

return MnlStud(@DplStud, ds)
(@MnlStudTeil1, ms1)(@MnlStudTeil2, ms2);

}

// Konstruktion aus atomaren Werten.
MnlDplStud (string v, string n, boolean b,

string f1, integer m1, string f2, integer m2) {
DplStud ds = DplStud(v, n, f1, m1, f2, m2);
MnlStud ms1 = MnlStud(Mann(), ds@StudTeil1);
MnlStud ms2 = MnlStud(Mann(), ds@StudTeil2);
Mann m =

Mann(ds, b)(@MnlStudTeil1, ms1)(@MnlStudTeil2, ms2);
return MnlDplStud(ds, ms1, ms2); // Ersten Konstr. aufrufen.

}

Person

Stud
StudTeil1 Stud

StudTeil2

DplStud

StudTeil1 StudTeil2

Mann

MnlStud

MnlStudTeil1

MnlStud

MnlStudTeil2

MnlDplStud

MnlStudTeil1 MnlStudTeil2

Abbildung 10: Männliche Doppelstudenten
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Der Internetuser ist in den letzten Jahren deutlich anspruchsvoller gewor-
den. Als Folge reicht es nicht mehr aus, auf eine HTTP Anfrage mit statischem
(X)HTML zu reagieren. Vielmehr ist es heute üblich dass Webseiten Ihre Da-
ten dynamisch per HTTP Requests vom Server anfragen, falls diese gebraucht
werden. Um dieses Verhalten zu programmieren gibt es zwei Ansätze. Zuerst
einmal ist es möglich mit Webtoolkits wie z.B. GWT (Google Web Toolkit) Ja-
vaScript Code zu generieren, oder der entsprechende JavaScript Code wird von
Hand vom Programmierer geschrieben. Der erste Ansatz bietet eine deutlich
höhere Zuverlässigkeit, da eine große Anzahl Fehler durch die richtige Wahl der
Quellsprache vermieden werden kann. Leider geht durch den Einsatz eines sol-
chen Toolkits häufig ein Teil der Flexibilität verloren. Falls dies notwendig ist,
muss der Programmierer auf JavaScript zurückgreifen.

JavaScript Programme statisch zu analysieren ist wegen vieler Eigenschaften
der Programmiersprache schwierig. Im Vortrag werden zuerst kurz anhand von
einigen wenigen Beispielen typische JavaScript Programmierfehler aufgezeigt.

Anschließend wird ein Typesystem vorgestellt, dass eine Teilmenge von Ja-
vaScript analysiert und dennoch übliche Muster der JavaScript Programmierer
ermöglicht.

Progress und Preservation sind für das Typsystem bewiesen. Das Erstellen
eines Inferenzalgorithmus ist zur Zeit in Arbeit und steht als Diskussionsthema
zur Verfügung. Ziel der Inferenz ist es, JavaScript Code mit möglichst wenig
Annotationen versehen zu müssen, und so die Migrationsarbeit von ungetypten
JavaScript Code zu minimieren.
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[Abstract]
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1 Abstract

Java(X) is a framework for type refinement. It extends Java’s type language
with annotations drawn from an algebra X and structural subtyping in terms
of the annotations. Each instantiation of X yields a different refinement type
system with guaranteed soundness [1].

Java(X) has a concept of activity annotations paired with the notion of
droppability. An activity annotation is a capability which can grant exclusive
write permission for a field in an object and thus facilitates a typestate change
(strong update). Propagation of capabilities is either linear or affine (if they are
droppable). Thus, Java(X) can perform protocol checking as well as refinement
typing.

To enable a type inference algorithm for Java(X) we setup a constraint
type system and a constraint solver. The main concerns were addressed to the
behavior of the ternary splitting relation and its impact on the complexity of
the constraint solver.

Luckily, against the first intuition, the splitting relation for alias handling
does not increase the complexity of the constraint solver. Since the splitting
may completely be forced by one of the components of the splitting relation, the
corresponding constraint may be solved directly without additional guessing or
further, potentially exponential many, constraints.

As prove of concept we implemented the provided type inference for Java(X)
and gained a running system with useful error messages for the programmer.
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Abstract. In the past we analyzed typeless Java programs. One of our
results was, that there may be different correct typings for one method.
This means that the principal types of such methods are intersection
types. We presented a type-inference algorithm. For typeless Java meth-
ods the algorithm infers its principal intersection type. Unfortunately,
like Java byte-code, Java does not allow intersection types.
In this paper we present an algorithm, which resolves intersection types
of Java methods, such that Java programs with standard typings are
generated.
Additionally, we will refine the definition of Java method principal types.

1 Introduction

In [7, 6] we presented a type inference algorithm for a core Java language. The
algorithm allows us to write typeless Java programs. The algorithm determines
all correct possible typings. One of the results of [7] is that typeless Java methods
can have more than one correct typing, which means that the method is typed
by an intersection of function types. The type inference algorithm infers this
intersection type.
We have implemented the algorithm as an Eclipse plugin. As the Java byte-code
does not allow intersection types, we implemented the plugin, such that after
type inference the user has to select one of the possible typings. The byte-code
is generated only for this selected typing.
It is our purpose to improve the plugin such that type selection is no longer
necessary. This means that byte-code can be generated for methods with inferred
intersection types.
For this paper we need to consider some important definitions from [6]. Let
STypeTS (BTV ) be the set of usual Java types. In the formal definition ([6],
Def. 3) BTV stands for the set of (bounded) type variables ([6], Def. 1). We call
the elements of STypeTS (BTV ) simple types. In Java programs simple types
describe types of fields, types of methods’ parameters, return types of methods,
and types of local variables. For the type inference we need intersections of
function types, which describe the types of methods. A function type is given
as θ1 × . . .× θn → θ0, where θi ∈ STypeTS (BTV ). An intersection type is an
intersection ty1& . . .&tym of function types ty1, . . . , tyn. There is a subtyping
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ordering on simple types. We denote this by ≤∗ (cp. [6], Def. 5). Finally there
are arguments of type terms, which are wildcard types. There are two kinds of
wildcard types “? extends ty” respectively “? super ty”. We abbreviate them
by ?ty respectively by ?ty. For further definitions we refer to [6], Section 2.
The type inference algorithm determines types of methods, which are given as
Java code without types. The inferred method types probably contain intersec-
tion types. Unfortunately, standard Java does not include intersection types for
methods. This means that there is no canonical strategy to generate byte-code
for methods with intersection types. As there is an isomorphic mapping from
the signature of the standard Java methods to the signature of the correspond-
ing methods in the byte-code, the intersection types must be resolved for code
generation. In this paper we present the resolving of intersection types by trans-
forming the Java code with inferred intersection types to equivalent standard
Java code (without intersection types).
The paper is organized as follows. In the next section we define the semantics of
method calls for methods with intersection types. In the third section we give a
first approach to resolve intersection types. We will see that this approach leads
to incorrect and inefficient Java programs. In the fourth section we consider
call-graphs of Java methods. Call-graphs are the base of our intersection type
resolving algorithm. We present the corresponding algorithm in the fifth section.
In the sixth section we give a refined definition for Java method’s principal types,
which is based on the ideas of intersection type resolving. Then we consider
related work on intersection types and principal typings. Finally we close with
a summary and an outlook.

2 Semantics of type-inferred Java programs

The semantics of a type-inferred Java program is defined straightforwardly. All
control-structures have the same semantics as in standard Java (e.g. [4], [1]).
Only the semantics of the method calls differ, as there are intersection types.
The main idea to define the semantics of method calls for methods with inter-
section types is the following: One typing of the intersection type of the method
is determined by the argument types of the method calls. The method is then
executed with this typing.

Definition 1 (Semantics of method calls). Let a Java method m be given,
where one typing of its intersection type is selected. This means that the method
corresponds to a standard typed Java method.

... m ( ... ) { ... receiver.method(t1, ..., tn); ... }

The method m contains a method call receiver.method(t1, ..., tn), where
receiver has the type recty and t1 . . .t2 have the types ty1 . . . tyn, respectively.
Furthermore the result of the method call has the type rettype.
Then, the smallest class is determined, which is a supertype from recty with the
method method, where ty′1 × . . .× ty′n → ty′ is one element of its intersection
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type and for 16 i6n the types ty′i are the smallest supertypes of tyi, respectively,
and ty′ is a subtype of rettype. Then this method method is executed with the
corresponding typing.

Example 1. Let the following typeless Java program be given:

class OL {
Integer m(x) { return x + x; }
Boolean m(x) { return x || x; }

}

class Main {
main(x) { ol;

ol = new OL();

return ol.m(x); } }

By type-inference the following typings are determined:

OL.m : Integer→ Integer
OL.m : Boolean→ Boolean
Main.main : Integer→ Integer & Boolean→ Boolean

Let the Java program be extended by the simple class simpleClass with the
method new meth:

class simpleClass {
new_meth(x) {

Main rec = new Main();

Integer r = rec.main(x); } }

We consider the method call rec.main(x). The typing is given as: rec:Main,
x:Integer, and main:Integer → Integer.
The class Main itself is the smallest class, which is a supertype of Main with the
method main, where Integer→ Integer is one element of its intersection type,
Integer is the smallest supertype of Integer, and the return type Integer of
main is also a subtype of the demanded type Integer.
This means that the main method in the class Main is called with the following
typing:

Integer main(Integer x) {
OL ol;

ol = new OL();

return ol.m(x); }

3 First approach

As a first approach to resolve inferred intersection types a new overloaded Java
method with standard typing is generated for each element of the intersection
type.
Considering the following examples, we will recognize, that this strategy works
only in some cases.
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Example 2. Let the Java program from Example 1 be given again. As said above
the following typings are determined by type-inference:

OL.m : Integer→ Integer
OL.m : Boolean→ Boolean
Main.main : Integer→ Integer & Boolean→ Boolean

If we generate an own Java method for each element of the intersection type we
get the main class:

class Main {
Integer main(Integer x) {

OL ol;

ol = new OL();

return ol.m(x); }

Boolean main(Boolean x) {
OL ol;

ol = new OL();

return ol.m(x); } }
The result is a correct Java program.

The next example shows that this strategy does not work in all cases.

Example 3. Let the following Java program be given, which implements the mul-
tiplication of two integer matrices.

class Matrix extends Vector<Vector<Integer>> {
mul(m){
ret; ret = new Matrix();

Integer i = 0;

while(i <size()) {
v1; v1 = this.elementAt(i);

v2; v2 = new Vector<Integer>();

Integer j = 0;

while(j < v1.size()) {
Integer erg = 0;

Integer k = 0;

while(k < v1.size()) {
erg = erg + v1.elementAt(k) * m.elementAt(k).elementAt(j);

k++; }
v2.addElement(new Integer(erg));

j++; }
ret.addElement(v2);

i++; }
return ret; }

}
By type-inference the following typings are determined: mul: &β,α(β→α),
where

β≤∗ Vector<? extends Vector<? extends Integer>>,
Matrix≤∗ α

This means, that for each pair of arguments and result types a new method mul
would be generated:
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class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }
Matrix mul(Vector<? extends Vector<Integer>> m) { ... }
Matrix mul(Vector<Vector<Integer>> m) { ... }
...

Vector<Vector<Integer>> mul(Vector<Vector<Integer>> m) { ... }
...

Vector<? extends Vector<? extends Integer>> mul(Matrix m) { ... } }

This is not a correct Java program. There are two conflicts. On the one hand
it is not allowed for overloaded methods that argument types have different
instances of the same generic type. For example this means for the method
mul, that the argument type Vector<?Vector<Integer>> of one declaration is
not allowed, if there is another method declaration with the argument type
Vector<?Vector<?Integer>>. This is no type theoretical problem. But as the
byte-code works only with raw types, there is no difference between both argu-
ment types during execution.
On the other hand different method declarations of mul, where the argument
type is in all declarations equal, e.g. Vector<Vector<Integer>>, lead to ambi-
guity.

If we consider the generated method declarations more accurately, we recognize
that in all declarations the same code is executed. One approach to solve the
problem could be to generate one declaration with a supertype of all other dec-
larations: mul : Vector<?Vector<?Integer>> → Matrix. The argument type
Vector<?Vector<?Integer>> is the supertype of all other argument types and
Matrix is the subtype of all other result types. Later on, we will call this function
type the supertype of all possible typings.
Now, we will present the algorithm, which resolves the intersection types, such
that incorrect and unnecessary copies of methods are avoided.

4 Call-graph

We consider call-graphs of Java methods as the base of the intersection type re-
solving algorithm. Call-graphs are graphs of method declarations, which contain
all methods, that are called during the execution, for a given method with one
typing.

Definition 2 (Call-graph). Let p be a Java program containing one or more
classes, where the (intersection) types of the methods are inferred. Furthermore
let the triple cl.m : τ be given, where m is a declared method in the class cl
and τ is an instance of one element of the inferred intersection type. The call-
graph CG( cl.m : τ ) is given as the pair (M,MC), where M is the set of declared
methods. MC ⊆M×M is given as the smallest set with the following properties:

– Let cl.m : ty ∈ M , where the function type τ is an instance of an element
of the intersection type ty. It holds (cl.m : ty, cl′.m′ : ty′) ∈ MC for all
methods m′, which are called in cl.m : ty, if m has the function type τ .
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– If (cl.m : ty, cl′.m′ : ty′) ∈ MC and cl′.m′ : ty′ is called with function type
τ ′, then (cl′.m′ : ty′, cl′′.m′′ : ty′′) ∈ MC for all methods m′′, which are
called in cl′.m′ : ty′, if m′ has the function type τ ′.

Main.main: Integer−>Integer
& Boolean −> Boolean

OL.m: Integer −> Integer

Main.main: Integer−>Integer
& Boolean −> Boolean

Ol.m: Boolean −> Boolean

Fig. 1. CG( Main.main : Integer→ Integer ), CG( Main.main : Boolean→ Boolean )

Example 4. Let the Java program from Example 1 be given again. From the
inferred typings the following call-graphs are determined:
CG( Main.main : Integer → Integer ) is the left call-graph in Fig. 1. In this
case τ = Integer→ Integer. In Main.main with the type τ the method m with
function type Integer→ Integer is called.
CG( Main.main : Boolean → Boolean ) is the right call-graph in Fig. 1. In this
case τ = Boolean→ Boolean. In Main.main with the type τ the method m with
function type Boolean→ Boolean is called. It is obvious that for each different
type of main different methods are called.

Matrix.mul: Vector< Vector< Int>> −> Matrix & ? ?

?Vector< Vector<Int>> −> Matrix & ... & 

Matrix −> Vector< Vector< Int>> ??

Vector<T>.size:−> int Vector<T>.addElement: T −> void

Vector<T>.elementAt −> T

Fig. 2. The call-graph CG( Matrix.mul : τ ) for all τ

Example 5. Let us consider again the Java program Matrix (Example 3). In
this case for all function types τ of the triple Matrix.mul:τ the call-graphs
CG( Matrix.mul : τ ) are the same. The call-graph is given in Fig. 2.

In the two given examples the inferred types contain no generics. Therefore no
instances of elements of intersection types are considered. The next example
presents a call-graph of an instance of an element of an intersection type.
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Example 6. Let the following Java program be given:

class Put {
<T> putElement(T ele, Vector<T> v) { v.addElement(ele); }
<T> putElement(T ele, Stack<T> s) { s.push(ele); }

main(ele, x) { putElement(ele, x); } }

The inferred intersection type of main is
main : T× Vector<T>→ void & T× Stack<T>→ void.

The call-graph CG( Put.main : Integer× Stack<Integer> ) is given as:

& T x Stack<T> −> void
Put.main: T x Vector<T> −> void

Put.putElement: T x Stack<T> −> void

As Integer× Stack<Integer>→ void is an instance of T× Stack<T>→ void
in main the method putElement:T× Stack<T>→ void is called.

The following intersection type resolving algorithm bases on the call-graph.

5 The resolving algorithm

In this section we describe the algorithm, which resolves the intersection types,
such that standard Java programs with standard types are generated.
Before we can present the algorithm we have to generalize the definition of the
subtyping ordering to function types.

Definition 3 (Subtyping on function types). Let the subtyping ordering ≤∗

on simple types ([6], Def. 5) be given. For two function types ty1 = θ1 × . . .× θn → θ′

and ty2 = θ′1 × . . .× θ′n → θ holds: ty1 is a subtype of ty2 if for 16 i6n holds
θi≤∗ θ′i, respectively, and θ≤∗ θ′. We call the maximum in the subtyping ordering
supertype.

Example 7. The function type Matrix→ Vector<? extends Vector<Integer>>
is a subtype of Vector<Vector<Integer>>→ Matrix as it holds

Matrix≤∗ Vector<Vector<Integer>> and
Matrix≤∗ Vector<? extends Vector<Integer>>.

In contrast Integer→ Integer is no subtype of Number→ Number, as Integer
≤∗ Number, but not vice versa.

Now we are able to present the algorithm.
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The algorithm

Input: A Java program p consisting of different classes with inferred (intersec-
tion) types of its methods.

Output: A Java program p′ consisting of the same classes as p, where the
methods have standard Java types. The semantics of p and p′ are equal.

1. Step: For every class cl in p consider for each method m the intersection
type tym:
– Build the call-graph CG( cl.m : τ ) for each function type τ of the inter-

section type tym.
– Group all elements τ of tym, where CG( cl.m : τ ) is the same graph and

there is a supertype.
2. Step: Determine the supertype of the respective group.
3. Step: Generate for each group of function types the corresponding Java code

with the supertype as standard typing in p′.

Example 8. Let us consider the Java program from Example 1 as input p.

1. Step: The only method, where an intersection type is inferred, is main in the
class Main. The intersection type is given as

Integer→ Integer & Boolean→ Boolean.

– The call-graphs are given in Example 4.
– There are two groups, each with one element:
{ Main.main : Integer→ Integer } and
{ Main.main : Boolean→ Boolean }, as there are different call-graphs.

2. Step: The respective supertypes are also
Integer→ Integer and Boolean→ Boolean.

3. Step: The corresponding Java code, which is added to p′ is given as

Integer main(Integer x) {
OL ol;

ol = new OL();

return ol.m(x); }

Boolean main(Boolean x) {
OL ol;

ol = new OL();

return ol.m(x); }

If we consider the result it is obvious that the result is the same as in the first
approach (cp. Example 2). In the following example we will see some differences
in comparison to the first approach.

Example 9. Let the Java program Matrix from Example 3 be given as input.

1. Step: The intersection type of mul is given as: mul: &β,α(β→α), where

β≤∗ Vector<? extends Vector<? extends Integer>>,
Matrix≤∗ α
– The call-graph for all elements τ of the inferred intersection type of mul

is given in Fig. 2.
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– As there is a supertype Vector<?Vector<?Integer>> → Matrix for all
elements, there is only one group, which contains all elements τ .

2. Step: The supertype is determined as: Vector<?Vector<?Integer>>→ Matrix.
3. Step: The corresponding Java code, which is added to p′ is given as:

Matrix mul(Vector<? extends Vector<? extends Integer>> m) { ... }

The example shows that the algorithm solves the problems, which arose in the
first approach (cp. Example 3).
The following theorem shows the correctness of the algorithm.

Theorem 1. Let p be a Java program and p′ be the result of applying the inter-
section type resolving algorithm. The semantics of p equals to the semantics of
p′

6 Principal type

In the following we will refine the definition of principal types (Def. 8 [6]) for
Java methods.

Definition 4 (Principal type). An intersection type of a method
m : (θ1,1 × . . .× θ1,n → θ1) & . . .& (θm,1 × . . .× θm,n,→ θm)

in a class Cl is called principal if for any correct type annotated method declara-
tion rty m(ty1 a1, . . . , tyn an) { . . . } there is an element (θi,1 × . . .× θi,n,→ θi)
of the intersection type and there is a substitution σ, such that σ( θi )≤∗ rty,
ty1≤∗ σ( θi,1 ) , . . . , tyn≤∗ σ( θi,n ) and

CG( Cl.m : θi,1 × . . .× θi,n,→ θi ) = CG( Cl.m : ty1× . . .× tyn→ rty )

This refined definition guarantees, that for each method, which is generated by
the resolving algorithm, at least one typing is contained in the principal type.

Example 10. In Example 6 the principal type of main is
main : T× Vector<T>→ void & T× Stack<T>→ void.

7 Related Work

Besides our introduction of intersection types for methods in Java with type
inference, in standard Java there are intersection types of simple types during
compile-time [4], §4.9). Intersection types arise in the processes of capture con-
version and type inference during method invocation. In Java it is not allowed
to write an intersection type as a part of a program.
Basically, the intersection type discipline was introduced by Coppo and Dezani [2].
In the type system of Damas and Milner [3] some λ–terms are not typable.
Therefore the type system is extended by intersection types. The type inference
problem for these type systems is not decideable in general (e.g. [5]). Our Java

53



type system is a restriction of them. In comparison, our Java type system con-
tains no λ–terms. This means that we do not have the function type constructor
→ and no higher-oder functions. Instead of that, Java has the function template
(ty1, . . . , tyn)→ ty.
In [8] a general definition of principal type property is given. Our definition
(Def. 4) as well as the definition of Damas and Milner [3] satisfies the definition
of [8].

8 Conclusion and Outlook

Beginning with the result of [7, 6] that the inferred principal types of typeless
Java methods can be intersection types, we showed how they can be resolved.
This means that type inferred Java programs with intersection types can be
translated in Java byte-code. In the Eclipse plugin type selection is no longer
necessary.
Some properties of the resolving algorithm lead to a refined definition of a Java
method’s principal type. The refined version guarantees that for each method,
which is generated by the resolving algorithm, at least one element is contained
in the principal type.
Further investigation is necessary to optimize the procedure: type inference algo-
rithm, intersection type resolving algorithm, and code generation. At the moment
the type inference algorithm infers some types for the methods, which are erased
again in the second step of the resolving algorithm.
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7. M. Plümicke and J. Bäuerle. Typeless Programming in Java 5.0. In R. Gitzel,
M. Aleksey, M. Schader, and C. Krintz, editors, 4th International Conference on
Principles and Practices of Programming in Java, ACM International Conference
Proceeding Series, pages 175–181. Mannheim University Press, August 2006.

8. S. van Bakel. Principal type schemes for the strict type assignment system. Journal
of Logic and Computing, 3(6):643–670, 1993.

54



Graph Parser Combinators:
A Challenge for Curry-Compilers
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1 Introduction

In a recent paper [1] we have shown that graph parser combinators1 are an ideal
playing ground for functional-logic programming languages [2]. Our approach
makes heavy use of key features of both the functional and the logic programming
paradigm: Higher-order functions allow the treatment of parsers as first class
citizens. Non-determinism and logical variables are beneficial for dealing with
errors and incomplete information. Parsers can even be applied backwards and,
thus, be used as generators or for graph completion. This feature is very useful
in the domain of diagram editors where it can be exploited for the computation
of diagram completions [3].

The framework proposed in [1] has been implemented in Curry2, a popular,
actively developed functional-logic programming language. There are several dif-
ferent Curry compilers3. For instance, the Münster Curry Compiler MCC is a
native code compiler that generates efficient programs. The Portland Aachen
Kiel Curry System PAKCS compiles Curry to Prolog, a high-level language for
which several efficient compilers exist. The complementary approach, i.e. compil-
ing to Haskell, has been realized with the Kiel Curry System KiCS recently [4].
While implementing our graph parser combinators we have noted that each of
these compilers has specific strengths and weaknesses. Furthermore, they sup-
port different experimental language extensions, some of which have appeared to
be very useful in our setting. Thus, unfortunately, we ended with three versions
of our library.

In this report we summarize and share these experiences. Using a practically
relevant application of functional-logic programming we hope to give implemen-
tors a hint which aspects we have found particularly important. Furthermore,
our application can serve as a benchmark for Curry compilers: With graph pars-
ing we can assess the performance of compilers in dealing with non-determinism
and large numbers of logical variables. We also describe a meaningful application
of extensive sets of disequality constraints in this context. All in all, we hope
that our discussion will have an impact on the future development of the Curry
programming language.
1 Project website: http://www.unibw.de/steffen.mazanek/grappa, 30.06.2008
2 http://www.informatik.uni-kiel.de/~curry/report.html, 30.06.2008
3 http://www.informatik.uni-kiel.de/~curry/implementations.html, 30.06.2008
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Fig. 1. a) Example flowgraph and b) HRG of flowgraphs

2 Graph Parser Combinators in brief

In this section we briefly introduce our application domain. We give an informal
notion of graph grammars and introduce the combinators as our benchmark. A
more precise introduction is given in [1].

2.1 Hypergraphs and Hyperedge Replacement Grammars

Hyperedge replacement grammars HRG are a well-known way of describing lan-
guages of hypergraphs, i.e., graphs where edges are allowed to visit an arbitrary
number of nodes (depending on the label of the edge). Although restricted in
power, this formalism comprises several beneficial properties: It is context-free
and still quite powerful. Grammars are comprehensible, and reasonably efficient
parsers can be defined for practical languages. Derivations are constructed by re-
placing special non-terminal hyperedges with new hypergraphs, which are glued
to the given graph by fusing particular nodes [5].

We clarify this notion using flowgraphs as an example. This graph language is
a natural model for the visual language of structured flowcharts, i.e. flowcharts
representing structured programs. In Fig. 1a an example flowgraph is shown.
Edges are represented by a rectangular box marked with the particular label.
The black dots represent nodes that we have additionally marked with numbers.
A line between an edge and a node indicates that the node is visited by this
edge.

The language of flowgraphs can be described using an HRG in a straightfor-
ward way. A set of productions that generate flowgraphs is given in Fig. 1b. The
used notation is similar to BNF rules as known from string grammars. Nonter-
minal edges are highlighted by using another color. Nodes in a production act
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as variables. In order to apply a production they have to be instantiated with
nodes actually occurring in the graph. We use labels to identify corresponding
nodes of both sides of a production. As usual, a language defined by an HRG
consists of all graphs whose edges are labeled only with terminal labels and that
can be derived in an arbitrary number of steps from the start symbol [5].

2.2 Graph Parser Combinators in Curry

The following Curry code introduces the basic data structures for representing
graphs. For the sake of simplicity, we represent nodes by integer numbers and
edge labels by strings (although we do not rely on any particular type at all).
We declare a graph as a list of labeled edges with the according visited nodes.
The actual order of edges does not matter.

type Node = Int
type Edge = (String, [Node])
type Graph = [Edge]

Therewith, the flowgraph given in Fig. 1b can be represented as follows:

ex = [("text",[1,2]),("text",[2,3],("cond",[3,8,4]),("cond",[4,5,6]),

("text",[5,7]),("text",[6,7]),("text",[7,3]),("text",[8,9])]

Next, we provide a simple declaration of the type Grappa representing a graph
parser. A graph parser is a (non-deterministic) function that maps graphs to the
graphs that remain after successful parser application. In contrast to Haskell, we
do not have to deal with parsing errors and backtracking explicitly (no need for
“lists of successes”). Instead, similar to [6], we rely on the non-deterministic no-
tion of functions inherent to functional-logic programming languages like Curry.

type Grappa = Graph -> Graph

We proceed by defining some important primitives for the construction of
graph parsers. An especially important primitive parser is edge. It only succeeds
if the given edge e is part of the particular graph g. In this case, e has to be
consumed. The primitive edge can be implemented in a logic programming style
making use of an equational constraint:

edge::Edge -> Grappa
edge e g | g=:=(g1++e:g2) = g1++g2

where g1, g2 free

The primitive eoi can be used to enforce that the whole graph is consumed:

eoi::Grappa
eoi [] = []
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stmts::(Node,Node) -> Grappa

stmts (n1,n2) = stmt (n1,n2)

stmts (n1,n2) = stmt (n1,n) <*>

stmts (n,n2)

where n free

stmt::(Node,Node) -> Grappa

stmt (n1,n2) = edge ("text", [n1,n2])

stmt (n1,n2) = edge ("cond", [n1,nno,nyes]) <*>

stmts (nno,n2) <*>

stmts (nyes,n2)

where nno, nyes free

stmt (n1,n2) = edge ("cond", [n1,n2,nbody]) <*>

stmts (nbody,n1)

where nbody free

Fig. 2. A parser for flowgraphs

Parser combinators then can be defined in a fairly standard way (see [6]).
The choice operator <|> combines two parsers and succeeds for a given graph g,
if either the first or the second parser succeeds when applied to g:

(<|>)::Grappa -> Grappa -> Grappa
(p1 <|> p2) g = p1 g
(p1 <|> p2) g = p2 g

Two parsers can also be combined via <*>, the successive application. The
second parser thereby starts with the input the first parser has left, i.e., <*>
basically is function composition. We have to use a constraint (or case, alterna-
tively) to ensure the intended order of evaluation:

(<*>)::Grappa -> Grappa -> Grappa
(p1 <*> p2) g | p1 g =:= g’ = p2 g’

where g’ free

In Fig. 2 the parser for flowgraphs is presented. The translation from the
grammar is quite straightforward [1]. Note that we do not need to know the inner
nodes of a production in advance. We simply define them as free variables, which
can be instantiated according to the Curry narrowing semantics. Representing
graph nodes as free variables actually is a functional-logic design pattern [7] here
exploited in a novel way.

In contrast to string parsing the order of parsers in a successive composition
via <*> is not that important as long as left recursion is avoided. Nevertheless,
the chosen arrangement might have an impact on the performance. Usually, it
is advisable to deal with the terminal edges first.

Parsing is not the only thing we can do with these functions. We can also
apply them backwards to construct graphs of the language. That way we can
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enumerate all graphs in the language up to a particular size. However, with
the quite naive framework presented here a lot of list permuations are returned
as redundant results (in the next section we show how to avoid this issue).
We can further use the parser to perform a kind of auto-completion. Say, the
edge ("text",[2,3]) in the graph given in Fig. 1a is missing, such that the
flowgraph is not a member of the language anymore (it consists of two correct
flowgraphs though). We can try inserting an edge e as a free variable and see
how e is instantiated by the parser. One of the possible completions consuming
the whole input is ("text",[2,3]), the edge we deleted.

3 Suitability of Curry Compilers for Graph Parsing

In this section we discuss the benefits of the compilers MCC, PAKCS and KiCS
with respect to graph parsing.

Table 1. Overview over compiler’s features relevant to graph parsing

MCC PAKCS KiCS

native code generation compiles to Prolog compiles to Haskell

type classes [8] function patterns [9] narrowing on numbers [10]
disequality constraints finite domain constraints search control [4]

3.1 Disequality Constraints for Ensuring Correctness of Parsers

As it is, the flowgraph parser given in

text

text
cond

text text

text text
text

Fig. 3. Violation of identification
and dangling edge condition

Fig. 2 accepts too many graphs. The so-called
identification condition and the dangling edge
condition have to be enforced to ensure cor-
rectness [5]. The former states that matches
have to be injective, i.e., involved nodes have
to be pairwise distinct; the latter states that
there must not be other edges in the remain-
ing graph visiting inner nodes of a match.

In fact, both conditions need to be ensured by additional checks. Therefore,
the disequality constraints as provided by MCC (=/=) are very handy. Indeed
disequality constraints are an actively discussed topic [11] in the Curry commu-
nity. With our application we provide a practically relevant example (comple-
mentary to the sometimes quite artificial examples provided in research papers)
demonstrating the need for disequality constraints as a language extension.

59



With our framework we can generate graphs where all nodes are just free
variables. At the same time, we can ensure that these variables cannot coincide
later by rising proper disequality constraints. Just using the operator (/=) is
not sufficient since that way the computation would be suspended. Thus, using
MCC a correct formulation of a sample body of stmts can be realized as follows:
stmts (n1,n2) | allDifferent [n1,n2,n]

= stmt (n1,n) <*>
stmts (n,n2) <*>
noDanglEdge [n]
where n free

Here, allDifferent generates a set of pairwise disequality constraints that
have to be ensured in order to apply this rule. The primitive noDanglEdge en-
sures (also via generating disequality constraints) that the given nodes (the inner
ones) are not visited by the edges of the remaining graph. Since that way a lot of
disequality constraints (including many duplicates) are generated (in particular
if graph nodes are free variables as it is the case for graph generation), it is
important that the compiler can deal with them efficiently.

3.2 Performance

As described in [3] we have connected our framework with the diagram editor
generator DiaGen [12]. Here, it is used as a back-end for the computation of
diagram completions. Diagram editors are a highly interactive application, so
that performance is crucially important for the acceptance of new functionality
by users. In fact, graph parser combinators are an elegant and straightforward
approach to graph parsing. However, due to their top-down nature with back-
tracking they are not efficient. (Graph) parsers based on dynamic programming
techniques usually scale much better [13]. Nevertheless it is worth to see how
Curry compilers deal with it.

The Figures 4, 5 and 6 provide some performance data for different kinds
of flowgraphs. We have applied the parser given in Fig. 2 to such graphs of
different sizes (=number of edges). To avoid the arrangement of edges in the
graph representation to affect the performance we have searched for all possible
derivations using findall.

The measurement has been performed on standard hardware (Intel Core2
Duo, 2GHz, 2GB RAM). The operating system has been Ubuntu Linux 7.10
running in a VMware virtual machine on Windows Vista. We have used MCC
0.9.11, PAKCS 1.9.1 (2) with SICStus 4.0.24, and KiCS 0.81893. We provide
the programs we have used for this benchmark via the project website. We
will also add to this site all suggestions for further, possibly compiler-specific
improvements we will receive.

We see that MCC ist most efficient (it is a native code compiler after all).
Second, we have PAKCS (with SICStus). The series PAKCS/FP in Fig. 4 will
4 PAKCS also can be used with SWI-Prolog as a backend. However, applied to our

example SICStus outperforms SWI-Prolog by a factor of 5.
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be discussed later. KiCS data is not shown in the figures. In fact, the biggest
graph that we have successfully processed with KiCS has been of size 5 only.
However, we have to consider that KiCS is still very much work in progress.
Furthermore, our application makes heavy use of logic programming features.
So it is no surprise that a Prolog backend is superior here. In contrast, KiCS
outperforms PAKCS in computations without non-determinism [4].

3.3 Numbers

A flexible number type often is very useful. For instance, we can pass an addi-
tional parameter to our parsers that determines the number of edges that might
be added while parsing. As a result not only the remaining graph is returned
but also the edges that have been pretended:

type Grappa = Nat -> Graph -> (Graph,Graph)

edge::Edge -> Grappa
--consume edge
edge e 0 g | g=:=(g1++e:g2) = ([],g1++g2)

where g1, g2 free
--pretend edge
edge e (_+1) g = ([e], g)

(<*>)::Grappa -> Grappa -> Grappa
(p1 <*> p2) errs g = case p1 errs g of

(gc1,g’)->case p2 (errs-size gc1) g’ of
(gc2,g’’)->(gc1++gc2,g’’)

However, both PAKCS and MCC are not so good at dealing with (i.e., guess-
ing) numbers [10]. Therefore, we had to declare our own type Nat (Peano num-
bers). KiCS, in contrast, provides built-in support for narrowing on numbers,
even floats [14].

3.4 Type classes

Our original framework [15] written in Haskell has heavily relied on type classes.
In particular, monads have been used to handle context and state conveniently.
Researchers have already started to investigate the integration of type classes
in Curry, see e.g. [8]. Although type classes are very nice to have for a lot of
reasons, we do not rely on their existence in our functional-logic framework.
Instead we have shared results across parsers via logical variables. Admittedly,
this is a quite obvious idea. However, we have found it so incredibly helpful that
we actually suggest it as an additional design pattern [7].

Consider the grammar for Sierpinski triangles given in Fig. 7a. The thick
lines here represent binary terminal hyperedges. Unfortunately, this grammar
does also generate irregular triangles like the one shown in Fig. 7b. In contrast,
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the following parser recognizes and generates regular (i.e., equally deep unfolded)
Sierpinski triangles only:

s 0 (n1,n2,n3) = edge ("line",[n1,n2]) <*>
edge ("line",[n2,n3]) <*>
edge ("line",[n3,n1])

s (depth+1) (n1,n2,n3) = s depth (n1,n4,n5) <*>
s depth (n4,n2,n6) <*>
s depth (n5,n6,n3)
where n4,n5,n6 free

Note that this parser, altough not suited for efficient parsing, can be directly
used to generate huge Sierpinski triangles in a reasonably efficient way. Compared
to other graph transformation tools [16] it seem to be even in the center-field
(not to mention that a more readable implementation is hard to imagine). For
instance, we have generated a Sierpinski triangle of generation 11 with nearly
200.000 edges with MCC in about a minute on standard hardware. Thereby a
term with a very large number of free variables has been generated.

3.5 Function Patterns

Function patterns [9] are a language extension only provided by PAKCS. That
way the primitive edge can be defined more elegantly as:

edge::Edge -> Grappa
edge e1 (g1++e2:g2) | e1=:=e2 = g1++g2

Note that we indeed have to introduce an additional variable e2, since a
variable is allowed to occur in the left-hand side of a rule at most once [9].
Unfortunately, in our application this usage of a function pattern has a signifi-
cantly negative impact on the performance even with function pattern optimiza-
tion switched on (cf. Fig. 4, series PAKCS/FP). In general, the use of function
patterns is recommended to improve the performance though [9].

63



3.6 Finite Domain Constraints

Finite domain constraints as provided by PAKCS (SICStus Prolog) have ap-
peared very useful in order to carry over our approach from graphs to diagrams.
Indeed, there are several diagram languages where the hypergraph model cor-
responds very closely to the actual concrete syntax. As an example consider
Nassi-Shneiderman diagrams (NSD) where nodes of the hypergraph model rep-
resent corners of statements. In this case we can just use coordinates as node
identifiers (cf. Fig. 8), i.e., we can define the type Node as a pair of two Ints. The
representation of node identifiers does not affect the implementation of parsers
at all (we only rely on a notion of equality).

stmt1
stmt2

text(1,1)

(1,2)

(3,1)

(3,2)

(3,3)(1,3)

(1,1)

(1,2)

(1,3)

text

(3,1)

(3,2)

(3,3)

Fig. 8. Coordinates as node identifiers

Consider the diagram given at the left side of Fig. 9. If the parser is used
to compute completions, the additional edges it returns can be used as diagram
components directly. We even know their coordinates, since they are encoded in
the particular node identifiers.

while ...
stmt1

stmt2

(1,1) (3,1)

(1,2) (3,2)

(2,3) (3,3)

(2,4) (3,4)

stmt1

stmt2

...
...

stmt1

stmt2

stmt1

stmt2

n y

(1,1) (3,1)

(1,2) (3,2)

(2,3) (3,3)

(2,4)
(3,4)(1,4)

...

Fig. 9. Incomplete NSD, dubious fix and two meaningful completions

Unfortunately, it’s not as simple as that. The second diagram in Fig. 9 would
be one of our results – this is not exactly, what we have expected. Indeed, some
information is still missing. We need to ensure additional constraints to get a
result also meaningful at the diagram level. In particular we must state, that
the nodes visited by text edges have to form a proper rectangle, i.e., they have
to be unifiable with [(x1,y1),(x2,y1),(x1,y2),(x2,y2)]. Thereby, it must
further hold, that x1<x2 and y1<y2.

If we also introduce corresponding constraints to the other components we
get a unique and meaningful completion of size one also shown in Fig. 9. Of
course, we also can ask for larger completions. An example result is given at the
right side of Fig. 9.
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This approach is quite restricted though. In [17] constraint hypergraph gram-
mars have been introduced that are better suited for this purpose. In particular,
minimal changes are computed for constrained variables in order to find solu-
tions. We have followed this more flexible approach in [3].

3.7 Search

KiCS provides support for the most fine-grained control and encapsulation of
search [4]. Its breadth-first approach seems to be promising especially for the
generation of graph languages. We have to study this aspect in greater depth in
the future.

4 Conclusion

In this paper we have summarized our experiences with Curry compilers that we
gained while implementing and testing our framework of graph parser combina-
tors. Syntax analysis of graphs, in particular the computation of graph comple-
tions, is a practically relevant application of functional-logic languages [3]. None
of the existing compilers supports all features/language extensions beneficial for
graph parsing yet, most importantly:

– high performance,
– support for both finite domain and disequality constraints,
– narrowing on numbers,
– search control

Due to compiler’s different strengths and weaknesses users will frequently
switch the compiler. This procedure can and should be simplified by defining
a common set of libraries as done e.g. in the Haskell report. The existence of
different compilers is a very useful thing as long as potential users do not have
to reimplement their program for each one anew.
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Abstract. The integrated declarative language Curry [Han06] combines
features from functional, logic, and constraint programming languages.
Its syntax and semantics are very similar to those of the lazy functional
language Haskell, but currently it lacks some of Haskell’s more advanced
features. The most important of these is Haskell’s systematic approach
to overloading with type classes. Type classes have proven very useful
in Haskell over more than a decade now and are one of Haskell’s well
recognized features, increasing the user’s ability to write generic and
more concise code. This feature has been missed more than once by
users of Curry.
Our own experience with adding type classes to the Münster Curry com-
piler shows that it is mostly straightforward, since the theory behind and
the implementation of type classes are well studied. However, there are
some problematic areas, including overloading of numeric literals, pos-
sibly overloaded equality constraints, and soundness problems of rank-2
types in functional-logic languages. We present design options for these
issues and motivate the design decisions taken for the Münster Curry
compiler.

1 Introduction

The integrated declarative language Curry [Han06] combines features from func-
tional, logic, and constraint programming languages. Its syntax and seman-
tics are very similar to those of the lazy functional language Haskell [Pey03].
As a functional-logic language Curry also supports logical variables and non-
deterministic functions, which allow representing partial data and search for so-
lutions. While being a mostly conservative extension of Haskell in this respect,
Curry lacks some of Haskell’s advanced features, in particular its systematic
approach to overloading with type classes.

Type classes are a tool for supporting overloading (ad-hoc polymorphism) in
a Hindley-Milner type system with automatic type inference. This is achieved
by declaring overloaded functions as members of type classes in class declara-
tions and providing implementations of these functions for particular types in
instance declarations. Fig. 1 shows (simplified) Eq and Num classes providing
an overloaded equality test operator and overloaded arithmetic operations, re-
spectively, together with sample instance declarations. In order to accommodate
overloaded functions, types are extended with contexts which may restrict the
types of arguments to instances of particular classes. For instance, the function
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class Eq a where

(==) :: a -> a -> Bool

instance Eq Int where

(==) = primEqInt

instance Eq Float where

(==) = primEqFloat

class Num a where

fromInteger :: Integer -> a

(+), (-), (*) :: a -> a -> a

instance Num Int where

fromInterger =

primIntFromInteger

(+) = primAddInt

(-) = primSubInt

(*) = primMulInt

instance Num Float where

...

Fig. 1. Overloaded equality and arithmetic operations

lookup a [] = Nothing
lookup a ((x,y):xys) =
if a == x then Just y else lookup a xys

has type lookup :: Eq a => a -> [(a,b)] -> Maybe b. The context Eq a
indicates that the type of the first argument must be an instance of the Eq
class, which is checked statically during type inference, thus ensuring that an
implementation of the equality test (==) is available when lookup is evaluated.

The common approach for implementing type classes is based on a source-
to-source transformation in the compiler [Aug93,PJ93]. This transformation in-
troduces implicit dictionary arguments for all type class constraints occurring in
the type of a function. Each type class declaration gives rise to a new dictionary
data type declaration and a global function declaration for each of its methods
extracting the respective method implementation from the dictionary. Instance
declarations are transformed into functions which return the dictionary for their
class and type. Fig. 2 gives a simple example for the transformation of the Eq
class and the lookup function.

This dictionary transformation can be used to add support for type classes to
Curry as well. Due to the presence of logical variables and the subtle differences
between Haskell’s and Curry’s operational semantics, one faces a few semantic
issues though. The most important of these issues are considered in this paper.
In particular, the following sections address flexible vs. rigid evaluation in Curry
(Sect. 2), possibly overloaded equality constraints (Sect. 3), overloaded numeric
literals (Sect. 4), and rank-2 types (Sect. 5). The final sections of this paper
present related work and conclude. We assume familiarity with the languages
Haskell and Curry throughout this paper.

2 Flexible vs. Rigid Methods

Curry’s operational semantics uses an optimal evaluation strategy that com-
bines needed narrowing [AEH94] and residuation [ALN87]. User defined func-
tions employ narrowing, i.e., free variables in demanded argument positions are
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class Eq a where

(==) :: a -> a -> Bool

data DictEq a = DictEq {

(==) :: a -> a -> Bool }

(==) (DictEq eq) = eq

instance Eq Int where

(==) = primEqInt

dictEq,Int =

DictEq { (==) = primEqInt }

lookup :: Eq a =>

a -> [(a,b)] -> Maybe b

lookup a [] = Nothing

lookup a ((x,y):xys)

| a == x = Just y

| otherwise = lookup a xys

lookup :: DictEq a ->

a -> [(a,b)] -> Maybe b

lookup dEq a [] = Nothing

lookup dEq a ((x,y):xys)

| (==) dEq a x = Just y

| otherwise = lookup dEq a xys

Fig. 2. Sample dictionary transformation

instantiated non-deterministically during pattern matching. Such functions are
called flexible. On the other hand, most primitive functions use residuation, i.e.,
free variables in demanded argument positions cause the current thread to be
suspended until the variable is sufficiently instantiated by some other concurrent
computation. Such functions are called rigid.

Promoting currently built-in rigid polymorphic primitives like (==) and show
into type class methods has some important semantic implications, since code
can no longer assume that these functions are rigid. This is of particular interest
for the (==) equality operator, which is assumed to be a rigid function in many
places including the Prelude’s definition of the operator ($##), which is supposed
to apply a (unary) function to an argument after evaluating the argument to a
ground normal form: f $## x | x==x = f x.

In order to provide a rigid version of the (==) type class method we propose
to introduce a new primitive ensureGround :: a -> a, which is a natural gen-
eralization of the ensureFree primitive and lazily evaluates its argument to a
ground term. With this primitive, the operator ($##) could be implemented as
well as a rigid variant of the equality test.

f $## x = f $!! ensureGround x
x === y = ensureGround x == ensureGround y

3 Equality Constraints

Corresponding to the distinction between rigid and flexible functions, Curry
provides two equality operations, the aforementioned boolean test for equality
(==) :: a -> a -> Bool and the equality constraint operator (=:=) :: a ->
a -> Success. The essential difference between the expressions e1 == e2 and
e1 =:= e2 is that the former yields a result (either True or False) only for
ground terms whereas the latter is satisfied if e1 and e2 can be reduced to equal
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terms possibly instantiating unbound variables in one argument to a term at the
same position in the other argument.

If type classes are available, it seems natural to make (=:=) an instance
method of a new type class Equal:

class Equal a where
(=:=) :: a -> a -> Success

instance Equal a => Equal [a] where
[] =:= [] = success
(x:xs) =:= (y:ys) = x=:=y & xs=:=ys

This approach nicely prevents a type soundness issue which is present for an
overloaded polymorphic equality constraint that can be applied to expressions
with a functional or existentially quantified type. While neither of this is part of
the Curry standard, such constraints are supported by some implementations.
The problem is that with this extension it is possible to define an unsound
polymorphic type cast function1, e.g.,

data T = forall a. T a -- Existential quantification!
cast :: a -> b
cast x | T x =:= T y = y where y free

This definition would be prevented if (=:=) were a type class method because it
is impossible to define a (non-trivial) Equal instance for type T. The definition

instance Equal T where
T x =:= T y = x=:=y -- Type error

is rejected because the pattern variables x and y have incompatible and non-
unifyable types due to the existentially quantified type variable in T’s declaration.

However, the naive definition of (=:=) for the list type shown above has the
major drawback that it can instantiate free variables unnecessarily and further-
more can cause an unintended non-deterministic evaluation of programs. For
instance, consider the program

main = doSolve (x=:="IO") >> print x where x free

Given the above definition of (=:=), this program would fail with a runtime
error due to the non-deterministic evaluation of the constraint x=:="IO", which
is not encapsulated in an IO context.

In order to prevent unnecessary instantiation of logical variables and unin-
tended non-deterministic choices, one could envision a more complicated instance
definition, e.g.,

instance Equal a => Equal [a] where
xs =:= ys =

1 Instead of the existentially quantified data constructor T one could use an isomorphic
partial application of the function ignore x y = y.
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if isVar xs then primInstVar xs ys
else if isVar ys then primInstVar ys xs
else case (xs,ys) of
([],[]) -> success
(x:xs,y:ys) -> x=:=y & xs=:=ys

which uses two new primitives isVar :: a -> Bool and primInstVar :: a ->
a -> Success that check whether the argument is a free variable and instantiate
the free variable with another expression, respectively.2 Since these are unsafe
primitives and the user is not expected to write such boilerplate code all over
the place, one better hides the use of these primitives in an overloaded Prelude
function and provides only a method for comparing non-variable terms in class
Equal.

class Equal a where
equal :: a -> a -> Success

(=:=) :: Equal a => a -> a -> Success
x =:= y =
if isVar x then primInstVar x y
else if isVar y then primInstVar y x
else equal x y

instance Equal a => Equal [a] where
equal [] [] = success
equal (x:xs) (y:ys) = x=:=y & xs=:=ys

4 Overloaded Numeric Literals

Overloading of arithmetic operations allows the user to define generic functions
which can be used for any numeric type. For instance, the functions sum and
prod in

sum, prod :: Num a => [a] -> a
sum xs = foldr (+) 0 xs
prod xs = foldr (*) 1 xs

compute the sum and product, respectively, of a list of numbers of an arbitrary
numeric type, i.e., a type which has a Num instance. Without type classes separate
definitions with unique names would have to be defined for each numeric type,
which soon becomes inconvenient if many numeric types exist. Recall that the
Haskell’98 standard already provides fixed and arbitrary precision integer types,
single and double precision floating-point types, rational numbers, and complex
numbers.3

2 The primInstVar primitive also has to perform the occurs check required by Curry’s
semantics and ensure that the second argument has a normal form.

3 Actually, the rational and complex number types are overloaded themselves and can
be used at any integral and floating-point type, respectively.
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For the programmer’s convenience, numeric literals in Haskell have over-
loaded types themselves. For instance, the constants 0 and 1 in the definition
of sum and prod have type Num a => a. This is achieved by treating an (in-
tegral) numeric literal i in source code as an abbreviation for the expression
fromInteger i (cf. the definition of the Num class in Fig. 1).

Overloading of numeric literals in Haskell carries over to patterns so that,
e.g.,

zero 0 = True
zero = False

has type zero :: Num a => a -> Bool. This is made possible by Haskell’s pat-
tern matching semantics, which transforms case expressions with literal patterns
into equivalent if-then-else expressions. For instance, the definition of zero is
transformed into

zero x = if x == fromInteger 0 then True else False

This transformation could be used in Curry as well but it has the unfortunate
effect of possibly making definitions more rigid than expected. For instance, the
goal zero x where x free; x::Int would suspend since the equality instance
for fixed precision integer numbers is based on a rigid primitive.

In order to avoid unintended suspensions, one might consider a different
transformation which replaces numeric literals in patterns by equality constraints
in guards.4 Thus,

coin 0 = success
coin 1 = success

would be transformed

coin x | x=:=fromInteger 0 = success
coin x | x=:=fromInteger 1 = success

Yet, this transformation is problematic as well. Whereas the transformation
using if-then-else expressions and (==) may unexpectedly suspend when ap-
plied to a free variable, the transformation using equality constraints may cause
unintended non-deterministic search when applied to a concrete number. For
instance, a runtime error would occur when executing the program

main = doSolve (x =:=0 &> coin x) >> print x where x free

It is also worth pointing out that this transformation requires either that (=:=) is
a fully polymorphic primitive with type a -> a -> Success, or that the Equal
class is made an additional superclass of the Num class besides Eq and Show.

Since neither of these transformations is perfect, we suggest to perform nei-
ther of them in the compiler. Thus, no overloading will be available for numeric
literals in patterns. Note that this also means that the following program is
rejected with a type error
4 Function patterns [AH05] would yield an equivalent transformation.
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data Nat = Z | S Nat deriving (Eq,Show)
instance Num Nat where . . .
even 0 = success
even (S (S m)) = even m

If overloading is desired, the programmer has to make an explicit choice by
rewriting the function in one or the other way herself. Also note that numeric
literals in patterns are less useful in Curry than in Haskell due to the fact that
all defining equations of a function are considered independently in Curry and
therefore, given the definition of zero above, the goal zero 0 has two solutions,
namely True and False.

It might be useful though to use if-then-else cascades for transforming case
expressions in Curry, since, similar to Haskell, only the first matching alternative
is evaluated. Since case expressions evaluate their argument rigidly, the transfor-
mation must use the proposed top-level function (===) when comparing literals,
i.e.,

zero x = case x of { 0 -> True; -> False }

would be transformed into

zero x = if x === fromInteger 0 then True else False

5 Rank-2 Types

It is well known that the dictionary transformation of Haskell source code re-
quires rank-2 types in order to handle polymorphic methods correctly, These
appear naturally with higher-order classes like Functor and Monad. For instance,
the Monad class is defined as follows5

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The corresponding dictionary

data DictMonad m = DictMonad {
return :: forall a. a -> m a
(>>=) :: forall a b. m a -> (a -> m b) -> m b }

must use local universal quantifiers in the argument types of the DictMonad

constructor so that the monadic methods can be used at different types (though
for the same monad) in a single function. For instance, consider the function

sequence (m:ms) =
m >>= \x -> sequence ms >>= \xs -> return (x:xs)

5 For the sake of the presentation we leave out the (>>) and fail methods.
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where (>>=) is used at two different types, namely Monad m => m a -> (a ->
m [b]) -> m [b] for the first and Monad m => m [a] -> ([a] -> m [b]) ->
m [b] for the second occurrence.

Given that rank-2 types must be supported by an implementation anyway,
it seems natural to make them available to the user. In fact, rank-2 types can
be useful on their own. For instance, safe encapsulation of mutable state [LP95]
can be implemented with operations of an abstract type ST s a, which describes
state transformers with state type s and result type a.

data ST s a
instance Monad (ST s) where . . .
runST :: (forall s. ST s a) -> a

The local universal quantification of the state parameter type s in runST’s type
ensures that it cannot appear in the result type a of the state transformer and
thus the state itself cannot escape. Note that the IO type is just a particular
instance of the generic state transformer type: type IO a = ST RealWorld a.

Unfortunately, rank-2 types raise another type soundness issue for logic and
functional-logic languages. Consider the type data T = T (forall a. a) and
the function definition

f (T x) = x=:=0 & x=:="Hello"

This definition is accepted by the type checker, since x has type ∀α.α. In Haskell
this definition is unproblematic because the only expressions that are sufficiently
polymorphic to suit as argument of the T constructor are undefined and pattern
variables matching a universally quantified argument of a data constructor. In
Curry all expressions apart from such pattern variables have monomorphic types.
On the other hand, the expression let x free in f x is accepted by the type
checker and would cause x to be instantiated to a fresh term of the form T y,
where y is another free variable.

In order to prevent such unsound instantiations of constructors with univer-
sally quantified type arguments, we propose to introduce a type class Narrowable

class Narrowable a where
narrow :: a

instance Narrowable a => Narrowable [a] where
narrow = []
narrow = (x:xs) where x,xs free

and impose the additional restriction that the types of free variables must
be instances of the Narrowable class. Thus, let x free in x will have type
Narrowable a => a. The important point is that it is impossible to define a
(non-trivial) instance for T due to Curry’s monomorphism restriction.

In order to pass around Narrowable dictionaries at runtime without intro-
ducing Narrowable constraints all over the place they should be associated with
the free variables themselves similar to constraints for existentially quantified
type variables, e.g.
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data LVar = forall a. Narrowable a => LVar a -- Exist. Quant.

A downside of this approach is that additional type signatures may be re-
quired in order to avoid ambiguous type errors for the free variables of a defi-
nition and, in particular, a goal entered at the prompt of a Curry interpreter.
Another problem is that in order for this approach to become effective the narrow
method must be called when a free variable is detected during a flexible pat-
tern matching. Due to the fact that the definition of narrow is almost always
non-deterministic, this may cause unintended and unnecessary non-deterministic
search in programs. Furthermore, solutions might be explored in the fixed order
of the narrow method’s declaration rather than the order of equations of the
function where the free variable is matched.6

6 Related Work

Type classes initially were conceived only to provide overloading for types with
kind ∗. This was extended by Mark P. Jones’ work on qualified types to pro-
vide overloading for types with arbitrary kinds and thus paved the way for the
ubiquitous Functor and Monad classes in Haskell. Type classes in Haskell’98 are
restricted to only a single argument and furthermore types in instance decla-
rations are restricted to the form T x1, . . . , xk where T is a type constructor
with arity n ≥ k and x1, . . . , xk are type variables. These restrictions ensure
that context reduction during type inference always terminates and instances
are unique. Current Haskell implementations lift these restrictions and support
multi-parameter type classes and ambiguous instances; [PJM97] explores the de-
sign space. Recent proposals for multi-parameter type classes include functional
dependencies [Jon00] and associated types [CKP+05].

An approach to combine type inference and overloading without type classes
has been presented in [CF99].

An alternative to overloading are ML-style higher order modules, where the
programmer would define functions using overloaded operations inside a higher
order module that is parameterized with the signatures of modules providing
these operations. The relation between type classes and higher order modules
has been studied, among others, in [DHC07].

Type classes in Curry were first proposed in [MMdP+96]. The first Curry
implementation with type class support to our knowledge was the Zinc compiler7.
Unfortunately, this experimental extension of the Münster Curry compiler does
not address the issues described in this paper. In particular, it does not support
polymorphic methods correctly and also does not support overloading of numeric
literals.
6 The order in which non-deterministic alternatives are evaluated is not specified by

the Curry report. However, in order to explore the search space of a goal efficiently,
some means to control the order of evaluation must be provided to the programmer
and declaration order appears to be a natural choice for this.

7 http://sourceforge.net/projects/zinc-project
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7 Conclusion and Future Work

Type classes are a very useful extension to Curry that should be adopted.
A prototypical implementation is available in the type classes branch8 of the
Münster Curry compiler. Support for most of the features discussed in the pa-
per is present. In particular, it correctly supports polymorphic methods, which
is the main advancement compared to the Zinc compiler.

Future work will concern adding support for multi-parameter type classes
to Curry. In contrast to the problems presented in this paper, multi-parametric
type classes are expected to introduce no new problems.
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Ach, wie gut, dass niemand weiß,

dass ich dreizehnsiebtel heiß

Jan Christiansen

Institut für Informatik
Christian-Albrechts-Universität Kiel

jac@informatik.uni-kiel.de

In Programmiersprachen stellen Zahlen häufig einen ausgezeich-
neten Datentypen dar. In der Programmiersprache Curry äußert sich
dies darin, dass Zahlen nicht geraten werden können. Das heißt es
existieren keine freien Variablen der Datentypen Int und Float. In
[1] haben Braßel, Fischer und Huch gezeigt wie man diese Sonder-
behandlung im Falle der Ganzen Zahlen umgehen kann, indem man
Ganze Zahlen durch einen algebraischen Datentypen darstellt.

Rationale Zahlen können als Kettenbruch dargestellt werden. Ein
regulärer Kettenbruch hat zum Beispiel die folgende Form:

a1 +
1

a2 + 1
a3...

Wir präsentieren eine eindeutige Darstellung Rationaler Zahlen mit
Hilfe regulärer Kettenbrüche. Diese Darstellung kann genutzt wer-
den um Rationale Zahlen als algebraischen Datentypen in Curry zu
implementieren.

In einem Technischen Bericht des Massachusetts Institute of Tech-
nology [2] aus dem Jahre 1972 wird ein Algorithmus zur Addition,
Subtraktion, Multiplikation und Division zweier regulärer Ketten-
brüche präsentiert. Dieser Algorithmus soll genutzt werden um die
entsprechenden Operationen für diesen Datentypen bereitzustellen.
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A Debugger for Functional Logic Languages?

Bernd Braßel

Institute of Computer Science, University of Kiel
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Abstract. This paper is based on a recently developed technique to
build debugging tools for lazy functional programming languages. With
this technique it is possible to replay the execution of a lazy program
with a strict semantics by recording information of unevaluated expres-
sions. The recorded information is called an oracle and is very compact.
Oracles contain the number of strict steps between discarding unevalu-
ated expressions. The technique has already been successfully employed
to construct a debugger for lazy functional languages.
This paper extends the technique to include also lazy functional logic
languages. A debugging tool built with the technique can be downloaded
at www-ps.informatik.uni-kiel.de/~bbr.

1 Introduction

It has often been remarked that the advanced features of modern functional
(logic) languages pose an obstacle when trying to find errors, cf. for instance
[14, 17]. Therefore in recent years, sophisticated techniques have been developed
to support the programmer with useful tools to find bugs in his programs. The
most influential technique is often called “Algorithmic Debugging” (and some-
times “Declarative Debugging”) and was originally developed in the context of
logic programming [16]. It has also been adopted to functional programming,
e.g. in [15], and also to functional logic programming, see [9] for the most recent
work. It has, however, also been argued that declarative debugging is not always
the tool of choice, and that other tools provide complementary views, cf. [10].
Consequently, the most flexible tool for functional languages, HAT [18], provides
several views among which the user can switch arbitrarily. The drawback of such
flexibility is paid with a severe overhead in the usage of resources. Every HAT
session records megabytes of data about the execution of a given program, of-
ten in the hundreds. Much of the work invested into HAT was concerned with
making this huge amount of data manageable with acceptable response times.
The resulting system was highly optimized for the case of functional program-
ming and is, in consequence, not easy to port to broader settings like functional
logic languages. An according attempt developed in [6, 5, 3] did not lead to the
implementation of tools with satisfying performance.
? This work has been partially supported by the German Research Council (DFG)

under grant Ha 2457/5-2.
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Instead we have developed a different technique in [4] which enabled us to
built a fast and stable debugging system within a short time. This technique has
first been developed to build a debugger for lazy functional languages [8]. This
work describes the extension to the broader setting of functional logic languages.

Before presenting the extension in Section 2, we will first describe the basic
idea in Section 1.1. Section 3 contains the description of a debugging tool for the
functional logic language Curry based on the technique. Section 4 concludes.

1.1 Leftmost Innermost Evaluation with Oracle

A simple observation was made during the development of [3]: all of the more
sophisticated approaches to support debugging in lazy programming languages
try to present information about the program’s execution as if the semantics
was eager. In other words, the job of the debugging tools was to wind back the
aspects of a complex evaluation strategy and map it to a simple one. Now the
reasoning was like this: If this mapping of lazy to eager evaluation is the core of
successful debugging techniques, all of these approaches could be derived from
mapping a given lazy derivation to an eager one. The information for such a
mapping, however, is smaller by magnitudes than that needed by tools like HAT
or by that developed in [6]. It can be compressed to counting left-most innermost
steps between “discarding steps”, i.e., such steps which discard expressions not
needed for the whole evaluation. For example, evaluating the expression (head
(tail (from 0))) in the context of the following program

from :: Int -> [Int]
from n = n : from (n+1)

head :: [a] -> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs

head (tail (from 0)) => head (tail (0:from (0+1)))
=> head (from (0+1))
=> head (0+1:from ((0+1)+1) => 0+1 => 1

can be described as: “Do three steps innermost then discard the next two left-
most innermost expressions and do two more eager steps.” In short the infor-
mation can be comprised to the list of eager steps [3,0,2]. The first number is
decreased and a leading zero means a discard step. The example derivation can
then be mapped to the eager evaluation:

[3,0,2]
head (tail (from 0)) =>[2,0,2] head (tail (0:from (0+1)))

=>[1,0,2] head (tail (0:from 1))
=>[0,0,2] head (tail (0:1:from (1+1)))
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=>[0,2] head (tail (0:1:from _))
=>[2] head (tail (0:1:_))
=>[1] head (1:_)
=>[0] 1

In [4] we have formalized a technique to automatically record and replay such
step information. Apart from showing the soundness of the approach we were
able to prove interesting properties about the magnitude of resources needed to
compute the oracle information. In [8] we have then proposed a tool for debugging
lazy functional programs with the oracle approach. This paper is concerned with
the extension of the approach to functional logic languages.

2 The Extension to Functional Logic Programming

The main topic of this paper is how to transfer the oracle technique described
above to the more general setting of functional logic programming. We can iden-
tify three main topics of the extension:

1. operations defined by non-deterministic branching
2. free variables in conjunction with narrowing
3. free variables in conjunction with unification

From these three topics we will discuss only the two first ones, unification is
left for future work.

Before we discuss the details of our solution we first give two well known
examples for the two topics. First we will introduce the non-deterministic op-
eration (?) on base of which all following non-deterministic operations will be
defined. (?) takes two arguments and non-deterministically returns one of them.

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

Using (?), we can define an operation which inserts a given argument anywhere
into a given list.

insert :: a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = x:y:ys ? y:insert x ys

Note that (?) has a very low precedence (the lowest possible in Curry actu-
ally). Based on insert there is an expressive way to define permutations and
permutation sort, cf. [12].

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insert x (permute xs)
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permSort :: [Int] -> [Int]
permSort l | sorted permutation = permutation

where permutation = permute l

sorted :: [Int] -> Bool
sorted [] = True
sorted [x] = True
sorted (x:y:ys) | x<=y = sorted (y:ys)

The above declaration of permSort indeed defines a sorting operation, e.g., the
call (permSort [2,1,3]) evaluates to [1,2,3] and nothing else.

As an example for the use of free variables together with narrowing, we will
use the standard definition of a function on lists head and a Boolean function
guard. Both functions are only partially defined such that there is a “narrowing”
effect when applying them.

guard :: Bool -> a -> a
guard True x = x

The running example for narrowing in the following will be (let x free in
guard (head x) 1) which evaluates to 1 with x bound to (True:y) for a fresh
variable y.

After introducing the two running examples we now turn to examine two
general concepts in functional logic programming, namely generators and com-
putations on search trees. Applying these concepts approaches will then lead to
the extension of the oracle technique.

2.1 Generators

There are two recent developments in the theory of functional logic languages
that simplify the task to extend the oracle technique to this setting consider-
ably. One is the observation that free variables coincide with so called “generator
functions” as discovered independently in [2] and [11]. The second is that de-
terministic and non-deterministic aspects of a functional logic program can be
neatly divided into a deterministic evaluation on one hand and a projection of
the result according to a set of choices on the other hand. This second idea was
described in detail in [7]. Before applying both ideas to the case at hand we
illustrate them with regard to the running examples.

A generator for a given type is a function that non-deterministically evaluates
to all possible values of that type. For example the generator for Boolean values
is straightforward:

genBool :: Bool
genBool = True ? False

With regard to types with an infinite set of values we have to be more specific
about the structure of a generator. Each alternative on the right-hand side should
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introduce exactly one of the types’ constructors. The constructors’ arguments
can then be again calls to other generator functions of an appropriate type.
According to [2, Definition 3] and in compliance with [11, Definition 3.3] the
generator for lists of Boolean values is:

genBoolList :: [Bool]
genBoolList = [] ? genBool : genBoolList

The resulting function has several interesting properties. Apart from the fact
that eventually each possible value is generated (compare to [2, Lemma 1] and
[11, Lemma 3.4]), the so defined generator is productive in the sense that each
alternative produces a head normal form of arbitrary depth in a finite number
of steps while introducing only a finite number of non-deterministic branches.

In order to be more true to Curry’s type system, which allows polymorphic
functions and constructors, we change the above definitions slightly. It is easy
to see that the claims from [2, 11] still hold.

type Generator a :: () -> a
genBool :: Generator Bool
genBool _ = True ? False
genList :: Generator a -> Generator [a]
genList gen _ = [] ? gen () : genList gen ()

The extension with the artificial argument () is necessary because of call-time
choice. Without it, genList would produce lists that either contain only True
or only False but not, e.g., [True,False].

The connection between generators and free variables can be illustrated with
the narrowing example. Evaluating the expression replacing the variable with
a generator, i.e., (guard (head (genList genBool ())) 1) also yields 1 with
the expression being evaluated only as far as needed, that is to the expression
(True:genList genBool ()). Not only with regards to semantics there is a
close correspondence between generators and free variables, e.g., the result is
1. But also operationally the correspondence is tight as could be shown in [7].
Wherever we have a free variable in the substitution part of a narrowing deriva-
tion, we find a non-evaluated generator in the expression for the derivation with
generators.

2.2 Search Trees

The second insight important for the presented work was introduced in [7]. There
the operational machinery of functional logic programming is separated into a
deterministic part computing on so called search trees and a logic part projecting
values out of that tree. The general idea is that all types τ are extended by two
new constructors Fail :: τ which presents a failure and Or :: Ref -> τ ->
τ -> τ which represents a non-deterministic branching. The reference of type
Ref is used by the projection to identify identical choices with respect to call-
time choice as explained below. The new Or constructors are all introduced by

82



the (?) operation, which now – in contrast to the first version above – looks like
this:

(?) :: a -> a -> a
x ? y = Or r x y where r fresh

The generation of fresh references utilized for (?) is the only non-deterministic
feature needed in order to define the complete operational behavior of functional
logic languages as detailed in [7]. In the following we assume that references
in Or constructors are simple integers although any type with a well-defined
identity would suffice. In order to gain the full expressiveness of functional logic
programming each pattern matching in the program is extended by a case for
the Or constructor. For example, the declaration of insert is completed by the
following rules:

insert x (Or r y z) = Or r (insert x y) (insert x z)
insert _ Fail = Fail

The definition of permute and the other operations introduced above are com-
pleted likewise. The only definition for which completion is a bit more compli-
cated is sorted, as described below. To get an idea how the completed operations
behave consider the following evaluation of permute [3,1,2]:

permute [3,1,2] => insert 3 (permute [1,2])
=> insert 3 (insert 1 (insert 2 []))
=> insert 3 (insert 1 [2])
=> insert 3 (Or 1 [1,2] [2,1])

{-new rule!-} => Or 1 (insert 3 [1,2]) (insert 3 [2,1])
=> Or 1 (Or 2 [3,1,2] (1:insert 3 [2]))

(Or 3 [3,2,1] (2:insert 3 [1]))
=> Or 1 (Or 2 [3,1,2] (1:Or 4 [3,2] [2,3]))

(Or 3 [3,2,1] (2:Or 5 [3,1] [1,3]))

To project the search tree to a value we need a set of choices. Such a set de-
fines for which reference which alternative to take. For example the one choice
could be (1,1) representing that for reference 1 we take the first alternative
whereas (2,2) would represent the choice to take the second alternative for ref-
erence 2. Projecting the resulting tree of the above example by the set of choices
[(1,1),(2,2),(4,2)] we would obtain the list [1,2,3]. A search now boils
down to the systematic construction of sets of choices. In order to illustrate this
last point we also complete the definition of operation sorted defined above.
As sorted matches on more than one constructor we have to introduce an aux-
iliary function. In general, in the resulting program each function matches at
most one constructor. This makes it possible to continue the computation in the
arguments of an Or node. The completed declaration of sorted is accordingly:

sorted :: [Int] -> Bool
sorted [] = True
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sorted (x:xs) = sorted2 x xs
sorted (Or r x y) = Or r (sorted x) (sorted y)
sorted Fail = Fail

sorted2 x [] = True
sorted2 x (y:ys) | x<=y = sorted (y:ys)
sorted2 x (Or r y z) = Or r (sorted2 x y) (sorted2 x z)
sorted2 _ Fail = Fail

The guard “| x<=y = sorted (y:ys)” can be considered as syntactic sugar for
(guard (x<=y) (sorted (y:ys))) giving us the opportunity to illustrate the
last part of declaration completion, which is that constructors missing in the
matching of the original definition will be mapped to Fail:

guard :: Bool -> a -> a
guard True e = e
guard False _ = Fail
guard (Or r x y) e = Or r (guard x e) (guard y e)
guard Fail _ = Fail

With this it is easy to verify that sorted (permute [3,1,2]) evaluates to:

sorted (permute [3,1,2]) = Or 1 (Or 2 Fail (Or 4 Fail True))
(Or 3 Fail (Or 5 Fail Fail))

The importance of the references in the Or constructors can now be seen when
considering the evaluation of calls to permSort. Considering its definition the
operation permSort inserts its argument in those places in the tree where there
is a True. Therefore a total evaluation of the expression (permSort [3,1,2])
is:

permSort [3,1,2] =
Or 1 (Or 2 Fail (Or 4 Fail (Or 1 (Or 2 [3,1,2] (1:Or 4 [3,2]

[2,3]))
(Or 3 [3,2,1] (2:Or 5 [3,1]

[1,3])))))
(Or 3 Fail (Or 5 Fail Fail))

The important point is that for any projection from that tree to a value this
result is equal to

permSort [3,1,2] = Or 1 (Or 2 Fail (Or 4 Fail [1,2,3])) Fail

The reason is that any path to the sub tree corresponding to (permute [3,1,2])
leads over the choices [(1,1),(2,2),(4,2)]. Therefore these choices are also
applied for this sub tree leading to the one possibility [1,2,3] only. In addition
any choice including (1,2) can only yield a failure.

Just as a remark, irrelevant alternatives like those in the sub tree for (permute
[3,1,2]) are often discarded before they are evaluated at all because of laziness.
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In those cases where they are evaluated they were needed by a former part of the
evaluation as in the above example. Nevertheless, it is a good idea to cut away
such irrelevant alternatives as soon as possible to free the memory and prevent
unnecessary lookup of choices. However, possible optimization techniques are
beyond the scope of this paper and we concentrate on the main advantage of the
described technique for building debugging tools. This advantage is that because
the main computation is now clearly separated in a deterministic derivation and
a projection, the oracle technique developed to replay functional programs can
be extended for functional logic programs in a straightforward way.

2.3 A Functional Logic Oracle

There are two main ideas we can directly use to extend the oracle technique to
functional logic languages:

– non-deterministic choices can be treated like constructors
– free variables can be replaced by non-deterministic operations

These two ideas can be put together to translate functional logic derivations to
strict derivations with oracle. For example, consider the lazy evaluation of the
expression head (insert 3 [1,2]):

head (insert 3 [1,2]) => head (Or 1 [3,1,2] (1:insert 3 [2]))
=> Or 1 (head [3,1,2]) (head (1:insert 3 [2]))
=> Or 1 3 (head (1:insert 3 [2]))
=> Or 1 3 1

In order to describe the innermost derivation with oracle, all we need to do is
describe the derivation as if it was a purely functional. This means, we state that
we do the first leftmost innermost step because the corresponding redex (insert
3 [1,2]) was unfolded and in the result which is (Or 1 [3,1,2] (1:insert
3 [2])) the next leftmost innermost redex which is (insert 3 [2]) is not
evaluated and after that all remaining redexes are unfolded. The resulting oracle
is therefore [1,3] and we can replay the derivation as:

[1,3]
head (insert 3 [1,2]) =>[0,3] head (Or 1 [3,1,2] (1:insert 3 [2]))

=>[3] head (Or 1 [3,1,2] (1:_))
=>[2] Or 1 (head [3,1,2]) (head (1:_))
=>[1] Or 1 3 (head (1:_))
=>[0] Or 1 3 1

As detailed in [7] the search tree approach is well suited to implement search
strategies as traversals on the tree structure. This is also compatible with the
presented approach. If, for instance the programmer would have been interested
in a first solution only with, e.g., a depth first strategy, the above expression
would have been evaluated to (Or 1 3 (head (1:insert 3 [2]))) only and
the corresponding oracle would have been [1,2,0].

85



But not only can we describe the evaluation of non-deterministic operations
with the same oracle but also the narrowing of free variables. This can be done
by describing how the corresponding generator is evaluated. For example the
narrowing derivation

guard (head x) 1 ={x/(a:z)} guard a 1
={a/True} 1

can be described by the oracle [2,7,0]. The first three decisions describe the
binding of the variable as the evaluation of the corresponding generator:

[2,7,0] genList genBool ()
=>[1,7,0] Or 1 [] (genBool () : genList genBool ())
=>[0,7,0] Or 1 [] (Or 2 True False : genList genBool ())
=>[7,0] Or 1 [] (Or 2 True False : _)

The next three steps describe the application of head to the generated result:

[7,0] head (Or 1 [] (Or 2 T F:_))
=>[6,0] Or 1 (head []) (head (Or 2 T F:_))
=>[5,0] Or 1 Fail (head (Or 2 T F:_))
=>[4,0] Or 1 Fail (Or 2 T F)

And finally [4,0] describes the application of guard assuming that the pro-
grammer was searching for the first solution only, as above.

[4,0] guard (Or 1 Fail (Or 2 T F)) 1
=>[3,0] Or 1 (guard Fail 1) (guard (Or 2 T F) 1)
=>[2,0] Or 1 Fail (guard (Or 2 T F) 1)
=>[1,0] Or 1 Fail (Or 2 (guard T 1) (guard F 1))
=>[0,0] Or 1 Fail (Or 2 1 (guard F 1))
=>[0] Or 1 Fail (Or 2 1 _)

The main result of the consideration is that in order to extend the oracle ap-
proach to functional logic programming, the definition of an oracle does not need
any change. The main requirement is that the events are recorded in compliance
with the operational semantics described in [7].

3 The debugging Tool

We have implemented the ideas introduced in the last section into a debugging
tool for the language Curry. The tool is an extension of the one presented in [8]
for the functional subset of Curry. In this section we will describe the basic ideas
of how to present Curry derivations to the user.
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3.1 Representing Non-Determinism

The derivations with Or constructors and their references as well as the more
technical details of the completed reductions are not suited for the programmer
who is looking for a bug in his Curry program. Therefore several conventions
help to get a more simple view on derivations.

– unfolding of generator functions is never seen (trusted functions)
– the references of Or constructors are hidden; a value like (Or 2 True False),

for instance is represented as (True ? False)
– irrelevant parts of search trees (recall the permSort example from above)

are always omitted
– when an Or node has only a single valid alternative; this alternative is shown

rather than any failures
– calls to auxiliary functions like sorted2 in the above example are omitted

Accordingly, the following output is generated by a step by step examination for
permSort [2,1] in our debugging tool:1

permSort [2,1]
permute [2,1]

permute [1]
permute [] => []
insert 1 [] => [1]

permute [1] => [1]
insert 2 [1]

insert 2 [] => [2]
insert 2 [1] => [2,1] ? [1,2]

permute [2,1] => [2,1] ? [1,2]
sorted ([2,1] ? [1,2])

2 < 1 => False
1 < 2 => True
sorted [2]
sorted [2] => True

sorted ([2,1] ? [1,2]) => True
permSort [2,1] => [1,2]

As described in [8], the tool also features a declarative debugging mode. In this
mode the user can state correctness or faultiness of sub derivations to isolate
erroneous rules.

3.2 Bubbling

In order to omit the representation of references in Or constructors without
loosing semantically important information, we have adopted bubbling as first
presented in [1]. Bubbling is related to the approach presented in Section 2.2 in

1 For this presentation, we have deleted some redundant lines and added the spacing.
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the sense that non-deterministic branching is treated (almost) like a constructor.
The Or constructors in Section 2.2 are “lifted up” one step at a time by the rules
added for completion like head (Or r x y) = Or r (head x) (head y). In
bubbling, in contrast, when a (?) is at a needed position it is moved up in the
term structure until a “proper dominator” has been copied, i.e., a symbol which
is above all references to that (?). The exact definition of bubbling [1, Definition
5] is rather technical but the idea is quite intuitive and we will use the style of
[13]. Consider the following example:

let l=insert 1 [2] in (head l,l) =>
let l=[1,2] ? [2,1] in (head l,l)

In the approach described in Section 2.2 the end result of this derivation would be
(1 ?1 2,[1,2] ?1 [2,1]). The references (here denoted as subscript to (?)) are
then needed to reconstruct the fact that both parts of the tuple share the same
choice, i.e., that (1,[2,1]) is not a valid projection of the result. In bubbling,
in contrast, the next step is to copy the whole let expression. (If there was
an outer context of this expression, that context would not be copied.) In the
notions of [1], the tuple constructor is the dominator.

let l=[1,2] ? [2,1] in (head l,l) =>
let l=[1,2] in (head l,l) ? let l=[2,1] in (head l,l) =>
(1,[1,2]) ? (2,[2,1])

The advantage of this technique is that ? is never duplicated and, thus, no
references are needed. This is why we use the technique to omit the references
when presenting values. In our tool, the derivation is presented as

main
insert 1 [2]

insert 1 [] => [1]
insert 1 [2] => [1,2] ? [2,1]

head ([1,2] ? [2,1]) => 1 ? 2
main => (1,[1,2]) ? (2,[2,1])

As you can see, head is applied to the non-deterministic argument ([1,2] ?
[2,1]) but the presentation at the end is the result of a bubbling procedure in
the pretty printer.

3.3 Representation of Free Variables

As discussed in Section 2.3, the oracle approach maps free variables to the eval-
uation of the corresponding generator. As a consequence, in the strict evaluation
all bindings of a given variable are already computed before any operation is ap-
plied to that variable. (Compare to the evaluation of (guard (head x) 1 where
x free) above.) So far, the debugging tool building on this technique can there-
fore only access all of the bindings for that variable which will occur in the whole
derivation. This can be unexpected for the user and the aim of this section is
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to explain how a special representation for free variables can be supported. To
achieve this, we have to make some adjustments to the search tree mechanism
as described in 2.2. The first change is that we need to be able to distinguish
between Or nodes originating from generator functions and those stemming from
a call to (?). To keep most of the described mechanism as similar as possible,
we introduce this distinction to the type OrRef:

data OrRef = Generator Int | NoGenerator Int

Accordingly, we change the definitions of (?) and the generator operations as
follows:

(?) :: a -> a -> a
x ? y = Or (NoGenerator r) x y where r fresh
genBool :: Generator Bool
genBool _ = Or (Generator r) True False where r fresh

Each narrowing step has to change the Or reference such that the corresponding
result is not treated as a free variable anymore. For this we use the auxiliary
function narrow:

narrow :: OrRef -> OrRef
narrow (Generator x) = NoGenerator x
narrow (NoGenerator x) = NoGenerator x

Function narrow is called in those rules which were added to each function to
treat the Or case. For example, function head is now completed with the following
rule (instead of the one used in Section 2.2):

head (Or r x y) = Or (narrow r) (head x) (head y)

With these changes we can now give a special treatment to free variables and
can show the user the derivation of tuple x where x free) where tuple x =
(x,not x) as follows:.

main
tuple A

not A => True ? False
tuple A => (False,True) ? (True,False)
main => (False,True) ? (True,False)

3.4 Unification

One of the main open problems with generator functions is how to reclaim the
power of the unification operator (=:=). This operator introduces a new quality
to functional logic programming. Where narrowing only binds free variables
to non-variable constructor terms, (=:=) can also bind free variables to other
variables. In this section we can only sketch the main ideas to solve this problem
for the oracle approach.
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In order to include unification in the presented technique, we need a further
extension of the information contained in Or references. In addition to the pos-
sibility to tell generator branches from ordinary ones introduced in Section 3.3,
we need information about the Or references of the children of a generator. As
a simple example, to establish the equality between to generated boolean lists

genList genBool ()=:=genList genBool () =>
Or (Generator 1) [] (genBool ():genList genBool ()) =:=
Or (Generator 2) [] (genBool ():genList genBool ())

we need not only to establish a connection between the references 1 and 2 but
also between the references of the respective arguments of the (:). The according
change to the declaration of OrRef is:

data OrRef = Generator Int [Int]
| Narrowed Int [Int]
| NoGenerator Int

Each generator has to include the references for its direct children in the Or
reference of the parent. The dummy parameter now becomes a proper argument.

type Generator a = Int -> a
genBool i = Or (Generator i []) True False
genList gen i = Or (Generator i [j,k]) [] (gen j:genList genBool k)

where j,k fresh

A free variable, e.g. x::[Bool], is now introduced by genList genBool r where
r fresh.

The next step would be to design a type of constraints. For unification we
need only a single kind of constraints but, in principle, other kinds of constraints
can be treated in the same way.

data Constraint = Eq OrRef OrRef | ...

We need an additional constructor Constraint :: Constraint -> a -> a. Con-
straints have to be lifted just like Or constructors or Fail, e.g.:

head (Constraint c x) = Constraint c (head x)

Finally, the projection from search trees to values described in Section 2.2 has
to be extended to a constraint solver. Due to lack of space we cannot describe
the implementation of such a solver and leave this part for future work.

The described extension is implemented in the debugging tool such that the
evaluation of (x=:=True:y &> (x,y) where x,y free) can be shown as

main
A =:= (True : B) => Success
Success &> (True : B,B) => (True : B,B)
main => (True : B,B)

90



4 Related Work and Conclusion

We have presented a recently developed technique to record compact data about
programs written in a lazy functional language. We have shown how this tech-
nique can be extended to include the advanced features of lazy functional logic
languages, especially with respect to narrowing and non-deterministic opera-
tions. The extension to unification has only been sketched and a more thorough
treatment is part of future work.

With respect to related work, the presented approach is complementary, as
also described in Section 1. There are many debugging tools for lazy functional
languages, cf. [10] for a survey but also for functional logic languages, cf. [9] for
the most recent paper. The presented approach is about a technique to record
less data about programs and how this technique can be employed to create
efficient debugging tools. With the ideas developed in [3] we think that this
technique can be applied to integrate all of the related approaches. The transfer
of the framework described in [3] and its application to build different debugging
views is therefore the next step of the development. The debugging tool built on
the presented technique can be downloaded at www-ps.informatik.uni-kiel.
de/~bbr and includes apart from a step/skip mode the possibility of declarative
debugging and virtual I/O as described in [8].
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Abstract Worst-case execution time (WCET) analysis is a prerequisite
for successfully designing and developing systems, which have to sat-
isfy hard real-time constraints. Of key importance for the precision and
performance of algorithms and tools for WCET analysis are the expres-
siveness and usability of annotation languages, which are routinely used
by developers for providing WCET algorithms and tools with hints for
separating feasible from infeasible program paths.

Reconsidering and assessing the strengths and limitations of cur-
rent annotation languages, we believe that contributions towards further
enhancing their power and towards a commonly accepted uniform an-
notation language will be essential for the next major step of advancing
the field of WCET analysis. To foster this development we have recently
proposed the WCET annotation language challenge. This challenge com-
plements the already earlier successfully launched WCET tool challenge.
In this paper we summarize the essential features of current annotation
languages and recall the WCET annotation language challenge derived
from their assessment.

1 Motivation

The precision and performance of worst-case execution time (WCET) analysis
depends crucially on the identification and separation of feasible and infeasible

1 An extended version of this paper has been published in the Proceedings of the 7th
International Workshop on Worst-Case Execution Time Analysis (WCET’07).
This work has been partially supported by the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung) under contract No P18925-N13,
Compiler Support for Timing Analysis, http://costa.tuwien.ac.at/,
the ARTIST2 Network of Excellence, http://www.artist-embedded.org/
and research project “Integrating European Timing Analysis Technology” (ALL-
TIMES) under contract No 215068 funded by the 7th EU R&D Framework
Programme.
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program paths. This information can automatically be computed by appropri-
ate tools or manually be provided by the application programmer. In both cases
some dedicated language is necessary for annotating this information and making
it available for a subsequent WCET analysis. Languages used for this purpose
are commonly known as annotation languages. Over the past 15 years, an ar-
ray of conceptually quite diverse proposals of annotation languages has been
presented. Many of them have been used for the implementation of a WCET
tool. A comprehensive survey of WCET tools and methods has been given by
Wilhelm et al. [27]. Until recently, however, there was no approach towards a sys-
tematic comparison of the various approaches proposed on annotation languages
for WCET analysis [14].

The goal of our approach of [14] was three-fold: (1) To identify an array
of important universally valid criteria, in which the usefulness of annotation
languages for WCET analysis becomes manifest. (2) To investigate and classify a
selection of prototypical representatives of annotation languages used in practice
along these criteria in order to shed light on the relative strengths and limitations
of the different annotation concepts. (3) Based on these findings to extend the
invitation to researchers working in this field to contribute to the challenge
of designing novel and superior annotation languages, which will support the
development of enhanced WCET algorithms and tools which will outperform
their current counterparts for WCET analysis: The so-called WCET annotation
language challenge.

As pointed out in [14], we believe that mastering the WCET annotation
language challenge will be the key for further advancing the field of WCET
analysis. Moreover, we believe that it will also be essential in order to enable
the recently successfully launched WCET tool challenge, which has attracted
the attention of many WCET tool developers [6,26], to unfold its strength and
impact in full.

In this paper we summarize the essential findings of the comparison of an
array of prototypical annotation languages presented in [14] and the conclusions
drawn from this comparison.

2 Assessment Criteria

The criteria we use in order to assess the strengths and limitations of WCET
annotation languages can be divided into two groups of language design and
usability criteria. While the characteristics of the language design criteria are
essentially under control when designing the language, the characteristics of
the usability criteria are essentially an outcome of the characteristics of the
language design criteria. In addition we consider a singleton third criterion, which
is orthogonal to the other criteria. This is the existence of a tool using the
annotation language. It is worth noting that the availability of a tool need not
directly be related to a specific property or feature of an annotation language.
In fact, there may be manyfold reasons why a tool has been developed, and vice
versa, why not. Actually, these reasons need not necessarily be related to the
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language at all. Nonetheless, we consider the availability of a tool an important
indicator of the general usefulness and usability of an annotation language. We
thus report the existence of tools, however, it is beyond the scope of this paper
to assess the quality of any such tool. Readers interested in this might refer to
the article by Wilhelm et al. [27].

Here, we proceed with an overview of the assessment criteria of annotation
languages we use and which we discuss in more detail subsequently.

1. Language Design
(a) Expressiveness
(b) Annotation placement and abstraction level
(c) Programming language

2. Usability
3. Tool Support

Expressiveness. We consider expressiveness of an annotation language the most
important criterion at all. Intuitively, expressiveness refers to the capability of an
annotation language to describe control-flow paths. Key for the expressiveness
of an annotation language is the type of flow information it allows to describe.
We call an annotation language complete, if it allows to precisely describe all
feasible paths of arbitrary terminating programs. The capability of an annotation
language to cope with inter-procedural program flow or selected iteration ranges
of loops are other important aspects of expressiveness. Important setscrews a
language designer can use to control the expressiveness of an annotation language
are the means and their capabilities to deal with loop bounds, triangle loops,
and, more generally, the context sensitivity of loop iterations and procedure or
function incarnations, and the execution order of statements.

Annotation placement and abstraction level. The question of where to place an-
notations and at which level of abstraction has a strong impact on the usability of
an annotation language because it directly affects the demands on a programmer
when using a language.

First, it has to be decided if annotations shall be placed at the location of
the source code statements they describe, or in a separate file? None of the two
options is always superior over its counterpart. As a rule of thumb we have:
If annotations are provided manually, it is usually more convenient to directly
annotate the code. If annotations are computed automatically, it is often prag-
matically advantageous to provide annotations in separate files.

Second, it has to be decided if the source code or the object code shall be an-
notated. Taking a (human-centered) usability perspective, annotating the source
code appears generally preferable. This might be obvious, if code annotations are
manually provided. However, it also holds, if flow information is automatically
computed because it is often obligatory or at least desirable to verify automati-
cally computed annotations manually, e.g., to verify that the correct execution
context has been taken into account.
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Closely related to this is the issue of establishing a mapping between source
code and object code: If an object code-based annotation language is used to
express the behavior of constructs of the original programming language it is
necessary to establish a correspondence between the object code and the source
code. This can be achieved e.g. by defining a set of so-called anchors, special
language constructs, which can be recognized after compilation, such as loops
or procedure calls.

Programming language. Restricting a programming language to a well chosen
sublanguage and tailoring an annotation language towards this sublanguage is
an important means to control the expressiveness, precision, and efficiency of
a WCET analysis using this language. For example, an annotation language
can be limited to reducible code. Also the WCET calculation methods which
are compatible with an annotation language can constrain the features of a
programming languages, which can meaningfully be handled. Another source,
which can impose restrictions on the programming language, are the techniques
for the automatic calculation of flow information. For example, a technique might
not support floating point operations.

It is also an important feature of an annotation language if it supports path
analysis of the object code. This is crucial because compared to path analysis
at the source code level this imposes additional challenges at the object code
level. For example, source code typically makes use of high-level control-flow
statements which simplifies the construction of the control-flow graph (CFG)
of a program. For object code, a precise (re-) construction of the CFG requires
usually additional annotations.

Usability. The usability of an annotation language is possibly best reflected by
the skills and the amount and the complexity of work it demands from a pro-
grammer when using it. It is also reflected by the knowledge which is required
beyond the annotation language itself, e.g. about the WCET analysis expected
to make use of it, maybe even of the implementation specifics of this technique
as it might affect its performance. Similarly, this holds for the amount of work
required to update a program annotation in response to an update of the pro-
gram. Another issue referred to concerns the ability to cope with annotations
that are automatically provided by a tool.

In principle, there are two potential classes of users that provide code anno-
tations: Programmers writing manual code annotations, and tools automatically
computing annotations by means of some code analysis.

For code annotations which are to be provided manually it is most important
that the program behavior can be described concisely and compactly. As an
extreme case, the size of an annotation describing a specific program property,
may grow exponentially with the program size. For code annotations which are
automatically computed, it is important that the underlying techniques are able
to deliver their information in a format which is supported by the annotation
language.
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It is also an important issue if a WCET calculation method which is compati-
ble with an annotation language can provide the user with adequate information
explaining its results. For example, Integer Linear Programming (ILP) with flow
constraints as very often used in practice can only provide information about
the execution frequency of statements, but not on their execution order.

All this shows that usability is the outcome of the interplay of several fac-
tors, in particular, of the complex interaction of an annotation language and
the possible support for applying this language which is provided by the (tool)
environment it is used in. Assessing the usability of an annotation language thus
implicitly amounts to an assessment of its usability with respect to a specific
global environment, which might even change over time. This, however, is be-
yond the scope of this paper. In addition to usability, we thus introduce a second
more specific term, which we call the intricacy of an annotation language. We
refer to this term in order to assess the language-inherent conceptual and tech-
nical complexity of an annotation language, detached from any environment or
tool support of using it.

Tool Support. As mentioned above, the availability of a tool using a specific
annotation language can be considered an indicator of the general usefulness
and usability of this language. We therefore report the availability of tools but
we do not aim at assessing their quality.

3 WCET Fundamentals

We consider the general typology of current WCET calculation methods and the
types of flow information they rely on as WCET fundamentals which we recall
next.

Types of flow information. Intuitively, flow information provides a WCET cal-
culation method with information about the dynamic behavior of a program.
Typically, the (interprocedural) control-flow graph of a program is used to pro-
vide this information. The various kinds of flow information can roughly be
classified as follows:

1. Explicit execution frequency
2. Explicit execution order
3. Context-sensitive flow information

(a) Loop-context sensitive flow information
(b) Call-context sensitive flow information

Explicit execution frequency information describes the execution count of
nodes or edges of the control-flow graph. In principle, this information can be
given as absolute execution count of a code location or as a relation between the
execution count of one code location and another one. In practice, this kind of in-
formation is usually provided in terms of linear equations between the execution
count of different code locations.
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Explicit execution order information describes patterns of execution order of
nodes or edges of the control-flow graph of a program. This information allows
WCET calculation methods to cope with the intricacies of advanced modern pro-
cessors, where the execution time of an instruction can depend on the execution
history.

Context-sensitive flow information is relevant for reliably capturing the effect
of instructions which may be executed multiple times within a program execu-
tion. In principle, two major sources of context-sensitive flow information can
be distinguished: Instructions executed within a loop and instructions executed
within a possibly recursive function or procedure which is called multiple times.

Two examples of concrete flow information are loop bounds and recursion bounds.
Such bounds information is mandatory for any WCET calculation method. It can
thus be considered the minimal flow information necessary for WCET analysis.

WCET calculation methods. WCET calculation methods can roughly be di-
vided into dynamic and static techniques. Intuitively, dynamic methods are
measurement-based and run the program to figure out the worst case execu-
tion time, whereas static methods are analysis-based and compute a bound for
the worst case execution time of a program without running it. In this paper,
we concentrate on static methods. The static methods can roughly be classified
as follows:

1. Timing Schema Approaches
2. Path-based Approaches
3. Implicit Path Enumeration Technique (IPET) Approaches

Timing schema approaches operate on the abstract syntax tree (AST) of a
program. Intuitively, each leaf of the tree representing elementary operations is
assigned an execution time, each inner node an operation allowing to compute
its execution time as a function on the execution time of its successor nodes. This
directly induces a hierarchical approach for computing the worst case exection
time of a program. Historistically, timing schema based approaches were among
the first WCET calculation methods used in practice [22,24,20]. Refinements of
these approaches e.g. towards an improved handling of nested loops have been
proposed more recently [3]. The popularity of the timing schema approaches is
in part due to their conceptual simplicity, which simplifies their implementation.

Unlike timing schema approaches, path-based approaches decompose a pro-
gram into fragments. For each of the fragments they determine a program path
with maximum execution time [7,25]. These times are then combined to the
worst case execution time of the program. Path-based approaches have been de-
veloped for capturing the effects of pipelines, however, they are less appropriate
for taking global timing effects into account, like cache behavior.

Implicit path enumeration technique (IPET) approaches perform an implicit
search for the longest path of a program without enumerating paths explicitly
[16,23]. This distinguishes them from path-based approaches. Intuitively, IPET
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approaches model the control flow of a program by constraints. Typically, only
linear constraints are used in order to reduce the complexity of solving the re-
sulting constraint problem. This leads to an integer linear program (ILP), which
can be solved by off-the-shelf open source or commercial ILP solvers.

4 WCET Annotation Languages

In this section we recall the essential features of the seven annotation languages,
which we selected as prototypical representatives for our conceptual comparison
of WCET annotation languages.

1. The Timing Analysis Language TAL
2. The Path Language PL and Information Description Language IDL
3. Linear Flow Constraints
4. SPARK Ada
5. Symbolic Annotations
6. The Annotation Language of Bound-T
7. The Annotation Language of aiT

In the following, we focus on the most relevant key facts concerning these
languages. A more detailed description of these languages and the calculation
methods and tools using them can be found in [14].

The Timing Analysis Language (TAL) has been developed by Mok et al. [18].
It is a timing schema approach. The TAL language is an integral part of the
timing analysis system developed at the University of Texas and is used by the
tool timetool [2].

The Path Language (PL) has been developed by Park and Shaw [24,20,21,19].
It is a path-based approach, which describes feasible and infeasible paths of a
program by means of regular expressions. Later on Park developed a more high-
level variant of PL called Information Description Language (IDL) [19], which
is easier to use than the more low-level PL.

Linear Flow Constraints are typically used by IPET approaches [4,13] as
already discussed in the previous section. We thus proceed with SPARK Ada.
This is a subset of Ada83 which is extended by a special kind of comments which
are used for both program proof and timing analysis. Spark Ada programs can
be analyzed by the Spark Proof and Timing System (SPATS), which is based on
symbolic execution.

Symbolic Annotations is a term which we coined to denote an approach pro-
posed by Blieberger [1]. This approach combines aspects of a pure annotation
language with those of a programming language extension. The clue of this ap-
proach is the invention of so-called discrete loops. These can be considered a
generalized and more flexible kind of for-loops. Exploiting the structural proper-
ties of discrete loops, however, loop bounds can often automatically be computed
by simple mathematical reasoning.

Bound-T is a commercial WCET tool originally distributed by Space Systems
Finland Ltd. It has been developed by Holsti et al. [10,11,9] and is currently
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marketed by Tidorum Ltd. A specialty of the annotation language of Bound-T
is that it is designed to be usable both within high-level languages programs and
assembler programs.

The Annotation Language of aiT, finally, is used by the ait WCET tool, a
commercial tool developed by AbsInt Angewandte Informatik GmbH, Germany.
This tool targets different hardware architectures including ARM7, Motorola
Star12/HCS12, and PowerPC 555 [5,8]. A specialty of this tool and its annotation
language is to start from binary files as input to be analyzed.

5 Main Results

Table 1 summarizes the major findings of our comparison of the seven languages
we selected for assessing and highlighting the strengths and limitations of current
WCET annotation languages.

Most of the criteria listed in the leftmost column of Table 1 are self-explaining
or have been discussed before, except of triangle loops and the various kinds of
context-related information.

Intuitively, triangle loops are nested loops which meet a triangular pattern in
the iteration space (i, j). The two IPET-based methods in our comparison, linear
flow constraints and Bound-T, allow a precise description of the behaviour of
triangle loops by allowing the use of equalities and inequalities in the specification
of constraints.

Often the timing behaviour of the first iteration of a loop is different from
that of subsequent iterations, e.g. because of cache effects. Loop context-sensitive
annotations allow to make such differences explicit. Similarly, the bounds of
loops inside of procedures and functions depend often on the values of their
input parameters. Context-sensitive annotations of the calling context allow to
differentiate between the various calling scenarios and thus to obtain more precise
analysis results.

Application context-sensitive annotations, finally, are a specialty used in
SPARK Ada. It refers to a feature called modes which allow to describe multiple
annotations for a function depending on different input parameters. This resem-
bles the scenario of calling context-sensitivity without being exactly the same.
We thus introduced the term application context sensitivity for this feature of
SPARK Ada.

Table 1 illustrates that none of the seven prototypical annotation languages
selected for our comparison uniformly outperforms its competitors. They all have
their own individual strengths and limitations. This became the more apparent,
if we were to take further criteria into account, e.g., the possibility and ease
of reconstructing the control-flow graph on the object-code level such that it
precisely reflects its counterpart on the source-code level [15] or the consideration
of application domains of annotation languages which go beyond pure WCET
analysis as e.g. recently proposed by Lisper [17].
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Criteria Annotation Language

TAL PL and IDL Linear Flow
Constraints

Bound-T aiT SPARK Ada Symbolic
Annotations

Chal-
lenge

Expressiveness Timing
schema

Regular
expressions

Constraint-
based

Constraint-
based

Constraint-
based

Loop-
bounds

Loop-
annotations

Loop-bounds yes yes yes yes yes yes yes yes
Triangle-loops yes no yes some yes no yes yes
Calling context yes no possible implicit no explicit no yes
Loop context no no possible no no no no yes
Appl. context no no no no yes yes no yes
Execution order no yes no no no no no yes

Intricacy of
Annotations

high medium to
high

medium medium medium low low to
medium

as low
as pos-
sible

Annot. placement External
TAL-script

Ideally
inside the
source code

Ideally
inside the
source code

External
file

External file;
partially
inside source
code

Source
code
comments

Integral
part of
the source
language

–
D

esig
n

D
ecisio

n
s

–

Abstraction level
Source code no yes yes no yes yes yes
Object code yes no yes yes yes no no

Program. language
Implementation Asm/C C - C, Ada Asm/C Ada Ada
General Scope - Any

structured
language

Any
structured
language

Any
structured
language

Any
structured
language

- Any
structured
language

Tool available yes no yes commercial commercial yes prototype yes

Table 1. Assessment summary

6 Conclusions

The summary of Table 1 demonstrates that the languages proposed and used
so far for WCET analysis all have their own specific profile of strengths and
limitations. The demand for an annotation language, which combines the indi-
vidual strengths of the known annotation languages, while simultaneously avoid-
ing their limitations, is thus apparent. In Table 1 this demand is reflected by
the right-most column denoted by “Annotation Language Challenge.” It grasps
the summarized strengths of the different annotation concepts. Developing a
language (or an annotation concept), which enjoys this profile is the central
challenge, which we derive from our investigation, and which we would like to
present to the research community.

This challenge, however, is not the only challenge, which is suggested by the
findings of our investigation. It is obvious that an annotation language and a
methodology for computing the WCET of a program based on annotations given
in this language are highly intertwined. Expressiveness delivered by an annota-
tion language, which cannot be exploited by a WCET computation methodology,
is in vain. Vice versa, the power of a WCET computation methodology cannot
be evolved if the annotation language is too weak to express the needed infor-
mation. This mutual dependence of annotation languages and WCET computa-
tion methodologies suggests two further challenges. Which annotation language
serves a given WCET computation methodology best? And vice versa: Which
WCET computation methodology makes the best use of a given annotation lan-
guage?

Of course, the meaning of “best” must be made more precise in order to
be practically useful. We argue that the underlying notion of the relation “bet-
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ter” has several dimensions, each of these leading to possibly different solutions.
Besides parameters like ease of use, we consider the parameters of power and
performance and the trade-off between the two most important.

Summing up, this results in the following challenges :

1. Finding an annotation language, which enjoys the individual strengths of
the known annotation languages while avoiding their limitations.

2. Finding an annotation language, which serves a given WCET computation
methodology best.

3. Finding a WCET computation methodology, which makes the best use of a
given annotation language.

It is worth noting that these challenges can be considered on various levels
of refinement, depending for example on the notion of the relation “better” as
discussed above. The challenges above thus represent a full array of more fine-
grained challenges rather than exactly three individual challenges.

In a companion paper published in the present proceedings [12], too, we
make a proposal towards such a new annotation language by highlighting ingre-
dients, which we consider essential for an annotation language that can serve as
a commonly accepted uniform WCET annotation language in the future.
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Abstract. Within the last years, ambitions towards the definition of
common interfaces and the development of open frameworks have in-
creased the efficiency of research on WCET analysis. The Annotation
Language Challenge for WCET analysis has been proposed in line with
these ambitions in order to push the development of common interfaces
also to the level of annotation languages, which are crucial for the power
of WCET analysis tools.
In this paper we present a list of essential ingredients for a common
WCET annotation language. The selected ingredients comprise a num-
ber of features available in different WCET analysis tools and add sev-
eral new concepts we consider important. The annotation concepts are
described in an abstract format that can be instantiated at different
representation levels.

Keywords: Worst-case execution time (WCET) analysis, annotation languages,
WCET annotation language challenge.

1 Why a Common WCET Annotation Language?

The situation for WCET analysis is very heterogeneous. Within the real-time commu-
nity it is a well known fact that manual annotations are needed to assist non-perfect
analyses. Various tools exist providing different levels of sophistication [17]. However,
as the WCET Tool Challenge [6] has shown, few tools share the same target hardware,
analysis method or annotation language.

1 An extended version of this paper has been published in the Preliminary Proceedings
of the 8th International Workshop on Worst-Case Execution Time Analysis
(WCET08).
This work has been partially supported by the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung) within the research project
“Compiler-Support for Timing Analysis” (CoSTA) under contract No P18925-N13,
by the ARTIST2 Network of Excellence (http://www.artist-embedded.org/), and the
research project “Integrating European Timing Analysis Technology” (ALL-TIMES)
under contract No 215068 funded by the 7th EU R&D Framework Programme.
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While a multitude of targets is beneficial and a diversity in tools and methods is
favorable, a common annotation language is required for an accepted set of benchmarks
in order to evaluate the various tools and methods. Still, as a direct consequence of the
first WCET Tool Challenge a set of accepted benchmarks has already been collected,
without such annotation support.

To enable common annotations within these benchmarks, the WCET Annotation
Language Challenge [11] has formulated the need for a common annotation language.
This language is a means of specifying the problem-inherent information in a tool-
and methodology-independent way, supporting, e.g., static analysis equally well as
measurement-based methods, thus allowing the combination of their results. It must
also be expressive enough to master the difficult task of providing annotations at the
source level, which is the natural specification level, as well as supporting the annotation
of binary or object code, if the source code is not available, e.g., for closed sources like
operating systems or libraries.

Therefore, a common language may allow the tool developers to concentrate on their
analysis methods, creating interchangeable building blocks within the timing analysis
framework, as intended by ARTIST2 [9]. By using this common annotation format as
a common interface, tools can evaluate the same set of sources for a fair comparison
of performance and may exchange analysis results to synergetically supplement each
other. The steps of manual annotation, automatic annotation and timing analysis can
be repeated, thus iteratively refining the analysis results.

All this should foster common established practices and may, eventually, lead to
standardization, resulting in a broader dissemination of WCET analysis throughout
research and industry.

2 Basic Concepts

2.1 Definitions

Flow Constraints: We define flow constraints to be any information about the control
or data flow of a program code. Data flow, however, is not only meant in the sense of
def-use chains, but, for example, variable-value ranges at program locations. Typical
examples of flow constraints are loop bounds or descriptions of (in)feasible paths.

Timing Constraints: We define timing constraints to be any information that is
introduced in order to describe the search space of the WCET analysis.

Because control and data flow represent the basis for the WCET analysis, the flow
constraints of a program are always part of the timing constraints. An example of a
timing constraint not being a flow constraint is the specification of access times of
different memory areas.

Constraints versus Annotations: We distinguish between the timing constraints and
the timing annotation of program code. The timing constraints are the information per
se and the timing annotation is the linkage of the timing constraints with the program
code.

There are different possibilities of how to annotate the program code with timing
constraints. One possibility to annotate the program is to write the timing constraints
directly into the source code, either as native statements of the programming language
or as special comments. It is also possible to place timing constraints in a separate file,
if the source code may not be changed.

If a programmer has to annotate the program modules at different representation
levels a common syntax for the different representation levels would be especially
beneficial and useful.
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2.2 Layers

The WCET of a program cannot be determined precisely without knowing information
about the target-computer platform on which the program will be used. The computer
platform of a program includes, for example, the development tools, the operating sys-
tem, the hardware, and the application environment. Naturally, the computer platform
is sliced into layers to benefit from the independence of different parts that constitute
the computer platform. For example, the operating system is an optional layer that
may be placed on top of the hardware layer, and again, the layer of the development
tool chain may be on top of the operating system.

These layers are the key to the reuse of timing annotations in case a layer is changed.
For example, if we change the processor type (hardware layer) but still use exactly the
same code binary, any timing constraints describing the behavior of the build-and-run
layer can still be reused, if it does not specify explicit times.

A prerequisite for the smooth replacement of layers is that each annotation has a
layer specified in its definition. A layer is replaced by disabling the current instance of
the layer and enabling another one as input for the analysis.

Note that the layers are not fixed, but rather open for extensions. For example, if
an operating system delivered in binary form has different absolute times specified for
different processor types, it does make sense to specify them in a combined OS/HW
layer besides the other OS and HW layers.

2.3 Validity of Timing Constraints (Timing Invariants vs. Fictions)

The goal of WCET analysis is to calculate a precise WCET bound. However, the
developer might also be interested in experimenting with the timing constraints to
analyze changes of the program behavior, e.g., to tune the system. For example,
the developer might specify a fictive loop bound to determine the influence of the
loop on the overall timing. As another example, the developer might want to test an
absolute time bound for a code section independently of the real execution time. In
both scenarios, timing constraints are not necessarily used to describe a superset of the
real program behavior.

In WCET analysis research, program annotations are typically assumed to describe
a superset of the possible system behavior, i.e., system invariants. We extend this
annotation concept to information that does not have to be a superset of the system
behavior. We call all timing constraints that describe a superset of the possible system
behavior timing invariants. In contrast, we introduce timing fictions as arbitrary timing
constraints the user might want to use for experimenting with the timing behavior of
the system. We add a flag to each timing annotation to mark it either as a timing
invariant or a timing fiction.

The intention of introducing timing fictions is not to foster its use for WCET
analysis, because timing fictions may cause an underestimation of the WCET. But in
case that a developer wants to experiment with the sensitivity of the timing behavior,
then it is an additional safety feature if the user is able to explicitly mark such timing
constraints as timing fictions and has to enable them explicitly to be included in the
analysis.

Definition 1. (Timing Invariant): A timing constraint C is a timing invariant at its
associated annotation layer L, iff for all possible systems that use annotation layer L,
it holds that for all possible initial system states the system execution fulfills the timing
constraint C. If a timing constraint is associated with more than one layer, then the
condition has to hold for all possible systems that use all of its associated layers.
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Definition 2. (Timing Fiction): If a timing constraint C is not a timing invariant at
its associated annotation layer, then it is a timing fiction.

In the case that timing invariants and timing fictions are in conflict, the semantics of
timing fictions is to override conflicting timing invariants. Whenever a timing invariant
is overridden due to a timing fiction, the WCET analysis tool should give a log entry
to the user.

The following provides examples of timing invariants and timing fictions:

void f (int a, char[] b)
{
int i;
a = a % 20;
for (i=0; i<a; i++) //loop1
{

if (i%2 == 0)
b[i] = a; //m1

else
b[i] = 0; //m2

}
}

Timing Invariant:
Expressing as linear flow constraint that the then-path
is executed at least as often as the else-path: m1 ≥ m2
(see annotation C2.3)

Timing Fiction:
Specifying a lower and upper loop bound of 40:
LB(loop1) = 40 . . . 40 (see annotation C2.1)

In the timing fiction example with loop bound LB(loop1) = 40 . . . 40, an IPET-
based WCET analysis tool typically transforms the program structure into flow equa-
tions and the fictive loop bound is transformed into a flow constraint. In this case, the
timing fiction redefines the execution count of control-flow edges in the final WCET
calculation.

2.4 Checking of Invariants

Manual annotations are potentially error-prone and may yield incorrect WCET esti-
mates. In the case that timing constraints originate from the operation environment it
is, however, possible to “lift” operation environment information to the program layer,
e.g., by inserting range checks and similar assertions wherever appropriate.

int count = read_from_sensor();
while (count ≥ 0) {
count--;
...

If we assume that the environment dictates that the
return value of read from sensor() is in the interval
[0,47], an upper loop bound of 48 would be an invariant
at the operation layer and a fiction at the program
layer.

int count = read_from_sensor();
if(count < 48) {

while (count ≥ 0) {
count--;
...

} else {
error();

}

However, if we specialize the program, the loop bound
of 48 becomes an invariant at the program layer.

As a result of lifting annotations to the program layer, the resulting program
becomes a specialized instance of the original program. Because the assertions allow the
compiler to perform additional optimizations, the specialized program can also have
better performance than the original program. These kinds of assertions can easily
be generated by an automatic tool and could be valuable for diagnosis and testing of
annotations. An example of using runtime checks with special support by the compiler
is Modula/R: the Modula/R compiler optionally generates for each source-code location
that is referenced by a timing constraint a separate counter variable where an exception
is raised at runtime if their specified bound is exceeded [16].
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3 Ingredients of the WCET Annotation Language

In the following we describe essential ingredients for a WCET annotation language. The
different timing constraints are described at a conceptual level without focusing on the
concrete syntax of an annotation language. We use ANSI C code examples to illustrate
the usefulness of the different timing constraints. The definition of a concrete syntax
is beyond the scope of this paper. We propose the following categories of ingredients,
which are detailed in the rest of this section:
C1 Annotation Categorization
C2 Program-Specific Annotations
C3 Addressable Units
C4 Control Flow Information
C5 Hardware-Specific Annotations

C1 Annotation Categorization
We define attributes for timing constraints to categorize and group them. These catego-
rization attributes help to organize, check, and maintain timing annotations. Support-
ing the maintenance of timing annotations is a very important aspect to improve the
correctness of timing constraints. For example, if a user writes an annotation with spec-
ulative constraints just for testing the influence on the timing behavior of the system,
there is the potential danger that he/she forgets to remove such an annotation from the
program later on. Further, whenever code is reused or parts of the computer platform
are changed, it is necessary to identify those annotations that have to be checked or
adapted. The categorizations C1.1, C1.2, and C1.3 are orthogonal categorizations,
but their joint use is intended.

C1.1 Annotation Layer
Each timing constraint has associated an annotation layer to describe its validity. As
described in Section 2.2, the WCET of a program depends on its computer platform.
The computer platform is typically divided into several layers, allowing the customiza-
tion of the system at each layer. As shown in Figure 1 we propose to support the
specification of at least the following three annotation layers:
Program Layer: If an annotation belongs solely to the program layer, the timing
constraint is assumed to be platform-independent. Here it is important to note that in
programming languages like C or C++ the functional behavior is not fully platform-
independent, i.e., some timing constraints about the control flow may already belong
to the computer-platform layer.

Computer-Platform Layer: The computer platform of a program includes every-
thing necessary to execute the program. If a finer granularity is needed, the platform
may be divided into different layers, like, for example, the build and run environment,
the operating system, any middleware, and also the hardware (as shown in Figure 1.a).
For example, the cache geometry and the cache miss penalty may be specified at the
hardware layer. As another example, knowing the attached flash memory device, one
may specify the time needed for the completion of a write access.
Figure 1 also shows the difference between the orthogonal layers and the interface, a
platform presents to a stack of layers. In Figure 1.a we see the different annotation
layers, including the computer-platform layers, each of them clearly separated from
the others. Please note the difference between a computer-platform layer (a name of
an annotation layer) and a platform (as described in the MDA [13] of the OMG). In
contrast to an annotation layer, a platform subsumes all the annotation layers below it.
The platform can also be seen as an interface that comprises the information belonging
to all annotation layers below it. Thus, as shown in Figure 1.b, the system behavior
influenced by each interface contains the behavior of all annotation layers below it.
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Operation Layer: The operation layer describes the usage of the computer system,
i.e., how the environment of the system is configured and how the environment behaves.
For example, timing constraints at the application layer may describe that the computer
system is connected to three sensors, implying that a loop in the software to poll these
sensors will iterate exactly three times.

The program-, computer-platform- and operation-layers are examples, only. Based on
the specific system architecture, the user may refine the layering to further annotation
layers. It can also happen that a timing constraint is associated to multiple annotation
layers. However, whenever possible, it is advised to split such constraints into multiple
constraints where each constraint belongs only to a single annotation layer. Note that
the layer stack suggested by Figure 1.a is not mandatory; layers may be also placed
horizontally. But the important point is that the different layers should be orthogonal,
so that it is relatively easy in the system to exchange a layer and its specific timing
annotations.

For timing constraints that refer to annotation layers other than the program layer,
or timing constraints that represent fictions, more care has to be taken to ensure
their intended use. For example, a loop bound may be tighter using information from
the operation layer, as opposed to using only information from the program layer.
Constraints refined with information from the operation layer are associated naturally
also to the operation layer.

C1.2 Annotation Class
The annotation class is an attribute to describe the validity of timing constraints. As
described in Section 2.3, besides the timing invariants we also introduce timing fictions
as additional class of timing constraints. Each timing constraint should therefore
contain a flag that indicates its class.

Invariants: Invariants are used to explicitly annotate information which is assumed
to be valid with respect to the concrete semantics of the associated annotation layer.

Fictions: Timing fictions are used to provide fictive timing constraints to experiment
with the sensitivity of a system’s timing behavior.
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The criterion of whether a timing constraint is an invariant (and not a fiction) is
not only whether it holds for each possible input data on the program code. This is
because, as shown in Figure 1.b, the system can be annotated at different layers (layers
are described by the timing-constraint attributes C1.1).
For example, if a timing constraint describes properties of the computer-platform layer,
we have to look at the concrete computer platform to decide whether this timing
constraint is a timing invariant or a timing fiction.

C1.3 Annotation Group
The grouping mechanism allows for different WCET evaluations. For each annotation
group a separate WCET calculation with its own set of timing constraints can be
conducted.
There are several reasons why one might use different sets of timing constraints. For
example, one might want to use and annotate different scenarios at the operation
layer, or different tool chains at the computer-platform layer, etc. Timing fictions can
be organized in groups as well to ensure their selective and correct use.
The grouping mechanism allows us to give each timing constraint membership to
multiple groups. A group is a symbolic name together with a description field. There
is no special semantics behind the groups: their intended meaning has to be described
in their description fields. With the grouping mechanism one can specify which timing
constraints will be used together for WCET analysis. Hierarchical definitions of groups
are supported by specification of an optional list of nested groups.
Timing constraints that are invariants at the program layer are relatively easy to
maintain. They can be checked directly against the source code and they only have to
be changed if the program code changes. They remain valid if the computer platform
changes.

C2 Program-Specific Annotations
We define program-specific annotations as timing constraints that directly describe the
control and data flow of a program.

C2.1 Loop Bounds
Loop bounds comprise the minimal timing constraints at the program layer that are
necessary to estimate the WCET of a program. For this reason, they were the first
type of annotation that was introduced in the short history of WCET annotation
languages [11].
Although loop bounds can always be expressed through linear flow constraints, there
are practical reasons to allow loop bounds to be specified in a specialized and more
compact notation. To maintain a tight execution count estimate after certain loop
optimizations, it is desirable to specify lower loop bounds directly.

int i;
for (i = 0; i < n; ++i) {
process(g[n]);

}

Here, the loop bound depends on the value of variable
n. Static interprocedural program analysis over the
whole program may find that the possible value of n at
the beginning of the loop is 3...10, resulting in a lower
loop bound of 3 and an upper loop bound of 10.

C2.2 Recursion Bounds
When a recursion is bounded, time and stack size requirements are also bounded
using this recursion depth. If such conditions cannot be established by analysis, user
annotations can supply the required data. In analogy to the earlier work on loop-
bounds [1], Blieberger and Lieger established the conditions necessary for establishing
upper bounds for stack space and time requirements of directly recursive functions.
They also generalize the approach to indirectly recursive functions [2]. Recursion depth
annotations are also used by Ferdinand et al. [4].
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unsigned fac(unsigned n) {
if (n == 0) return 1;
else return n*fac(n-1);

}

The most precise recursion bound of procedure fac is
the maximum value of input variable n. If a static
program analysis finds fac always to be called with
n ≤ 10, then 10 is the most precise recursion bound.

C2.3 Linear Flow Constraints
Linear flow constraints are the basis for IPET-based WCET calculation methods.
In the course of the calculation, all other program-specific constraints and control-
flow constraints will eventually get translated into linear flow constraints. While flow
constraints have a very high expressiveness, they are not necessarily as easy to write as,
e.g., loop bounds, which is one of the reasons for allowing multiple ways of annotating
the same flow constraint.
Linear flow constraints are used to express a relationship between certain reference
points in the control flow graph (CFG) of a program. From the perspective of the
source language this necessitates the introduction of auxiliary annotations like markers
(to obtain a reference point) and scopes (to restrict the lexical validity of a constraint).
The constraints themselves are usually called restrictions.

for (i = 0; i < n; ++i) {
for (j = i; j ≥ 0; --j) {
stmt1;

}
}

We assume that the execution count of the entry of the
outer loop is labeled as m0 and the execution count of
the inner loop’s body is labeled as m1. Then, the linear
flow constraint “m1 ≤ n ·(n−1)/2 ·m0” can be used to
provide refined information about the execution count
of the loop nest.

C2.4 Variable-Value Restrictions
Variable-value restrictions describe data-flow and are thus not a direct control-flow
restriction. Variable-value restrictions can be transformed into an explicit control-flow
restriction by a program analysis tool.

if (i < 72) {
stmt1;
...

Directly before stmt1 the value of i is confined by
imin ≤ i < 72, where imin is the smallest possible
value of the data type of i.

C2.5 Summaries of External Functions
Often, software libraries are distributed as binaries and without any source code. In
these cases, the library manufacturer could provide summaries of the library functions
that contain the missing information that is necessary to analyze programs that use
the library. A summary of a function may contain side effects (list of modified items)
or value ranges of the returned values. A function summary may still be useful, even
when the source code is available, e.g., for hard-to-analyze facts.

int signum(int x); The subroutine signum is assumed to be pure and
returns −1, 0 or +1. Thus we can annotate that the set
of objects modified by this subroutine is empty, and the
value returned by the subroutine is always from within
[−1, 1].

C3 Addressable Units
Addressable units of an annotation language are those that can be associated with
timing constraints. The more language constructs and levels of abstraction can be
addressed, the more fine-grained timing constraints can be specified. Examples of how
to address different units of the program layer are given in [8]. In this section we
list all language constructs that we consider relevant for being annotated with timing
constraints.

C3.1 Control-Flow Addressable Units
Conceptually, WCET annotations typically express relationships between nodes, edges
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and paths of the CFG. If the paths between functions are included in the graph as well
then we call this graph an interprocedural control flow graph (ICFG) [15]. Although
the ICFG is implicitly defined by the program structure, it is not generally visible
and will be generated ad hoc by the compiler. The annotation language therefore
faces the problem to address entities inside a graph that have no standardized explicit
representation.
We thus propose the following addressable units of the ICFG based on the program
source code:

C3.1a Basic Blocks
A basic block is a code sequence with single entry and single exit point. For timing
analysis it is relevant that execution passes a basic block’s entry point as often as its
exit point. Thus, instead of annotating the basic block, any location within the basic
block can hold the block annotation.

C3.1b Edges
Edges in the CFG, however, do not necessarily have a direct counterpart in the
program because they are implicitly defined by the semantics of the respective language
construct.
To circumvent this problem we introduce a set of reserved edge-names for each control
flow construct of the source language. For example, considering some constructs of the
C language, such names could include TrueEdgeif , FalseEdgeif and BackEdgewhile.
Such names allow a user to associate timing constraints with specific edges of the
respective CFG for a given language construct.

C3.1c Subgraphs
Subgraphs of the ICFG can be addressed and thus annotated. For example, an anno-
tation can be associated with an entire function, or with a statement containing several
function calls, or some nested loops.

To handle control flow inside expressions, such as function calls and short-circuit evalu-
ation, it is necessary to normalize the program first. In this step short-circuit evaluation
will be lowered into nested if-statements and function calls are extracted from expres-
sions. For the addressing of subexpressions, a mapping between the normalized code
and the original code must be maintained.

C3.2 Loop Contexts
For all kinds of loops it may be of interest to annotate specific iterations separately, or
to exclude specific iterations, i.e. annotate all but these specific iterations. The most
prominent example is that the first (few) iteration(s) may be very different from the
following ones due to cache effects.

for (int i = 0; i < n; ++i)
for (int j = 0; j < d; ++j)
a[i][j] *= v[j];

Due to the “warming-up” of the cache, the first iter-
ation could show a different behavior than the subse-
quent iterations.

C3.3 Call Contexts
As different call sites are bound to present different preconditions for a function
e.g. input values, separate annotation of these different call contexts must be possible.

void g() { f(50); }

int f(int i) {
while (--i ≥ 0) {
...

}

The loop bound in function f depends on the value
of input variable i. Thus, as a context-dependent flow
constraint we can write that the upper loop bound is
50 when f() is directly called by g().

C3.4 Values of Input Variables
If a function behaves significantly different depending on the possible values of an input
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parameter, it can be useful to provide different sets of annotations for each case. This
kind of annotation was first introduced with Spark Ada [14] and was called “modes”.

int f(struct data *x) {
if (x == NULL)

return NULL;
...

}

The function may behave completely different depend-
ing on whether the input variable x is NULL or not:
e.g. whenever x == NULL, the function returns im-
mediately.

C3.5 Explicit Enumeration of (In)feasible Paths
In path-based approaches [3,?,?,?], explicit knowledge of the feasibility of paths can
be incorporated into the analysis process.

void worker() {
init();
while (cond) process();

}
void process() {

if (!initialized)
init();

...

In this example, function init() is never called from
function process(), if process() itself is called from func-
tion worker(). We can thus annotate that there is no
path worker→process→init.

C3.6 The Goto Statement
The goto statement allows to introduce edges of non-structured control flow. If the
target of a goto statement is statically known, it is not necessary to introduce any
special annotations to specifically address a goto statement in the CFG; the containing
basic block can be used equivalently. If the target address of a goto is not statically
known, it makes sense to annotate possible jump targets as described in paragraph
C4.3. The break, continue and return statements are specialized (better-behaved)
instances of the goto statement in that their branch target is further restricted from
function scope to the current control scope. This can be exploited by better analysis,
but from the annotation standpoint there is not much difference to the goto except
that there is less need for an annotation, when the analysis is easier.

C4 Control-Flow Constraints
The CFG is a valuable abstraction level that can be refined in various ways to improve
the precision of the analysis. This is to aid the automatic CFG generation within the
tools by additional information that is not available within the program itself.
C4.1 Unreachable Code
This is a program-specific annotation, which has been used by Heckmann and Ferdi-
nand [7]. Unreachable code could as well be specified by linear flow constraints. Having
a specific mechanism however makes the intention of the user explicit.

C4.2 Predicate Evaluation
Closely related to the above case, annotations of predicate evaluations were also
introduced by Heckmann and Ferdinand [7]. These kind of annotations describe for
conditions/decisions whether they will always evaluate to True or False.

C4.3 Control-Flow Reconstruction
Introduced by Ferdinand et al. [5], and further elaborated by Kirner and Puschner [12],
the CFG Reconstruction Annotations are used as guidelines for the analysis tool to
construct the control flow graph (CFG) of a program. Without these annotations it
may not be possible to construct the CFG from the binary or object code of a program.
On one hand, annotations are used for the construction of syntactical hierarchies within
the CFG, i.e., to identify certain control-flow structures like loops or function calls.
For example, a compiler might emit ordinary branch instructions instead of specific
instructions for function calls or returns. In such cases it might be required to annotate
a branch instruction whether it is a call or return instruction.
The high-level programming language features that can lead to code that is difficult to
analyze locally are: function-pointer calls, virtual-method calls, and returns as well as

113



indirect conditional control-flow transfer like computed goto or switch statements or
transformation results obtained from combining conditional control flow with ordinary
or indirect calls or returns.
void process((void)(int*) func,

int *data) {
(*func)(data);

}

In this code, it might be known that the target of func-
tion pointer func points either to (void)reset(int*)
or to (void)iterate(int*).

A work-around that sometimes helps avoiding code annotations is to match code
patterns generated by a specific version of a compiler. However, such a “hack” cannot
cover all situations and may also have the risk of incorrect classifications, for example,
if a different version of the compiler is used.
On the other hand, annotations may be needed for the construction of the CFG itself.
This may be the case for branch instructions where the address of the branch target is
calculated dynamically. Of course, static program analysis may identify a precise set of
potential branch targets for those cases where the branch target is calculated locally.
In contrast, if the static program analysis completely fails to bind the branch target,
it has to be assumed that the branch potentially branches to each instruction in the
code, which obviously is too pessimistic in order to compute a useful WCET bound.
In such a case, code annotations are required that describe the possible set of branch
targets.

The following list summarizes examples of code annotations derived from aiT [5,7]:

– instruction <addr> calls <target-list>;

– instruction <addr> branches to <target-list>;

– instruction <addr> is a return;

– snippet <addr> is never executed;

– instruction <addr> is entered with <state>;

Note that these annotations must not be linked to a specific instruction type, since an
optimizing compiler may combine or change instructions, but the annotation needs to
stay.

C5 Hardware-Specific Annotations
For a realistic modeling of the execution behavior of a program, an annotation language
also needs mechanisms to describe the behavior of the underlying hardware. Many of
these annotations are supported by industrial timing analyzers like aiT [7].
Since some hardware-specific annotations are associated to the hardware layer only,
they are independent from the program layer and can thus be easily reused for multiple
programs running on the same embedded platform. It can thus make sense not to
annotate this information to program code, but rather gather it in a common location
so that it can be combined with the annotations of more than one program.
Examples of such basic hardware data to be kept separate from the program annota-
tions are:
Instruction timing: The general timing information of instructions has to be

maintained separate from the program.

Clock rate: The analysis must be able to convert clock ticks to absolute times when
computing the WCET, and vice versa for absolute-time specification annotations.

Access times for ROM, internal and external RAM: It would be tedious and
cumbersome to specify these times at each of the various read and write operations.

Memory map: As the memory map binds memory access times to a multitude of
memory access operations, the information that is available to the linker can, when
supplied to the timing analysis, largely reduce the annotation effort for the program.
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Hardware implementation details that hold on the program as a whole, and
cannot be tied to a single specific program location, also need to be specified separately.
Caches or jump prediction details are examples.
It is not always obvious where to draw the borderline between hardware-specific
annotations and information that is better managed by the analysis tool. The following
items are examples of timing constraints that are reasonably expressed as timing
annotations.

C5.1 Memory and Memory Accesses
The temporal behavior of memory accesses depends on the characteristics of the
memory. Embedded systems typically use different types of memory depending on
the access frequency and access pattern. It is thus necessary to specify the following
characteristics:

– address range of read operations

– address range of write operations

– writeable memory area (RAM) and read-only memory area (ROM)

– data and code regions

– access time of specific memory regions (in cycles or ms)

C5.2 Absolute Time Bounds
Providing a means for absolute time bounds allows to specify the maximum and mini-
mum execution time of a fraction of code. Such a feature can be found in wcetC [10],
for example.

char poll() {
volatile char io_port;
while (io_port 6= 0)
/* wait */ ;

}

It could be an invariant of the hardware platform that
the execution time of the subroutine poll() (busy wait-
ing) is always between 30 and 100µs.

4 Conclusion

The lack of common interfaces and open analysis frameworks is an impediment for
the research in WCET analysis. Activities have been started within the ARTIST2
Network of Excellence to define such a common WCET analysis platform. As part of
this, The Annotation Language Challenge for WCET analysis has been proposed [11].
This paper is aimed to be a first step towards a common WCET annotation language. It
describes essential ingredients such an annotation language should include. The timing
constraints are described conceptually to allow instantiation for different representation
levels and tools.

We analyzed existing timing-annotation constructs and described them in a concep-
tual way. We identified the potential need for further mechanisms and developed some
new ingredients for annotation languages. Among the new contributions are the cate-
gorization techniques of timing constraints by the separation between timing invariants
and timing fictions, the introduction of annotation layers, annotation groups. Further,
we gave a discussion of addressable units to be used for annotating the program.

We consider the proposed list of essential ingredients for a WCET annotation lan-
guage as complete for procedural languages. Therefore we want to encourage profes-
sionals and researchers to provide their feedback as a basis for the refinements of this
list.
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Abstract TuBound is a conceptually new tool for the worst-case ex-
ecution time (WCET) analysis of programs. A distinctive feature of
TuBound is the seamless integration of a WCET analysis component
and of a compiler in a uniform tool. TuBound enables the programmer
to provide hints improving the precision of the WCET computation on
the high-level program source code, while preserving the advantages of
using an optimizing compiler and the accuracy of a WCET analysis per-
formed on the low-level machine code. This way, TuBound ideally serves
the needs of both the programmer and the WCET analysis by providing
them the interface on the very abstraction level that is most appropriate
and convenient to them.
In this paper we present the system architecture of TuBound, discuss
the internal work-flow of the tool, and report on first measurements us-
ing benchmarks from Mälardalen University. TuBound has also been
entered to the WCET Tool Challenge 2008.

1 Motivation

Static WCET analysis is typically implemented by the implicit path enumeration
technique (IPET) [13,16] which works by searching for the longest path in the
interprocedural control flow graph (ICFG). This search space is described by a
set of flow constraints (also called flow facts), which include e.g. upper bounds
for loops and relative frequencies of branches. Flow constraints can generally be
determined by statically analyzing the program. However, there are many cases

1 This paper has been published in the Preliminary Proceedings of the 8th
International Workshop on Worst-Case Execution Time Analysis (WCET’08).
This work has been partially supported by the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung) under contract No P18925-N13,
Compiler Support for Timing Analysis, http://costa.tuwien.ac.at/,
the ARTIST2 Network of Excellence, http://www.artist-embedded.org/
and research project “Integrating European Timing Analysis Technology” (ALL-
TIMES) under contract No 215068 funded by the 7th EU R&D Framework
Programme.
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where a tool has to rely on annotations that are provided by the programmer,
because of the imprecision of the analyses. Current WCET analysis tools, as
they are used by the industry, therefore allow the user to annotate the machine
code with flow constraints.

The central idea behind TuBound is to close the gap between source code
annotations and machine-specific WCET analysis. We argue that providing high-
level annotation support at the source code has several benefits:

– Convenience and Ease: For the user, annotating the source code is gener-
ally easier and less demanding as annotating the assembler output of the
compiler.

– Reuse and Portability : Source code annotations, which specify hardware-
independent behaviour, can directly be reused when the program is ported
to another target hardware.

– Feedback and Tuning : Source code annotations can be used to present the re-
sults of static analyses to the programmer for inspection and further manual
refinement.

In spite of these benefits gained from source code annotations, the actual
longest-path search of the WCET calculation must be performed on the machine
code that will be executed on the target hardware.

Compiler optimizations, however, represent an obstacle for using source code
annotations, as they can change the control flow of the program and hence inval-
idate annotations. In TuBound, this is taken care of by transforming flow con-
straints according to the performed optimizations. Technically, this is achieved
by a special component, called FlowTrans, which is a core component of
TuBound and described in Section 3.2. FlowTrans performs source-to-source
transformations. Therefore, our overall approach is retargetable to other WCET
tools; currently we are using CalcWCET167.

From the tool developer’s point of view, this source-based approach offers
the advantage that analyses can use high-level information that is present in the
source code, but would be lost during the lowering to an intermediate repre-
sentation. A typical example for such information is the differentiation between
bounded array accesses and unbounded pointer dereference operations. Since
the output of a source-based analysis is again annotated source code, it is also
possible to create a feedback loop where the user can run the static analysis and
fill in the annotations where the analysis failed to produce satisfying results. Af-
terwards, the analysis could be rerun with the enriched annotations to produce
even tighter estimates.

TuBound is based on earlier work by Kirner [12] who formulates the correct
flow constraint updates for common compiler transformations. TuBound goes
beyond his approach by extending it to source-to-source transformations and by
adding interprocedural analysis. Optimization traces for flow constraint trans-
formations are also used by Engblom et al. [7]. With FlowTrans, we are taking
this concept to a higher level, by performing control-flow altering transforma-
tions already at the source level. The integration of static flow analysis with
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low-level WCET analysis is also implemented in the context of SWEET, which
uses a technique called abstract execution to analyse loop bounds [8,9]. Again,
our approach uses a higher level of abstraction by performing static analyses
directly at the source code level. The interaction of compiler optimizations and
the WCET of a program has been covered by Zhao et al. [20], where feedback
from a WCET analysis was used to optimize the worst-case paths of a program.
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Figure 1. The collaboration of TuBound’s components

2 The Architecture of TuBound

TuBound is created by integrating several components that were developed
independently of each other. The majority of the components are designed to
operate on the source code. This decision was motivated by gains in flexibility
for both tool developer and users.

The architecture and work flow of TuBound is summarized in Figure 1. The
connecting glue between the components is the Static Analysis Tool Integration
Engine (SATIrE) [17,3]. SATIrE enables using data flow analyzers specified with
the Program Analyzer Generator (PAG) together with the C++ infrastructure
of the Rose compiler. SATIrE internally transforms programs into its own in-
termediate representation, which is based on an abstract syntax tree (AST). An
external term representation of the AST can be exported and read by SATIrE.
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This term representation is generated by a traversal of the AST and contains all
information that is necessary to correctly unparse the program. This information
is very fine-grained and including in particular line and column information of
the respective expressions. The terms are also annotated with the results of any
preceding static analysis. The key feature, however, is the syntax of the term
representation. It was designed carefully to match the syntax of Prolog terms.
This allows it to be manipulated as a Prolog program very easily. A similar ap-
proach of using Prolog terms to represent the AST of a program is used in the
JTransformer framework for the Java language [1].

7 for (i = 0; i < 100; i++) {

for_statement(
for_init_statement( [ expr_statement( assign_op(

var_ref_exp(
var_ref_exp_annotation(type_int ,"i" ,0,

null ,analysis_result(null ,null)),
file_info("triang.c" ,7,10)),

int_val(null ,value_annotation (0, analysis_result(null ,null)),
file_info("triang.c", 7, 12)),

... ], default_annotation(null , analysis_result(null ,null)),
file_info("triang.c", 7, 3)),

expr_statement( less_than_op(
var_ref_exp(var_ref_exp_annotation(type_int ,"i" ,0,null ,

...

Figure 2. The external AST term representation of SATIrE

The Rose compiler [5] is a source-to-source transformation framework that
includes the EDG C++ front end, a loop optimizer and a C++ unparser [18].
The loop optimizer was ported from the Fortran D compiler. In TuBound we
are using the front end and the high-level loop optimizer that is part of Rose.
The Program Analyzer Generator (PAG) [2] by AbsInt Angewandte Informatik
GmbH allows the specification of data flow analyses in a specialised functional
language. Using PAG, we implemented a variable interval analysis for TuBound.
CalcWCET167 [4] is a tool that performs WCET analysis for the Infineon
C167 micro-controller. CalcWCET167 expects annotated C167 assembler code
as input. The tool is complemented by a customized version of the GNU C
compiler that translates annotated C sources into annotated assembler code for
the C167 micro-controller.

3 The Work Flow of TuBound

Conceptually, the work flow of analysing a program with TuBound comprises
three stages:

3.1 Start-up and Annotation

Parsing. In the first phase, the source code of the program is parsed by the EDG
C++ front end that is integrated into the Rose compiler. Rose then creates a
C++ data structure of the AST and performs consistency checks to verify its
integrity. The Rose loop optimizer performs analysis and transformations based
on the AST data structure.
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Interval Analysis. The AST is traversed by SATIrE to generate the interproce-
dural control flow graph (ICFG), an amalgam of call graph and intraprocedural
CFG [19]. This data structure is the interface for the PAG-based interval anal-
ysis that calculates the possible variable value ranges at all program locations.
The context-sensitive interval analysis operates on a normalized representation
of the source code that is generated during the creation of the ICFG. The in-
terval analysis is formulated as an interprocedural data-flow problem and is a
pre-process of the loop bounding algorithm, which is otherwise unable to analyze
iteration counts that depend on variable values that stem from different calling
contexts. Once the interval analysis converges to a fixed point, the results are
mapped back to the AST.
Loop Bound Analysis. The next step is the loop bound analysis. This analysis
operates on the external term representation of SATIrE. We exploit this fact with
our term-based loop bounder (TeBo) which was written entirely in Prolog. Our
loop bounding algorithm exploits several features of Prolog: To calculate loop
bounds, a symbolic equation is constructed, which is then solved by a set of rules.
It is thus possible for identical variables with unknown, but constant values to
cancel each other out. For example, in the code for (p = buf; p < buf+8; p++),
the symbolic equation would be lb = (buf + 8 − buf)/1. The right-hand side ex-
pression can then be reduced by TeBo’s term rewriting rules. The loop bound-
ing algorithm also ensures that the iteration variable is not modified inside the
loop body. This is implemented with a control flow-insensitive analysis [14] that
ensures that the iteration variable does not occur at the left-hand side of an
expression inside the loop body and its address is never referenced within its
scope.

Original program Annotations generated by TuBound

int main()
{

int i,j;
for (i = 0; i < 100; i++) {

for (j = 0; j < i; j++) {
// body

}
}

}

int main() {
#pragma wcet_marker(m1)

int i;
int j;
for (i = 0; i < 100; i++) {

#pragma wcet_constraint(m2=<m1 *100)
#pragma wcet_marker(m2)
#pragma wcet_loopbound (100)

for (j = 0; j < i; j++) {
#pragma wcet_constraint(m3=<m_1 *4950)
#pragma wcet_marker(m3)
#pragma wcet_loopbound (99)

// body
}

}
return 0;

}

Figure 3. Finding flow constraints with constraint logic programming

In the case of nested loops with non-quadratic iteration spaces, loop bounds
alone would lead to an unnecessary overestimation of the WCET. In TeBo, we
are using constraint logic programming to yield generalized flow constraints that
describe the iteration space more accurately. An example is shown in Figure 3.
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The nested loop in the example has a triangular iteration space, where the
innermost basic block is executed n∗ n−1

2 times. Our analyzer finds the following
equation system for this loop nest:

m3 =
∑99

n=0
m3n({i := n}) (1)

m3n(env) = n = i (2)
m2 = m1 ∗ 100 (3)

The equations are constructed with the help of an environment that consists
of the assignments of variables at the current iteration. The variable m1 stands
for the execution count of the main() function, m2 for the count of the outer
loop and m3 for the count of the innermost loop. Equation 1 describes the fact
that the values of i as well as the iteration counts for the individual runs of the
inner loop are 0..99, respectively. Equation 2 describes the generic behaviour
of the inner loop, stating that its iteration count is equal to the value of n
in the current environment. The last equation describes the behaviour of the
outer loop. The use of constraint logic programming allows for a lightweight
implementation that does not rely on additional tools. In earlier work, Healy et
al. [10] are using analysis data to feed an external symbolic algebra system that
solves the equation systems for loop bounds.

Eventually, the results of the loop bound analysis are inserted into the term
representation as annotations of the source code. We are using the #pragma di-
rective to attach annotations to basic blocks. The annotations consist of mark-
ers, scopes, loop bounds and generic constraints. Markers are used to provide
unique names for each basic block, which can then be referred to by constraints.
Constraints are inequalities that express relationships between the execution
frequencies of basic blocks. Loop bounds are declared within a loop body and
denote an upper bound for the execution count of the loop relative to the loop
entry. Scopes are a mechanism to limit the area of validity of markers such that
it is possible to express relationships that are local to a sub-graph of the ICFG.

3.2 Program Optimization and WCET Annotation Transformation

The FlowTrans phase is concerned with program sources that are already an-
notated with WCET constraints, stemming from either an earlier analysis pass,
or from a human. WCET constraints describe the control flow of the program
in order to reduce the search space for feasible paths. During the compilation,
however, optimizations are performed that modify the control flow. Examples
of addressed optimizations are loop unrolling, loop fusion and inlining, whereas
constant folding and strength reduction do not affect the control flow graph.
To guarantee the correctness of the annotations of the program sources, we ei-
ther have to disable these unsafe optimizations and sacrifice performance or
transform the annotations accordingly. To achieve the latter, we implemented
FlowTrans, a transformation framework for flow constraints.

A large number of CFG-altering optimizations are loop transformations. For
this reason, we based our implementation on the Fortran D loop optimizer
that is part of Rose. Keeping optimizations of interest separate from the com-
piler, our transformation framework is very flexible and also portable to other
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optimizers. The input of FlowTrans is an optimization trace (consisting of
a list of all transformations the optimizer applied to the program) and a set
of rules that describe the correct constraint update for each optimization. The
concept of using an optimization trace can be applied to any existing compiler.
The rules need to be written only once per optimization. The rules, as well as the
transformation of the flow constraints are written in Prolog and operate on the
term representation of the AST. As a matter of fact, the syntax used to express
the flow constraints is identical to that of Prolog terms, too, thus rendering the
manipulation of flow constraints very easy. Figure 4 gives an example of such a
transformation. We currently implemented rules for loop blocking, loop fusion
and loop unrolling. With all support predicates, the definitions of the rules range
from 2 (loop fusion) to 25 (loop unrolling) lines of Prolog [15].

Original annotated program After loop unrolling by factor 2

int* f(int* a)
{

int i;
#pragma wcet_marker(m_func)

for (i = 0; i < 48; i += 1) {
#pragma wcet_loopbound (48)
#pragma wcet_marker(m_for)

if (test(a[i])) {
#pragma wcet_marker(m_if)

// Domain -specific knowledge
#pragma wcet_restriction(m_if =< m_for /4)

a[i]++;
}

}
return a;

}

int *f(int *a)
{

int i;
for (i = 0; i <= 47; i += 2) {

#pragma wcet_marker(m_f_1_1)
#pragma wcet_loopbound (24)

if ((test(a[i]))) {
#pragma wcet_marker(m_f_1_1_1)
#pragma wcet_restriction(

m_f_1_1_1+m_f_1_1_2=<m_f_1_1 /2)
a[i]++;

}
if ((test(a[1 + i]))) {

#pragma wcet_marker(m_f_1_1_2)
#pragma wcet_restriction(

m_f_1_1_1+m_f_1_1_2=<m_f_1_1 /2)
a[1 + i]++;

}
}
return a;

}

Figure 4. Prolog terms everywhere: WCET constraints before and after loop unrolling

3.3 Compilation and WCET Calculation

Compilation to Assembler Code. The annotated source code resulting from the
previous stage is now converted into the slightly different syntax of the WcetC-
language that is expected by the compiler [11]. This compiler is a customized
version of GCC 2.7.2 which can parse WcetC and guarantees the preservation
of all flow constraints at the C167 machine language level. The output of the
GCC is annotated assembler code.
WCET Calculation. CalcWCET167 reads the annotated assembler code that
is produced by the GCC and generates the control flow graph of every function.
CalcWCET167 implements the IPET method and contains timing tables for
the instruction set and memory of the supported hardware configurations which
are used to construct a system of inequalities describing the weighted control flow
graph of each function. The weights of the edges correspond to the execution
time of each basic block. This system of inequalities is then used as input for
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an integer linear programming (ILP) solver that searches for the longest path
through the weighted CFG. The resulting information can then be mapped back
to the assembler code and can also be associated with the original source code.

4 Measurements

To demonstrate the practicality of our approach, we use a selection of bench-
marks that were collected by the Real-Time Research Center at Mälardalen
University [6]. For our experiments we selected those benchmarks that can be
analysed by TuBound without annotating the sources manually. Figure 5 shows
the time spent in the different phases of TuBound and the estimated WCET
for a subset of benchmarks. It must be noted that a large part (about 45% for
the ns benchmark) of the time spent in TeBo is currently used to parse the
term representation from one and write it to another file. This bottleneck can
be eliminated by directly generating the data structure via the foreign function
interface of the Prolog interpreter process and thus eliminating the expensive
parsing and disk I/O. In Figure 6 the influence of compiler optimizations on the
WCET of the benchmarks can be seen, where the different bars per benchmark
denote the analyzed WCET of the unoptimized program vs. the program with
high-level and/or low-level optimizations turned on. Note that the y-axis uses a
logarithmic scale. From the results, three different groups can be observed:

Group 1: cnt, crc, lcdnum, qurt
Group 2: bsort100, cover, expint, fibcall, recursion, sqrt, st, whet
Group 3: fdct, jfdctint, matmult, ns
In the first group, the calculated WCET is always lower for the loop-optimized

code. In the second group, the WCET is the same, regardless of loop optimiza-
tions. In the third group, the WCET of the loop-optimized program is better
than that of the unoptimized program, however, if both kinds of optimizations
are enabled, they interfere and less well performing code is generated, which is
reflected by the higher WCET. One reason for this is extra spill code that is
generated due to higher register pressure.

5 Conclusion

TuBound is a WCET analysis tool which is unique for combining the advan-
tage of low level WCET analysis with optimizing compilation and high level
source code annotations. The flow constraint transformation framework Flow-
Trans ensures that annotations are transformed according to the optimization
trace as provided by the high-level optimizer. This approach allows us to close
the gap between source code annotations and machine-specific WCET analysis.
TuBound has also been entered to the WCET Tool Challenge 2008 [6].

Acknowledgements. We would like to thank Raimund Kirner for his support
in integrating his tool CalcWCET167 and Albrecht Kadlec for many related
discussions.
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1 Introduction

Current trends in embedded systems software for the automotive domain aim at an
increase of reusability, exchangeability and maintainability, and thus at a significant re-
duction of time- and costs-to-market. One way to reach these goals is the adaption of
Component Based Software Engineering (CBSE) for resource constrained embedded
systems. The Automotive Open System Architecture (AUTOSAR) [1, 2], an upcom-
ing industry standard within the automotive domain, reflects this fact by constituting
CBSE as development paradigm for automotive applications: Application concerns are
covered by software components, while infrastructural ones are handled within layered
component middleware—the AUTOSAR Runtime Environment (RTE)[3] and the Ba-
sic Software (BSW) [4].

RTE

« component »

AUTOSAR SWC

« component »

AUTOSAR SWC

« component »

COMPASS MWC

« component »

COMPASS MWC

« component »

COMPASS MWC

COMPASS

Component Model

AUTOSAR 

Component Model

Application 

Layer

Basic Software

AUTOSAR compliant BSW Interfaces

Fig. 1. Component based Basic Software
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However, the AUTOSAR Basic Software itself is specified as layered architecture
that is only customizable on a coarse-grained level, and thus tends to be heavy-weight
and less flexible. Therefore, this paper contributes by applying the component paradigm
to AUTOSAR Basic Software , to improve the capabilities of AUTOSAR compliant
software systems, as conceptually depicted in Fig. 1: The redesigned BSW externally
provides all interfaces to the RTE prescribed by the AUTOSAR standard, whereas the
BSW’s internal architecture is fully component based.

2 AUTOSAR Basic Software Components

In CBSE, the most common entity is called component. Unfortunately, literature shows
many, very often contradictory [5], definitions of that term. So the first thing to do
when dealing with CBSE, is to clarify the semantic meaning of this appellation, and to
provide a clear vocabulary as basis for the remainder of this paper.

In accordance to the work of [6–8] we define components as follows:

Components are trusted architectural elements of execution that interact
only by their well defined interfaces, according to contractual guarantees, and
strictly contain no other external dependencies. Components conform to a com-
ponent model, so they adhere to a composition and interaction standard, and
can be independently deployed and composed without modification. As a re-
sult, components are well suited for reuse and third-party composition. A set
of well composed components is referred to as component architecture, while
the term component model denotes the framework and standards, a component
has to adhere to.

When building component based middleware for AUTOSAR, two things have to be
taken into consideration:

– Middleware components cannot rely on component middleware. Therefore, the
AUTOSAR component model [9] cannot be applied at Basic Software level.

– Middleware components have to provide standardized AUTOSAR functionality.
Hence, the component model for middleware components has to be designed in
line with the AUTOSAR standard, especially when it comes to the type system, to
allow a seamless integration of component based middleware into the AUTOSAR
environment.

A detailed specification of a component model, designed to meet these prerequisites
within the AUTOSAR context, is provided in [10] and is used for the remainder of this
paper. The so called COMPASS component model is compatible to the type system
of AUTOSAR’s C-language binding. It defines middleware components to be encap-
sulated units of execution, that interact via function calls within one global address
space, and via shared memory access. The COMPASS component model specifies the
Basic Software component classes, defines their minimal interfaces, and prescribes all
means of composition and interaction for BSW components.
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3 Component Recognition for AUTOSAR BSW

As our primary goal was to redesign AUTOSAR Basic Software in a component based
way, we analyzed an exiting, layered BSW implementation to identify basic groups of
functionality that could serve as base-line for BSW components: All functions, specified
by AUTOSAR, which are either coupled via function calls, or which are coupled via
shared memory accesses, have been marked as candidates for the same BSW component
class. In addition, functions that are semantically related to each other, but are not di-
rectly coupled, have manually been assigned to the appropriate BSW component classes
by domain experts. In that way we identified a set of BSW components that completely
resemble the functionality and all external interfaces of the standard’s layered BSW. Us-
ing the COMPASS component model and the identified Basic Software building blocks,
it is now possible to build a component based AUTOSAR BSW, that on the one hand
provides a fine-grained, function-based partitioning, enabling the creation of custom-
tailored BSW, and that on the other hand highly supports reuse and exchangebility of
BSW components.

3.1 Coupling within Software Components

One of the important properties of software components is that of encapsulation and
separation. A well designed component contains a set of semantically related operations
and data holders, that in total provide specific functionality exposed by the component’s
interfaces.

When trying to find those related operations and data holders within a global set
of functions and data structures contained within monolithic or coarse-grained layered
software, the coupling between all functions and all data structures has to be examined.
For the task of component recognition two types of coupling are of interest:

Coupling via Control-Flow. Control-flow refers to the path of execution of a program.
Two distinct functions within a program are strongly coupled via control-flow, if at
least one of them passes control over to the other one. This is typically done by
invoking the other function via a function call.

Coupling via Data-Flow. Data-flow refers to the flow of information during the ex-
ecution of a program. As information is typically stored within data holders like
memory cells, coupling via data-flow can be observed by examining access to data
holders. Two distinct functions are strongly coupled via data-flow if both access the
same data-holder, no matter if the type of access is read or write.

When taking these two types of coupling into account, two rules have to hold when
performing automated component recognition:

1. Two distinct operations must not be coupled if they are contained within distinct
components (horizontal coupling).

2. Two distinct operations may be coupled if they are contained within one component
(vertical coupling).
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3.2 Recognition Algorithm

When developing an algorithm based on static analysis, various options regarding com-
plexity and thus execution time exist. Our algorithm was developed with respect to
scalability, hence its complexity is kept linear to the size of the analyzed source code.
In addition, our algorithm incorporates configuration data, especially data on late bound
function pointers and on domain specific properties, to provide linear complexity and
to find sufficient solutions quickly.

1. Calculate the call graph. A call graph, GC = (NC , EC), is computed from P ’s
AST where functions of the program are represented by nodes, NC , and calls are
represented by edges, EC , between the calling and the called function.

2. Calculate usage graph. A usage graph,GU = (NU , EU ), is computed where func-
tions and accessed data fields are represented by nodes,NU , and the usage of a spe-
cific data field in the respective function is represented by an edge, EU , between
the function node and the data field node. To identify field accesses, the occurrence
of arrow- and dot-expressions within the AST is analyzed. Our algorithm traverses
the program’s AST and finds all occurrences of field accesses in user defined data
structures.

3. Calculate component graph. A component graph, GP = (NP , EP ), can be cal-
culated by creating a set union of the call graph and the data usage graph. It unites
all gathered information on coupling via control-flow and on coupling via structure
type based data field usage.

4. Extract components from component-graph. The algorithm’s final step is the
extraction of all disjoint, connected sub-graphs, the components, from the compo-
nent graph. Our algorithm performs the extraction via a reachability calculation.
The algorithm’s output is a set of sets of nodes where each set of nodes represents
one component. A domain expert can further group subsets of the automatically
computed components into single components if desired.

4 Results

To prove our algorithm, it was applied to a full fledged implementation of an
AUTOSAR communication stack, which is a subset of AUTOSAR Basic Software .
The same implementation was manually decomposed as described in [11], which al-
lows a reliable validation of the algorithm’s results.

The analyzed source code is full-fledged C-code that implements the FlexRay
Interface- and Driver-Layer as specified by the AUTOSAR standard. The source code
can be characterized as shown in Table 1 and in Table 2. The generated AST contained
291794 nodes, which were traversed only once by our algorithm. The full execution of
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FlexRay Interface
# of files LOC kB

Header 4 1620 59
Implementation 15 4192 135

FlexRay Driver
Header 13 1660 88

Implementation 27 7142 222
Table 1. Source Code Characteristics

Function Definitions 107
Function Call Expr. 431
AddressOf Op. 12
Ptr Deref. Exp. 241
Arrow and dot Op. 457
Cast Expr. 4924

Table 2. Program Characteristics

our component recognition algorithm took less than 5 seconds and used approx. 80MB
of memory on a 64-bit Intel PC.

The manual decomposition identified 8 components for the FlexRay Interface- and
the FlexRay Driver-Layer. They were called Base, Transmitter, Receiver, Time Services,
Status, MTS, WUP, and TransceiverDrv.

To perform our automatic component recognition, a set of 87 functions has been
marked as relevant. 12 data structures respectively their data fields have been marked
as irrelevant. On that basis our algorithm was able to recognize not only one but a set of
valid decompositions. This is due to the fact, that some of the manually defined compo-
nents consist of multiple, uncoupled sub-components that may be combined randomly,
as they do not interfere. However, the manually created decomposition was contained
within the calculated set, proving our algorithm valid in terms of imposed requirements.
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Abstract. The design of the Static Analysis Tool Integration Engine

(SATIrE [5]) allows to map source code annotations to its intermediate
program representation as well as generating source code annotations
from analysis results that are attached to the intermediate represen-
tation. This enables numerous applications such as automatic annota-
tion of interfaces, testing of analyses by checking the results of an anal-
ysis against provided annotations, domain aware analysis by utilizing
domain-specific program annotations, and making analysis results per-
sistent as annotations in source code.
This concept is supported by a plug-in mechanism which allows to add
user-defined analyses. Based on the annotation mechanism, users can
view the results of their analyses as annotations in a given program, can
test the analyzer by providing expected analysis results as annotations
in source code and have them checked by SATIrE, or combine differ-
ent analyses by accessing analysis information computed by a previous
analyzer run. In this paper we present the approach of source-to-source
analysis and show in a detailed example analysis how we support this
approach in SATIrE.
The technical challenges are the design of the analysis information an-
notation language, the bidirectional propagation of the analysis informa-
tion through different phases of the internal translation processes, and
the combination of the different analyses through the plug-in mechanism.
In its current version SATIrE targets C/C++ programs.

1 Introduction

Source-To-Source analysis allows to analyze programs and generate the analysis
results as annotations. Furthermore analysis results computed in a previous run
of the analyzer can be read in and are mapped such that they can be reused in
subsequent analysis phases.
A well-known example is the analysis of a library where we determine for each
function whether it has side effects. This information is then made available
as annotation of the interface where the function is accessible. Source-to-source
analysis starts to show its full potential if we not only consider properties at the
function level, but also flow-sensitive and context-sensitive information. In order
to annotate programs at this level of detail, we must reason about associating
information with a certain position in a program dependent on the flow and
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context of the program. This is complicated by the fact that we need to map
information obtained from the annotated source code through multiple levels of
intermediate representations. The multiple levels of intermediate representation
become necessary with the separation of different kinds of analysis information,
such as control flow and data flow information, as well as calling contexts for
inter-procedural analysis.
For source-to-source analysis we demand the following properties

– The analysis information is associated with locations in the original code.
– Modular analysis must be possible with the generated analysis information.
– No internal information of an analyzer is exposed in the analysis results.

That the analysis information is associated with the original source code is the
basis for presenting analysis information such that developers can use the re-
sults with appropriate tools for better understanding, verifying, and debugging
their programs. The analysis of separate modules allows to make analysis results
persistent and to reuse analysis results at a later analysis stage. One example
application is the analysis of a library and reusing this information when analyz-
ing an application that uses the library. This supports whole-program analysis.
The third requirement, to not expose internal information of the analyzer is
a requirement for tool interoperability and an essential property of source-to-
source analysis. Otherwise it would mean to simply dump the internal structure
and the computed analysis information - instead we want to ensure that the
computed analysis information is made consistent with the original source code
and analysis results are presented as annotations of the original program. This
problem becomes challenging, when the analysis information contains references
to program locations. Here we need to deal with mappings between the internal
representation, necessary normalizations of the program code, and the mapping
of analysis information such that it can be associated with the original input
source code - independent of a possibly normalized internal program represen-
tation on which the analysis was performed.
A source-to-source analyzer has in common with a compiler that it normalizes or
lowers program code before performing a program analysis. The reason is that
the reduced number of different language constructs allows for a more compact
analysis specification because only a reasonable small number of different lan-
guage constructs must be explicitly addressed in the analysis. Compilers usually
continue to generate machine code either for a concrete hardware platform or for
a virtual machine. In contrast, a source-to-source analyzer propagates analysis
information back to the original source code representation through all interme-
diate levels and generates the analysis information associated with the original
source code.

2 Normalization

The normalization steps performed for source-to-source analysis can all be ex-
pressed as transformations with a one-to-one mapping of transformed language

134



constructs such that the inverse operation is possible. This allows to guarantee
that information can be propagated back to the original source code. Normal-
ization can mean to lower the code to a low-level code similar to quadruple code
for machine generation, i.e. programs with the only control constructs if and
goto. Expressions can be normalized to have at most one operator of each side
of an assignment. However, if an analysis is designed to operate on specific pat-
terns in expressions, this can complicate the specification instead of simplifying
it. Therefore, to achieve a good trade-off between normalization level and the
problems needed to be addressed in the analysis specification, we consider an
analysis specification being specific to some normalization level.

Normalizing the program and specifying the analysis for the selected normaliza-
tion level is straightforward. The interesting question is how the analysis infor-
mation needs to be transformed to be consistent at each normalization level. In
particular, since we not only generate analysis information, but also read it in
we need to be able to map it in both directions through different normalization
levels. If this is achieved, we can perform source-to-source analysis.

3 Intermediate Levels in SATIrE

In SATIrE we presently have two distinct different forms of intermediate repre-
sentations (IR), a Tree-IR and a Graph-IR. The Tree-IR is a decorated abstract
syntax tree. The Graph-IR is an inter procedural control flow graph where each
node is a specific Graph-IR node. The Tree-IR is generated by the Front End,
whereas the Graph-IR is generated from the Tree-IR to make control flow ex-
plicit. Graph-IR nodes may hold references to Tree-IR nodes if they are rep-
resenting statements. An analyzer can operate on either one of the two rep-
resentations, where for flow-insensitive analyses or metrics it is often sufficient
to operate on the Tree-IR, while flow-sensitive fixpoint analyses operate on the
Graph-IR.

Normalization levels are defined as source-to-source transformations accompa-
nied with a mapping function that defines how analysis information associated
with program locations is mapped between these levels.

3.1 Mapping Analysis Information

After an analysis the analysis information is propagated back through the in-
termediate levels to the source code level. This requires to map any entity of
the analysis information that is related to the lower intermediate level to an en-
tity of the higher level. For example, if reaching definitions are computed on an
intermediate level the locations of the variable definitions of the lower interme-
diate level must be mapped to labels of the higher level, and ultimately to labels
associated with locations in the source code. The example shown in Section 5
provides details on how this mapping is currently performed in SATIrE.
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4 Analysis Information Annotation Language

The annotation format for exchanging analysis information between different
analyses is a general format with only a few basic data types. The language is
general enough to represent analysis information specified in PAG’s [4] SETLA
language. Since PAG is integrated into SATIrE this is a requirement for reusing
any analysis information computed with a PAG generated analyzer. It consists
of sets, lists, tuples, maps, and some primitive data types. Additionally each
analysis information has an Analysis Identifier. This identifier allows to associate
semantics with the analysis information.

An analysis information annotation consists of

Analysis Identifier. Allows to identify the analysis information and associate
the data with semantics.

Location. Each analysis information is associated with a program location and
its corresponding program fragment by a label. The labeling is computed on
the Tree-IR as well as for the Graph-IR and a mapping between the two is
maintained.

Data Specifier. A Data Specifier allows to define whether an analysis informa-
tion is a pre or post information in a flow-sensitive information. For context-
sensitive analyses it can also specify the context (e.g. the call string).

Data Element. The data element represents the analysis information com-
puted at that point.

A data element can consist of a set, list, tuple, map, or a primitive type such as
string or a number. Two special symbols exist for the top and bottom element
of lattices. Sets, lists, and maps can only contain data elements of the same
type, whereas tuples can contain elements of different type. In a data element
the types of data can be arbitrarily nested and combined.

SATIrE offers some special categories of program information which is precom-
puted for the entire program: VariableIds, ExpressionIds, and Labels represent-
ing locations in a program. If VariableId is used in an analysis then a map from
VariableIds to Variables is provided. The map contains the VariableId, a scope
specifier, and the label of the respective variable declaration. VariableIds are a
subset of ExpressionIds. In SATIrE arbitrary expressions are supported as well,
but the integration of arbitrary expression mappings in the annotation format
is ongoing work.

A label is defined by a mapping function that generates the labels as part of
the annotations. A label associates an analysis information with some program
fragment in the annotations, but can be used in the analysis information as well.
This allows to refer to certain positions in a program, such as reaching definitions
where labels correspond to statements in the program.
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5 Example

The generation of annotations for a given program can be done in two different
forms. Either the annotations are added to a given program or in a separate file.
Here we show an example with annotations added to the input program.
In Fig. 2 the result of a context-insensitive reaching definition analysis is shown.
The labels represent locations in the source program, which are identified by
the label field in the annotations. Pre/post denotes the pre and post informa-
tion computed for the respective statement. The Graph-IR for one line of the
source code, the statement b=inc(b)+inc(b), is shown in Fig. 1. The analysis
information that must be changed when mapping between the source-level and
the IR-level is marked by being underlined. In this example the information
of (b, 15), computed at the Graph-IR node with label 15, must be mapped to
(b, 20) at the source level to be consistent with other information at the source
level. The same holds for (x, 4), computed at the IR-Graph level, which must be
mapped to (x, 3) at the source level due to normalization of function parameter
binding.
In Fig. 2 some items are crossed out. These items are not included in the analy-
sis information at the source level, but are members of the analysis information
that is mapped from the respective positions in the Graph-IR. Since this infor-
mation is computed for variables introduced in the Graph-IR only, there is no
variable that corresponds to these variables in the Tree-IR and at the source
level. Therefore this information is not included in the analysis information at
the source level.
If an annotated source program is read in, the annotations need to be processed
and mapped to the corresponding locations in the IR. The internal mapping
mechanism provides information for processing the annotation information. The
annotation information is mapped to the IR such that it can be used in a sub-
sequent analysis as if the analysis had been performed on the IR.
Some items of the analysis information may need to be remapped to be con-
sistent with the other information at the IR level. Currently we invalidate such
items and rerun the analysis to recompute those invalidated elements. All other
information can be reused and does not need to be recomputed. For the reaching
definition analysis discussed here, this requires that information containing the
label 20 is invalidated because the statement with level 20 contains a function
call, which generates information specific to locations in the normalized IR. Thus
item (b, 20) must be invalidated - effectivly meaning that the item is removed
from the analysis information set. Then the analyzer is invoked on the Graph-IR
where each node is initialized with the processed analysis information extracted
from the annotations. Thus, the analyzer is reinvoked, but only recomputes infor-
mation for nodes which are generated by the normalization step. The overhead is
small, as information is already available at the statement level and only needs
to be recomputed for nodes that have been added by the normalization step.
The recomputation of the invalidated items can have higher impact and further
experience with the presented analysis method and mapping techniques is nec-
essary to evaluate the performance impact on large programs. The goal is to

137



pre :20 {(b,15),(a,25),(a,14),(b,24),(c,-1),(c,11)}

label:20 ArgumentAssignment(VarRefExp("$arg 0"), VarRefExp("b"))

post :20 {(b,15),(a,25),(a,14),($arg 0,20),(b,24),(c,-1),(c,11)}
pre :22 {(b,15),(a,25),(a,14),($arg 0,20),(b,24),(c,-1),(c,11)}
label:22 FunctionCall("inc", [VariableSymbol("$arg 0")])

post :22 local edge: bottom
post :22 call edge : {(b,15),(a,25),(a,14),($arg 0,20),(b,24),(c,-1),(c,11)}
pre :23 {(a,14),(a,25),(b,15),($retvar,5),(b,24),(c,-1),(c,11)}
label:23 FunctionReturn("inc", [VariableSymbol("$arg 0")])

post :23 {(a,14),(a,25),(b,15),($retvar,5),(b,24),(c,-1),(c,11)}
pre :21 {(a,14),(a,25),(b,15),($retvar,5),(b,24),(c,-1),(c,11)}
label:21 ReturnAssignment(VariableSymbol("$inc$return 1"),

VariableSymbol("$retvar"))
post :21 {(a,14),(a,25),(b,15),(b,24),($inc$return 1,21),(c,-1),(c,11)}
pre :16 {(a,14),(a,25),(b,15),(b,24),($inc$return 1,21),(c,-1),(c,11)}
label:16 ArgumentAssignment(VarRefExp("$arg 0"), VarRefExp("b"))

post :16 {(b,15),(a,25),(a,14),(b,24),($arg 0,16),($inc$return 1,21),(c,-1),(c,11)}
pre :18 {(b,15),(a,25),(a,14),(b,24),($arg 0,16),($inc$return 1,21),(c,-1),(c,11)}
label:18 FunctionCall("inc", [VariableSymbol("$arg 0")])

post :18 local edge: bottom
post :18 call edge: {(b,15),(a,25),(a,14),(b,24),($arg 0,16),($inc$return 1,21),

(c,-1),(c,11)}
pre :19 {(a,14),(a,25),(b,15),(b,24),($inc$return 1,21),($retvar,5),(c,-1),(c,11)}
label:19 FunctionReturn("inc", [VariableSymbol("$arg 0")])

post :19 {(a,14),(a,25),(b,15),(b,24),($inc$return 1,21),($retvar,5),(c,-1),(c,11)}
pre :17 {(a,14),(a,25),(b,15),(b,24),($inc$return 1,21),($retvar,5),(c,-1),(c,11)}
label:17 ReturnAssignment(VariableSymbol("$inc$return 0"),

VariableSymbol("$retvar"))
post :17 {(b,15),(a,25),(a,14),(b,24),($inc$return 1,21), ($inc$return 0,17),(c,-1),

(c,11)}
pre :15 {(b,15),(a,25),(a,14),(b,24),($inc$return 1,21), ($inc$return 0,17),(c,-1),

(c,11)}
label:15 ExprStatement(AssignOp(VarRefExp("b"),

AddOp(VarRefExp("$inc$return 0"),

VarRefExp("$inc$return 1"))))

post :15 {(b,15),(a,14),(a,25),(c,-1),(c,11)}

Fig. 1. Example: Graph-IR fragment representing the statement b=inc(b)+inc(b) in
normalized form. The underlined items are transformed when mapping the information
to the source code level. The boxes show which information is mapped to source code
locations (see Fig. 2). Variables are represented by identifiers in the Graph-IR, but
for better readability the names are shown in this figure. Pre/post denotes the flow-
sensitive analysis information.
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#pragma RD 3 pre info : {(a,14),(a,25),(b,15),(b,24),(c,-1),(c,11),
(

(
(

(
(

((

($inc$return 1,21),

(
(

(
((($arg 0,16),

(
(

(
((($arg 0,20)}

int inc(int x)

#pragma RD 3 post info : {(a,14),(a,25),(b,15),(b,24),(x,3),(c,-1),(c,11),
(

(
(

(
(

((

($inc$return 1,21)}

{

#pragma RD 5 pre info : {(a,14),(a,25),(b,15),(b,24),(x,3),(c,-1),(c,11),
(

(
(

(
(

((

($inc$return 1,21)}

return x + 1;

#pragma RD 5 post info: {(a,14),(b,15),(a,25),(b,24),(x,3),(c,-1),(c,11),
(

(
(

(
(

((

($inc$return 1,21),

(
(

(
(($retvar,5),}

}

#pragma RD 2 pre info : {}
int main()
{

#pragma RD 28 pre info : {}
int a;
#pragma RD 28 post info: {(a,-1)}
#pragma RD 27 pre info : {(a,-1)}
int b;
#pragma RD 27 post info: {(b,-1),(a,-1)}
#pragma RD 26 pre info : {(b,-1),(a,-1)}
int c;
#pragma RD 26 post info: {(b,-1),(a,-1),(c,-1)}
#pragma RD 25 pre info : {(b,-1),(a,-1),(c,-1)}
a = 3;
#pragma RD 25 post info: {(b,-1),(a,25),(c,-1)}
#pragma RD 24 pre info : {(b,-1),(a,25),(c,-1)}
b = a;
#pragma RD 24 post info: {(b,24),(a,25),(c,-1)}
#pragma RD 10 pre info : {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

while(a < 10) {
#pragma RD 13 pre info : {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

if (a < b) {
#pragma RD 14 pre info : {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

a = (a + 1);
#pragma RD 14 post info: {(a,14),(b,20),(b,24),(c,-1),(c,11)}

}
else {

#pragma RD 20 pre info : {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

b = (inc(b) + inc(b));

#pragma RD 20 post info: {(b,20),(a,14),(a,25),(c,-1),(c,11)}

}
#pragma RD 13 post info: {(a,25),(a,14),(b,20),(b,24),(c,-1),(c,11)}

#pragma RD 11 pre info : {(b,20),(a,14),(a,25),(b,24),(c,-1),(c,11)}

c = (a + b);
#pragma RD 11 post info: {(b,20),(a,25),(a,14),(b,24),(c,11)}

}
#pragma RD 10 post info: {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

#pragma RD 8 pre info : {(b,20),(a,25),(a,14),(b,24),(c,-1),(c,11)}

a = c;
#pragma RD 8 post info: {(b,20),(b,24),(a,8),(c,-1),(c,11)}

#pragma RD 7 pre info : {(b,20),(b,24),(a,8),(c,-1),(c,11)}

return 0;
#pragma RD 7 post info: {(b,20),(b,24),(c,-1),

(
(

(
(($retvar,7),(a,8),(c,11)}

}

Fig. 2. Example: Annotated program with reaching definition information being made
consistent with associated labels of the original source code. Crossed out items are
related to temporary variables of the IR and not included in the source code annotation.
The underlined items have been transformed (also see Fig. 1) to be consistent at the
source code level.
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make this mechanism general and independent of the semantics of the transfer
functions of an analysis by analyzing the use of special data types such as Label,
VariableId, and ExpressionId, in the data specification of an analysis. Currently
we require user-defined transformers for the mapping mechanism of an analysis.

6 Related Work

Harrold and Rothermel present a technique for separate analysis of modules [3].
The work focuses on one particular analysis, inter-procedural may alias analysis,
but the design of the analyzer is general and similar to our setting. For inter-
procedural analysis an inter procedural control flow graph (ICFG) is created.
The separation in control flow and intermediate representation of statements and
expressions is the same as in our approach. The analysis is a modular analysis,
meaning that a module is a set of interacting procedures or a single procedure
that has a single entry point. The approach allows to reuse the analysis results
after analyzing a module and thus, is applicable to large scale software and real
world applications. In our approach we can add analysis results as annotations
to source-code, allowing to reuse analysis results in a subsequent analysis step.
This can either be done on the IR-level or the annotated source code is read in
again.
An approach for user-defined checks that are performed by a compiler is pre-
sented in [6]. User-defined checks may increase the confidence of a programmer
with respect to his code, especially if used on a continuous basis during devel-
opment. The checks that can be expressed can refer simultaneously to syntax,
semantics, control flow, and data flow. The tool Condate allows more semantic-
enabled and user-centric compilers, obtained by fusing together compilation with
other powerful analyzers. By using SATIrE such tools can be built by using the
annotation mechanism and checking manual annotations with an appropriate
analysis.
For optimizing compilers the automatic generation of data flow analyses and
optimizations out of concise specifications has been a trend for several years.
The systems of [1, 2] concentrate on “classical” inter-procedural optimizations,
whereas the system of [7] is particularly well suited for local transformations
based on data dependency information. We integrated PAG because it is a tool
that allows to generate analyzers from specifications for similar analysis prob-
lems.

7 Conclusion

Source-To-Source analysis allows to generate analysis results as source code an-
notations, but also to read them in and map them to the internal representation.
The corner stones of source-to-source analysis can be summarized as follows

– Analysis results are generated as annotations.
• Annotations can be read and mapped to IR (Front End)
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• Annotations can be generated from IR (Back End)
– Input source code differs to output source code only in annotations.
– Annotations are generated at labeled source code locations only.

Source-to-source analysis allows to make analysis results independent of a re-
spective tool and permits exchange of analysis results between different analysis
tools, enabling the interoperability of program analysis tools. It also supports
whole-program analysis by making analysis results persistent as source code an-
notations, allowing to reuse analysis results in subsequent analysis phases.
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Vortragsanmeldung, Bad Honnef 2008 

Fundamente der Programmierung 
 

Hermann von Issendorff 
Institut für Netzwerkprogrammierung 

Hauptstr. 40, D-21745 Hemmoor 
 
 

Zusammenfassung 

Bereits 1977 kritisierte John Backus in seiner berühmten Turing-Award-Lecture die Ineffektivität der John von 
Neumann zugeschriebenen Rechnerstruktur mit den Worten  

"Surely there must be a less primitive way of making big changes in the store than by pushing vast 
numbers of words back and forth through the von Neumann bottleneck. Not only is this tube a lit-
eral bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual bottle-
neck that has kept us tied to word-at-a-time thinking instead of encouraging us to think in terms of 
the larger conceptual units of the task at hand. Thus programming is basically planning and detail-
ing the enormous traffic of words through the von Neumann bottleneck, and much of that traffic 
concerns not significant data itself, but where to find it."  

Seither hat es zwar verschiedene beachtliche Verbesserungen gegeben, z.B. durch den Cache-Speicher, im Prin-
zip hat sich aber an der Rechnerstruktur nichts geändert. Nach wie vor erfolgt die Ausführung von Programmen 
schrittweise unter ständigem Speichern und Lesen von Zwischenergebnissen statt. Ein Grund hierfür ist, dass ein 
Abweichen von dem von-Neumann-Schema zu komplexen Strukturen führt, für die es bisher keine formalen 
Beschreibungen gibt und die deshalb nicht beherrschbar sind.  

Dieser Vortrag stellt ein Verfahren vor, mit dem sich komplexe beliebige diskrete physikalische Strukturen 
beschreiben lassen und das unter anderen ermöglicht, das Flaschenhalsproblem zu beseitigen.  Das Verfahren 
beruht auf drei wesentlichen Entdeckungen, die zusammengefasst auf eine Programmiersprache führen, die 
räumliche Strukturen beschreibt, die zeitlich verschiedene Zustände annehmen können. 

Die drei Entdeckungen sind: 

1. Durch Abstraktion von Metrik und Funktionalität kann jedes diskrete natürliche System auf ein topolo-
gisches Netz von Knoten von bis zu drei Dimensionen reduziert werden. 

2. Durch bijektive und bikontinuierlche Abbildung kann das Knotennetz in eine gerichtete planare und da-
nach lineare Struktur umgeformt werden. 

3. Die gerichtete lineare Struktur kann programmiersprachlich beschrieben werden. 

Die Kombination der drei Entdeckungen ergibt eine Akton-Algebra genannte Programmiersprache, mit der alle 
diskreten natürlichen Systeme beschrieben werden können. Versieht man die Knoten mit Funktionalität, dann 
erhält man eine Programmiersprache, mit der sich Maschinenaktivitäten beschreiben lassen, z.B. die digitaler 
Rechner. Durch Komposition von Funktionalität lässt sich Akton-Algebra aber auch auf die Ebene jeder klassi-
schen Programmiersprache anheben. Versieht man die Knoten mit Metrik oder physikalischen Kräften, dann 
erhält man eine Programmiersprache, mit der sich die Form und die Grösse materieller Systeme beschreiben 
lassen, z.B. das Layout von elektronischen Schaltungen oder die Struktur biologischer Moleküle.  

Über die Entstehung der Akton-Algebra ist in den vergangenen Jahren an diesem Ort wiederholt berichtet 
worden. Sie hat jetzt mit ihrer formalen Definition ihren endgültigen Zustand erreicht. Auf dieser wird auch das 
wesentliche Gewicht des Vortrags liegen. 
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Ensuring the correctness of the compilation process is an important consider-
ation in the construction of reliable software. If the compiler generates code that
is not faithful to the original program code of a system, then all efforts spent on
proving the correctness of the system could be futile. Proving that target code
is correct w.r.t. the program source is especially important for high assurance
systems

In earlier work, AWE together with Susan Stepney and the company Logica
have developed the DeCCo compiler which translates a Pascal-like high-level
language (called PASP) into machine code for the ASP processor. This under-
taking was a Herculean task, and is arguably a big step towards one of the Grand
Challanges of computer science, the Verifying Compiler.

We have investigated using a DeCCo style approach for Java Bytecode rather
than PASP, to provide a reusable, demonstrably correct compiler backend. We
have also moved from using Z to B. This allows us to replace the hand proofs by
mechanical proofs, and also allows formal code generation, as well as powerful
tool support in form of animation and model checking. A small development of a
compiler from simplified Bytecode to a simplified RISC architecture, has proven
the value of these tools (each finding different bugs), and has also shown the
promise of the approach. While a number of research advances will certainly be
required to bring such an ambitious project to completion, the fact that we start
from intermediate code leads us to believe that the overall goal can be achieved
within the lifetime of a research project.
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Modellreduktionstechniken für symbolische Kellersysteme

Dirk Richter (richterd@informatik.uni-halle.de),
Martin-Luther-Universität Halle-Wittenberg

Abstract: Zur Software-Modell-Prüfung sowie zum Modell basiertem Testen als auch
bei der Codegenerierung sind die Größe und Komplexität von Modellen entscheidende
Einflussfaktoren. Ich untersuche Modelle in Form von symbolischen Kellersystemen,
da diese in der Lage sind, Rekursion exakt nachzubilden. Für diese symbolischen Kel-
lersysteme habe ich verschiedene Modellanalysen und Modellreduktionstechniken in
meinem Tool HalSPSI implementiert, welche die Software-Modell-Prüfung in meinen
Tests für den Modellprüfer Moped erheblich beschleunigen bzw. die Modellprüfung
erst ermöglichen oder sogar erübrigen. Letzteres ist z.B. dann der Fall, wenn durch
statische Modellanalysen meines Tool HalSPSI die nicht Erreichbarkeit von Fehler-
konfigurationen nachgewiesen werden kann.

Schlüsselworte: Kellersystem, Modellanalyse, Remopla, Moped, Software-Modell-Prüfung

1 Einleitung
Symbolische Kellersysteme können mittels JMoped [1] aus Java Bytecode gewonnen und
mittels des Modellprüfers Moped [2, 3, 1] überprüft werden. Unter Verwendung des Cross-
Compilers Grasshopper (http://dev.mainsoft.com) ist man aber nicht nur in der Lage, Java
1.6 Bytecode dafür zu verwenden, sondern auch Microsoft Intermediate Language (MSIL
bzw. CIL). Es ist auch prinzipiell möglich, die Gültigkeit von Java Modeling Language
(JML) [4] Annotationen zu überprüfen, wenngleich sich dies in der Praxis als unhandlich
herausstellt.

In [5] wurde bereits die Technik Slicing auf Konfigurationenebene für symbolische Kel-
lersysteme vorgestellt. Dort anschließend sollen hier im Folgendem weitere Techniken
erläutert werden. Unter anderem zeige ich, dass verschiedene Modellanalysen überra-
schenderweise im Gegensatz zur Anwendung bei herkömmlichen Programmiersprachen
plötzlich entscheidbar werden. Im Gegensatz zu verbreiteten ’Finite-State’ Modellprüfern
wie BLAST [6], SPIN [7], NuSMV/SMV (http://www.cs.cmu.edu/ modelcheck), JavaPa-
thFinder [8], Zing [9] oder Bogor (Bandera Projekt) [10] können hier Modellanalysen
interprozedural durchgeführt werden und verbessern damit natürlich das Analyseergebnis.
Auch ist es nicht nötig, sich auf eine konstante maximale Anzahl an Methodenaufrufen zu
beschränken und dadurch eine exponentielle Modellvergrößerung zu riskieren.

2 Begriffe
M = (S,→, LA) heißt Kripkestruktur, falls S undA (nicht notwendigerweise endliche)
Mengen sind,→⊆ S × S und LA : S → 2A. Bei gegebener Kripkestruktur M ist das Er-
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reichbarkeitsproblem die Frage, ob es in M von einem Zustand s ∈ S einen Pfad zu ei-
nem anderen Zustand z ∈ S gibt (s→∗ z?). Im Falle von s, z ⊂ S (anstatt s, z ∈ S) spre-
che ich vom verallgemeinerten Erreichbarkeitsproblem. Zur Beschreibung von (unend-
lich) großen Kripkestrukturen kann man Kellersysteme (Pushdown Systems) verwenden.
P = (P,Γ, ↪→) heißt Kellersystem, falls P eine Menge von Zuständen, Γ eine endliche
Menge (das Kelleralphabet) und ↪→⊆ (P×Γ)×(P×Γ∗) eine Menge von Transitionen ist.
Informal ist ein Kellersystem ein Kellerautomat ohne Eingabe. (p, w) heißt Konfigurati-
on, falls p ∈ P undw ∈ Γ∗. Auf Konfigurationen wird die Transitionsrelation ↪→ erweitert
zu→⊆ (P ×Γ∗)× (P ×Γ∗) mit (p, aw)→ (q, bw) :⇔ (p, a) ↪→ (q, b). Bei einem Sym-
bolischen Kellersystem (Symbolical Pushdown Systems, SPDS) werden die Transitionen
nur indirekt (symbolisch) mittels Relationen beschrieben. Es genügt daher lediglich diese
Relationen zu spezifizieren, um Mengen von Transitionen zu beschreiben, was die Angabe
des vollständigen Kellersystems vereinfacht [3]. Solche SPDS können wiederum mit Hilfe
der Modellsprache Remopla [11] modelliert werden, welche zwar ähnlich zu Promelia ist
(Eingabesprache für den SPIN Modellprüfer [7]), aber keine parallelen Prozesse, sondern
statt dessen explizite Rekursion erlaubt. Statt des Erreichbarkeitsproblems für SPDS kann
auch das LTL- oder CTL*-Modellprüfungsproblem betrachtet werden [12]. Dabei ist eine
LTL- oder CTL*-Formel [13] für die durch das Kellsersystem beschriebene Kripkestruktur
gegeben. Gefragt wird dann nach der Gültigkeit dieser Formel für einem Anfangszustand
bzw. einer Menge von Anfangszuständen der Kripkestruktur. So konstruierte Modelle in
Form eines Remopla-Programms können dann durch mein Tool HalSPSI verbessert und
anschließend durch den Modellprüfer Moped [2] geprüft werden. In Listing 1-5 sind hierzu
Remopla-Beispiele zu finden. Für weitere Details zur Konstruktion von Remopla Model-
len für C und Java sei auf die Veröffentlichungen von Esparza/Schwoon [2] und Obdrzálek
[14] sowie auf [5] verwiesen.

3 HalSPSI (Halle’s Symbolical Pushdown System Improver)
Mein Tool HalSPSI ist ein Source-to-Source Compiler, welcher Symbolische Kellersyste-
me in Remopla-Syntax als Eingabe hat und veränderte Remopla-Modelle wieder ausgibt.
Dabei sollen die Modelle derartig in Abhängigkeit der gesetzten Paramter transformiert
werden, dass ein möglichst kleiner Zustandsraum für das Modell entsteht, damit der Mo-
dellprüfer einfacher das Modell überprüfen kann. HalSPSI liefert verschiedene Informa-
tionen (z.B. Metriken) über das zu analysierende Remopla Modell und die durchgeführten
Modellanalysen und -Transformationen (einstellbar durch verschiedene Log-Levels) so-
wie eine Ausgabe von Kontrollflussgraphen als auch die Ausgabe von Remopla-Modellen
mit Annotationen für die realisierten Modellanalysen. Hierzu ist in [5] z.B. eine Metrik
(genannt ZR) beschrieben, welche den i.d.R. unendlich großen Zustandsraum quantifiziert.
Die implementierten Modellanalysen und -Transformationen basieren vorranging auf dem
Worklist Algorithmus von Martin [15].
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Listing 1: Transformation eines Boolschen Ausdrucks in ein YICES-SMT-Problem

i f ( d e f i n e x1 : : i n t )
: : ( x1 == x1 +1) −> . . . ( a s s e r t (= x1 (+ x1 1 ) ) )

f i

3.1 Nicht-parasitäre Techniken

Als nicht-parasitäre Techniken bezeichne ich Modelltransformationen, welche keinen Ein-
fluss weder auf die Erreichbarkeit von Konfigurationen noch auf die Aussagen von Tem-
poralen Formeln wie LTL und CTL* haben. Entsprechend verändern parasitäre Techniken
die Modelle so stark, dass entweder die Erreichbarkeit von Konfigurationen beeinflusst
wird (dadurch, dass es neue False Negatives geben kann) oder sich die Aussage von LTL
bzw. CTL*-Formeln ändert. Im letzteren Fall bleiben allerdings (durch zusätzliche indi-
rekte Abhängigkeiten) oft wenigstens die Aussagen von LTL-X und CTL*-X Formeln
erhalten.

3.1.1 Kontrollfluss-Slicing (-Ob)
Ich habe interprozedurales Kontrollfluss-Slicing auf Remopla-Modelle übertragen. In mei-
ner Umsetzung wird ein Vorwärtsslice beginnend bei den Startkonfigurationen berech-
net, welcher alle symbolischen Remopla-Konfigurationen des Modells enthält, die aus den
Startkonfigurationen über den Kontrollfluss erreichbar sind. Der Kontrollflussgraph wird
dann entsprechend verkleinert. Beginnend bei den Fehlerkonfigurationen berechne ich an-
schließend einen Rückwärtsslice, um symbolische Remopla-Konfigurationen zu identifi-
zieren, welche zu Fehlern im Modell über den Kontrollfluss führen können. Alle nicht im
Rückwärtsslice auf dem reduzierten Kontrollflussgraph enthaltenen symbolischen Konfi-
gurationen können aus dem Modell entsprechend entfernt werden. Die Gültigkeit bzw.
Nichtgültigkeit von LTL sowie CTL*-Formeln bleibt bei dieser Transformation selbst-
verständlich erhalten.

3.1.2 SMT-Reduktion (-Oy)
Durch automatische Transformationen kann es hin und wieder vorkommen, dass Artefakte
wie a + 2 > a oder a ∗ a + 5 > 0 entstehen. Derartige (Teil-)Ausdrücke entstehen nicht
nur durch die in dieser Veröffentlichung beschriebenen Techniken, sondern auch bei der
(automatischen) Generierung von Remopla-Modellen. Sie können im Idealfall sogar kom-
plett zu True oder False vereinfacht werden, damit der Modellprüfer weniger Zugriffe
auf BDDs beim Auswerten von Ausdrücken benötigt. Um solche Boolschen Ausdrücke zu
vereinfachen, wurde der SMT-Solver YICES1 [16] in HalSPSI integriert, welcher anhand
der Variablendefinition (definierter Wertebereich) testet, ob sich ein boolscher Ausdruck
vereinfachen lässt. Hierzu wird, wie in Listing 1 zu sehen, ein gegebener Ausdruck als
YICES-SMT-Problem beschrieben (es wird polnische Notation verwendet [16]).

1Gesamtsieger der SMT-Competition im Rahmen der CAV 2007 (Computer-Aided-Verification).
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Satz 1 (SMT-Reduzierbarkeit)
Sei e ein boolscher Teilausdruck und Y (e) das zugehörige SMT-Problem. Dann gilt:

Y (e) unerfüllbar⇒ [[e]] ≡ false,
Y (¬e) unerfüllbar⇒ [[e]] ≡ true.

Der Beweis ist trivial. Sobald an einer Kontrollflussverzweigung ein Ausdruck vollständig
zuFalse oder True ausgewertet wird, kann das Modell entsprechend durch“Abschneiden“
der nicht benötigten Kontrollflüsse vereinfacht werden. Im Beispiel aus Listing 1 würde
die Bedingung x1 == x1 + 1 zu False vereinfacht, da es keine Belegung für x1 gibt, so
dass die Bedingung erfüllt wird. Daraufhin wird die Verzweigung samt zugehöriger Kon-
figurationenübergänge aus dem Modell entfernt. Durch zusätzliche Intervallinformationen
(vgl. Abschnitt 3.2.4) konnten boolsche Ausdrücke in meinen Untersuchungen öfter zu
True bzw. False vereinfacht werden, da es dann weniger mögliche Belegungen für die
im Ausdruck verwendeten Variablen gibt. Dies erhöht damit die Anzahl durchfühbarer
Reduktionen und beeinflusst auch weiterhin nicht die Erreichbarkeit von Fehlerkonfigura-
tionen oder die Aussage von LTL bzw. CTL*-Formeln.

3.1.3 Konstanten-Propagation und -Faltung (-Oc)
Nicht nur in boolschen Ausdrücken (wie gerade in Abschnitt 3.1.2 beschrieben) können
Artefakte entstehen, sondern auch in arithmetischen Ausdrücken. Diese können mit Hilfe
von Konstanten-Propagation und -Faltung vereinfacht werden. Gerade bei der Simulation
eines Operandenstacks durch lokale Variablen (wie es bei Javabytecode mittels des Tools
JMoped der Fall ist) kommen häufig Konstanten vor, welche für Berechnungen auf dem
Operandenstack abgelegt werden. Diese Konstanten können aber direkt in die Berechnung
propagiert werden, wodurch weniger BDD-Auswertungen nötig sind und im günstigsten
Fall Variablen des Operandenstacks überflüssig werden2. Da sich durch diese Transforma-
tionen keine Variablenwerte ändern, bleibt nicht nur die Erreichbarkeit von Fehlerkonfigu-
rationen erhalten, sondern auch die Aussagen von LTL bzw. CTL*-Formeln.

3.2 Parasitäre Techniken

3.2.1 Äquivalenzanalyse (-Oa)
Wird zu der im vorigen Abschnitt 3.1.3 beschriebenen Konstanten-Propagation und -Faltung
noch eine “Copy-Propagation-Analysis“ verwendet, so können damit so genannte “Copy-
Chains“3 verfolgt werden. Das Ziel ist das Aufbrechen dieser “Copy-Chains“, damit letzt-
endlich weniger Variablen im Modell benötigt werden und sich damit der Zustandsraum
des Modells verringert. Konkret werden bei der in meinem Tool implementierten Äquiva-
lenzanalyse Äquivalenzklassen an Konfigurationen für Variablen und zu Konstanten aus-
wertbaren Ausdrücken bestimmt. Es befinden sich zwei Variblen x und y an der Konfigu-
ration p in der gleichen Klasse, falls deren konkreter Wert4 gleich ist für jeden (interpro-

2Dies wird erst nach einer weiteren Analyse erkannt.
3Copy-Chains sind aufeinander folgende Zuweisungen mit Wertweiterreichung, wie sie typischweise bei ei-

nem simulierten Operadenstack bei Push- und Pop-Operationen auftreten.
4Gemeint ist der Variablenwert bei “Ausführung“ des Remopla-Programms.
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Listing 2: Modellmodifikation zur Reduktion auf das Erreichbarkeitsproblem (Remopla-Syntax)

p : . . . p1 : i f
: : a != b −> goto p2 ;
: : e l s e −> s k i p ;
f i ;

p : . . .

zeduralen) Kontrollfluss, mit dem die Konfiguration p erreicht werden kann. Für gängige
Hochsprachen ist es natürlicherweise unentscheidbar (Reduktion Postsches Korrespon-
denzproblem) fest zu stellen, ob zwei Variablen x und y an einem Programmpunkt p′ den
gleichen Wert haben. Wie folgender Satz zeigt, ist dieses Problem für SPDS entscheidbar.

Satz 2 (Entscheidbarkeit der Äquivalenzanalyse)
Für (symbolische) Kellersysteme ist es entscheidbar, ob zwei Variablen a und b (analog
Variable und Konstante) an einer Konfiguration p den gleichen Wert besitzen oder nicht.

Beweis: Nach Einführung eines neuen Konfigurationsübergangs p1 unmittelbar vor p (wie
in Listing 2 zu sehen) gilt: a ist (immer) äquivalent zu b im Punkt p gdw. p2 ist nicht
erreichbar5. q.e.d.

Sind die Äquivalenzklassen bestimmt, können Variablen mit Hilfe anderer Variablen er-
setzt werden. Es werden dabei alle Verwendungen von Variablen an allen symbolischen
Konfigurationen durch gewählte Repräsentanten der Äquivalenzklassen ersetzt, was zu
einem Überdeckungsproblem führt und die Anzahl verwendeter Variablen reduziert. Auf-
grund folgenden Satzes werden die Repräsentanten heuristisch gewählt und die jenigen
Repräsentanten bevorzugt, welche besonders häufig in Äquivalenzklassen auftreten, da
diese eine besonders hohe Wahrscheinlichkeit besitzen, andere Variablen zu überdecken.

Satz 3 (Komplexität der Repräsentantenwahl)
Die optimale Repräsentantenwahl 6 ist NP-hart.

Beweis: Reduktion des NP-vollständigen Überdeckungsproblems auf die optimale Re-
präsentantenwahl. Sei eine beliebige Überdeckungsmatrix A = (aij) ∈ {0, 1}m,n gege-
ben. Gesucht ist eine minimale Auswahl an Zeilen, so dass deren logisches ODER den
1-Vektor (1, 1, 1, ..., 1) bilden. Man konstruiere ein Kellersystem wie jenes in Abbildung
1. Dann wird durch die optimale Repräsentantenwahl für L1..Ln das Überdeckungspro-
blem A gelöst. q.e.d.

Es ist natürlich klar, dass die Aussagen von LTL/CTL*-Formeln unverändert bleiben, so-
lange lediglich lesende Verwendungen von Variablen durch andere ersetzt werden. Wird
allerdings eine Variable überflüssig und könnte somit aus dem Modell entfernt werden,
so geht dies i.A. nur, sofern die gegebene LTL/CTL*-Formel nicht über diese ’wegop-
timierte’ Variable spricht. Falls doch, so sind in jeder symbolischen Konfiguration des

5Ebenso wird hier p2 neu eingeführt.
6d.h. eine minimale Auswahl an Repräsentanten

148



Abbildung 1: Reduktion vom Überdeckungsproblem auf optimale Repräsentantenwahl {m1, m3}
A x1 x2 x3 x4

m1 1 1 1
m2 1 1
m3 1 1 1
m4 1 1

# {x1=m1=m3} module use(int v, int p) {
L1: use(x1,1); print(v);
# {x2=m1=m2} xi=undef, mi=undef; # i in [1..4]

L2: use(x2,2); if
# {x3=m3=m4} :: p==1 -> m1=x2,m2=x2;

L3: use(x3,3); :: p==2 -> m3=x3,m4=x3;
# {x4=m1=m2=m3=m4} :: p==3 -> m1=x4,m2=x4,m3=x4,m4=x4;

L4: use(x4,4); fi; return; }

Kellersystems ggf. indirekte Abhängigkeiten einzuführen, um die durch die LTL/CTL*-
Formel erzeugten indirekten Verwendungen (über Prädikate) ebenfalls zu überdecken und
damit die an der LTL/CTL*-Formel beteiligten Variablen in die Lösung der Repräsentan-
tenwahl zu zwingen. Die indirekte Verwendung einer Variablen v zur Überdeckung der
LTL/CTL*-Formel ist natürlich nur dann an einer Konfiguration zu ergänzen, wenn die
Konfiguration nicht bereits selbst die Überdeckung von v verlangt.

3.2.2 Richtungs-Entscheidungsanalyse (-Od)
Durch die im vorigen Abschnitt 3.2.1 erläuterte Modelltransformation entstehen typischer-
weise viele tote Zuweisungen [17]. Diese sind sogar für die symbolische Simulation des
Remopla-Programms überflüssig und sollten identifiziert sowie eliminiert werden. Statt je-
doch einer einfachen ”Dead-Code-Analyse“ [17] habe ich mich darauf konzentriert, gleich
diejenigen Variablen (und Konfigurationen) zu identifizieren, welche über die Erreichbar-
keit von gegebenen Fehlerkonfigurationen entscheiden. Es ist natürlich klar, das eine im
Sinne von Muchnick [17] tote Variable a an einem Ort p natürlich niemals die Erreichbar-
keit beeinflussen kann. Auch die Entscheidungsanalyse ist für gängige Hochsprachen i.A.
unentscheidbar wegen des Halteproblems. Dennoch ist dies (wie folgender Satz zeigt) für
Kellersysteme entscheidbar.

Satz 4 (Entscheidbarkeit der R-Entscheidungsanalyse)
Für (symbolische) Kellersysteme ist es entscheidbar, ob eine Variable a an einer Konfigu-
ration p Einfluss auf die Erreichbarkeit eines Fehlerzustandes Err ausübt oder nicht.

Beweis: Nach Konstruktion von n Kellersystemen, wie in Listing 3 zu sehen, gilt: a ist
in p entscheidend für die Erreichbarkeit von Err gdw. unter den n rechts in Listing 3 ab-
gebildeten Kellersystemen ist Err mindestens einmal erreichbar und mindestens einmal
nicht erreichbar. q.e.d.
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Listing 3: Entscheidungsanalyse formuliert als n Erreichbarkeitsprobleme (Remopla-Syntax)

q : a = 0 ; # a = 0 , 1 , 2 . . . n
p : i f p : i f

: : a > 0 −> b = 1 ; : : a > 0 −> b = 1 ;
: : e l s e −> goto E r r ; : : e l s e −> goto E r r ;

f i f i

nicht entscheidend

entscheidend

tod

richtungsentscheidend

Kontrollfluss versackend

Abbildung 2: An der symbolischen Konfiguration p ist eine Variable v...

Da es allerdings zu aufwändig ist, zur Beschleunigung eines Erreichbarkeitsproblems
gleich n neue Erreichbarkeitsprobleme zu lösen, habe ich in meinem Tool HalSPSI le-
digleich eine Modellanalyse integriert, um diejenigen Variablen zu bestimmen, welche
lediglich potentiell einen Einfluss auf die Richtung im Kontrollfluss ausüben. Diese Va-
riablen nenne ich richtungsendscheidend. Umgekehrt nenne ich Variablen kontrollfluss-
versackend, falls sie die Erreichbarkeit beeinflussen, jedoch nicht richtungsentscheidend
sind (siehe Abbildung 2). Nachdem mein Tool HalSPSI die richtungsendscheidenden Va-
riablen bestimmt hat, werden sämtliche seiteneffektfreie Zuweisungen nichtrichtungsend-
scheidender Variablen aus dem Modell eliminiert, da diese Zuweisungen keinen großen
Einfluss auf die Erreichbarkeit ausüben. Um auch die Semantik von LTL-X/CTL*-X-
Formeln zu bewahren, sind wiederum a priori die an der LTL-X/CTL*-X-Formel betei-
ligten Variablen als indirekt richtungsendscheidend zu markieren. Neue False-Negatives
kann es nur geben, falls eine Variable sowohl entscheidend, aber nicht richtungsendschei-
dend, also demnach kontrollflussversackend ist. Diese Fälle treten nur auf, wenn es nach
Remopla-Semantik keine Nachfolgerkonfiguration gibt (bei arithmetischen Überläufen).
Diese Stellen werden erfreulicherweise als Warnung durch die im Abschnitt 3.2.4 erläuter-
te Intervallanalyse gemeldet.

3.2.3 Stotterreduktion (-Ot)
Wie in Listing 4 zu sehen, können zur Transitions- und Konfigurationsreduktion gewis-
se symbolische Konfigurationen zusammengelegt (verschmolzen) werden, sofern diese
sich gegenseitig nicht beeinflussen. Dadurch entstehen kleinere Modelle, welche der Mo-
dellprüfer schneller überprüfen kann. Werden die zu verschmelzenden Konfigurationen
ungünstig gewählt, so gelangt man. wie in Listing 4 (Mitte) zu sehen, u.U. zu einem loka-
len Optimum. Unter Verwendung von Sheduling-Techniken [18] ist es allerdings in Linear-
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Listing 4: l2+l3 → lokales Optimum vs. l1+l2 und l3+l4 → globales Optimum

l 1 : x = 0 ; l 1 : x = 0 ; l 1 2 : x = 0 , y = 6 ;
l 2 : y = 6 ; l 2 3 : y = 6 , a = x +1; l 3 4 : a = x +1 , b = y ∗2 ;
l 3 : a = x +1; l 4 : b = y ∗2 ;
l 4 : b = y ∗2 ;

Listing 5: Eine durch Konstantenfaltung und/oder -Propagation nicht erkennbare Konstante y

x = 0 ;
L : y = x / 2 ;
i f

: : ( x = 0) −> x = 1 ; goto L ;
: : e l s e −> b r e a k ;

f i

zeit möglich, stets optimale Transformationen (Listing 4 rechts) zu finden. Die Erreich-
barkeitsfrage für vorgegebene Konfigurationen wird (nach geschickter Wahl der Remopla-
Programmmarken) nicht beeinflusst. Sofern eine LTL-X bzw. CTL*-X-Formel nicht über
die an einer Verschmelzung beteiligten Variablen spricht, bleibt die Aussage dieser For-
mel bei der Transformation invariant. Zusätzliche künstliche Abhängigkeiten für die an
einer Formel beteiligten Variablen verhindern wiederum das Verschmelzen entsprechen-
der symbolischer Konfigurationen und gestatten damit analog die Invarianz der Aussage
dieser Formel.

3.2.4 Intervallanalyse (-Oi)
In SPDS werden Variablenwerte durch Bitvektoren im Zustand und Kelleralphabet des
Kellersystems kodiert. Eine Verkleinerung dieser Bitvektoren reduziert (inbesondere im
Falle von Rekursion) den Zustandsraum des Modells erheblich. Durch die in meinem
Tool HalSPSI implementierte Intervallanalyse werden die Wertebereiche von Variablen
durch Intervalle überschätzt und die Variablendefinitionen auf die nötigen Bits verkleinert.
Insbesondere hat sich diese Technik bei Verkleinerung von Arrays auf deren maximale
Lesegrenzen als sehr nützlich zur Reduktion erwiesen. Neben nicht erwünschten potenti-
ellen Überläufen arithmetischer Berechnungen werden durch die Intervallanalyse auch se-
mantisch nicht erreichbare Konfigurationen identifiziert und aus dem Modell (analog zum
Kontrollfluss-Slicing in Abschnitt 3.1.1) ausgeschlossen. Zusätzlich profitiert aber auch
die SMT-Reduktion von den Intervallinformationen, wie in Abschnitt 3.1.2 beschrieben.
Dem nicht genug, wird zusätzlich die Erkennung von Konstanten verbessert, wie Listing 5
zeigt. Die Variable y hat dort stets den Wert 0, was durch die Intervallanalyse erkannt wird,
nicht jedoch durch Konstantenfaltung oder -Propagation. Analog zur Äquivalenzanalyse
bleiben hier auch nur diejenigen LTL- und CTL*-Formeln aussageninvariant, welche nur
über nicht wegoptimierte Variablen sprechen.
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Abbildung 3: Ausgewählte Methoden mit Zeit- und Speicherüberläufen (5 Stunden, 2 GB RAM)
Methode(n) Gesamtzeit GenZeit timeouts memouts

-Oaydti 1.96h 0.1h 0% 6.7%
-Oyi 8.8h 0.1h 0.7% 4%
-Ob 20.6h 0.1h 0.7% 20%

-Oaydt 29.7h 0.1h 2% 18.7%
-Oayd 43.9h 0.1h 3.3% 19.3%

ohne HalSPSI 48.9h 0.1h 0.7% 25.3%

Abbildung 4: Eigenschaften der implementierten Modellanalysen und -transformationen
Eigenschaft -Ob -Oy -Oc -Oa -Od -Ot -Oi
parasitär + + + +
flusssensitiv + + + + + +
interprozedural + + + + +
entscheidbar + + + + + + +
keine False-Negtives + + + + + +
erreichbarkeitserhaltend + + + + + +
LTL/CTL* invariant + + + + +
LTL-X/CTL*-X invariant + + + + + + +

Satz 5 (Entscheidbarkeit der Intervallanalyse)
Seien a, b ∈ R. Dann ist für (symbolische) Kellersysteme entscheidbar, ob für eine Varia-
ble x an einer Konfiguration p stets gilt: a ≤ x ≤ b.
Beweis: analog zur Äquivalenz- und Entscheidungsanalyse durch Reduktion auf das Er-
reichbarkeitsproblem.

4 Zusammenfassung und Ergebnisse
Für symbolische Kellersysteme habe ich verschiedene Modellanalysen und Modellreduk-
tionstechniken implementiert, welche die Software-Modell-Prüfung in meinen Tests für
den Modellprüfer Moped erheblich beschleunigen (um bis zu 96% auf nur noch 4% der
zuvor benötigten Laufzeit). Die Tabelle in Abbildung 3 zeigt die Laufzeiten für einige aus-
gewählte Kombinationen der Modellanalysen für meinen Benchmark (30 Java-Beispiele
mit assert(false)-Prüfung, Modellparameter 4-8 Bits, AMD X2 4200, 2400 Einzeltests).
Dabei ist GenZeit die Zeit, welche zum Generieren und Optimieren des Modells benötigt
wurde, vernachlässigbar klein gegenüber der Zeit, die zur Modellprüfung benötigt wird. In
einigen Fällen wird die Modellprüfung aber auch erst überhaupt ermöglicht (bis zu 21,3%
der Speicherüberläufe verhindert) und in anderen Fällen erübrigt sich die Modellprüfung
sogar ganz. Letzteres z.B. dann, wenn durch eine Modellanalyse meines Tools HalSPSI
bereits die Korrektheit des Modells nachgewiesen werden konnte (je nach verwendeter
Parameter 7%-10%). Abbildung 4 fasst die aufgeführten Eigenschaften nochmals zusam-
men.
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1 Einleitung

Symbolische Simulationen [NC94,MT99,BSW02,Gar02,LC05,Wan07] haben sich in
hybriden Systemen zur automatischen Verifikation von zeit- und sicherheitskritischen
Eigenschaften bewährt. Unsere symbolische Simulation wird bezüglich [RU95,UR95]
aus einer wortbasierten Sichtweise zum Nachweis von Eigenschaften sich synchronisie-
render und hierarchisch aufgebauter hybrider Automaten ausgeführt. Die Überprüfung
des Verhaltens hybrider Systeme erfolgt somit auf der Grundlage formaler Sprachen
zum Zweck der Gewinnung von Erkenntnissen über entscheidbare Probleme, wobei die
symbolische Simulation als Prozess der Akzeptanz von Zeitwörtern eingesetzt wird.
Ein Zeitwort wird durch eine Folge von Symbolen für auftretende Ereignisse gebildet,
wobei jedem Ereignis eine symbolische Zeit des Auftretens, eine Variablenmenge so-
wie Bedingungen über der Zeit und der Variablenmenge zugeordnet sind. Die genaue
Definition von Zeitwörtern hängt von zugrundeliegenden Automaten ab. Als Grundlage
dienen hier hybride Automaten im Sinn von [ACHH93,ACH+95]. Welche Besonder-
heiten diese Automaten aufweisen, wie dementsprechend Zeitwörter formuliert sein
müssen und welche Ergebnisse die symbolische Simulation unter solchen Gegebenhei-
ten liefert, ist in den nächsten Abschnitten dargestellt.

2 Hybride Automaten

Hybride Automaten bilden eine Erweiterung endlicher Automaten, an deren Kompo-
nenten Variablen gebunden sind, welche sich entsprechend gegebener Funktionen ent-
wickeln und gegebener Relationen verhalten müssen. Die Erweiterung erfolgt derart,
dass kontinuierliche Komponenten, Lokationen, und diskrete Komponenten, Übergänge
zwischen den Lokationen, entstehen. In einer Lokation können unendlich viele Varia-
blenbelegungen unter Beachtung einer Bedingung, Invariante, und entsprechend be-
schriebener Fortschrittsfunktionen, Aktivitäten, auftreten. Der konkrete Zustand eines
hybriden Automaten ist durch ein Tupel aus der vorliegenden Lokation und Varia-
blenbelegung erklärt. Die Variablenbelegung, unter welcher ein Übergang von einer
Lokation zu einer nachfolgenden Lokation stattfinden soll, muss festgelegten Transiti-
onsbedingungen genügen und kann durch Zuweisungsfunktionen, Aktionen, neu belegt
werden. In der Abbildung 1 sind die Bestandteile zur Beschreibung von Deklarationen
und dem Verhalten eines hybriden Automaten noch einmal graphisch notiert.
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Abbildung 1. Funktionen und Relationen in hybriden Automaten

Anfangslokationen werden durch einen zusätzlichen Eingangspfeil und Endlokationen
durch eine doppelte Umrandung gekennzeichnet. Lokationen, die durch weitere hybride
Automaten aus Bibliotheken verfeinert werden können, sind als komplexe Lokationen
spezifiziert und führen zu Hierarchisierung hybrider Automaten. Über gesendete und
empfangene Signale können sich nebenläufige Automaten synchronisieren. Zu empfan-
gende Signale werden mit einem nach unten gerichteten Pfeil im Wächter zusammen
mit der Transitionsbedingung festgelegt und zu sendende Signale mit einem nach oben
gerichteten Pfeil in der Aktion zusammen mit den Zuweisungen.

3 Zeitwörter

Automaten können Wörter akzeptieren. In hybriden Automaten werden insbesondene
Zeitwörter betrachtet. Allgemein ist ein Zeitwort wie in folgender Definition festgelegt.

Definition 1. Ein Zeitwort ZW bildet eine endliche bzw. unendliche Folge von Tupeln
ZW = 〈S1, T1, X1, ω1〉,...,〈Sn, Tn, Xn, ωn〉 mit i ∈ {1, .., n} und n → ∞, wobei
gilt:

Si = Menge von Symbolen,
Ti = symbolische Zeit,
Xi = Menge von Variablen,
ωi = Menge von Abbildungen der Variablen auf konkrete und symbolische Werte.

Die Menge der Abbildungen ωi hängen in Bezug auf die zugrundeliegenden Automa-
ten von unterschiedlichen Bedingungen ab. Während die Abbildungen in Zeitautomaten
[Alu99] durch Invarianten, Transitionsbedingungen und Aktionen beeinflusst werden,
sind für die Abbildungen von Zeitwörtern bezüglich hybrider Automaten zusätzlich Ak-
tivitäten relevant. Mit Hilfe von Aktivitäten kann das zeitliche Fortschreiten der konti-
nuierlichen Variablen von Lokation zu Lokation variieren. Neben den Invarianten wird
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somit durch die Aktivitäten bestimmt, wie lange ein hybrider Automat in einer Lokati-
on verbleiben kann bzw. wann der Automat die Lokation verlassen muss.
Da Wörter an Transitionen akzeptiert werden, sind Invarianten und Aktivitäten nicht
explizit an der Beschreibung der Abbildungen ωi beteiligt. Invarianten werden nach
[BS97] in unbedingte Transitionsbedingungen transformiert, die eine Aussage darüber
treffen, wann eine Transition ausgeführt werden muss. Demgegenüber besagt die Be-
dingung, welche an einer Transition beschrieben wurde, wann die Transition ausgeführt
werden kann. Die Aktivitäten, welche ursprünglich in Form von Differentialgleichun-
gen festgelegt sind, werden in Differenzengleichungen überführt, da für die Akzeptanz
der Zeitwörter von dem kontinuierlichen Verlauf abstrahiert wird. Beobachtet werden
mögliche Randwerte für Variablen, die bei dem Übergang von einer Lokation zu einer
nachfolgenden Lokation auftreten. Dabei wird von der Annahme ausgegangen, dass der
kontinuierliche Fortschritt innerhalb einer Lokation ohne kritische Abschnitte erfolgt.
Solche Annahmen können vorher durch Verfahren wie Simulation kontinuierlicher Sy-
steme nachgewiesen werden.
Abbildungen in ω von Zeitwörtern über hybriden Automaten lassen sich entsprechend
folgender Grammatik formalisieren:

<ω> ::= 〈 <VorTrans>, <NachTrans> 〉
<VorTrans> ::= release( <DiffGleich>, <TransBeding> )
<TransBeding> ::= <UnbedingtTrans> ∧ <BedingtTrans>
<NachTrans> ::= conclude( <Aktionen>, <EintrittInv> )

Ein Zeitwort kann von einem hybriden Automaten akzeptiert werden, wenn die Varia-
blenbelegungen einenseits Bedingungen zum Auslösen einer Transition in ’VorTrans’
und andererseits Bedingungen zum erfolgreichen Beenden der Transition in ’NachTrans’
erfüllen. Dabei setzen sich die Bedingungen aus ’VorTrans’ durch die aus den Ak-
tivitäten entstandenen Differenzengleichungen ’DiffGleich’, den aus den Invarianten
entstandenen unbedingten Transitionsbedingungen ’UnbedingtTrans’ und den an den
Übergängen spezifizierten Transitionsbedingungen ’BedingtTrans’ zusammen. Die Be-
dingungen von ’NachTrans’ werden aus den Zuweisungen der ’Aktionen’ der auszu-
führenden Transition und der Invariante ’EintrittInv’, welche für die nachfolgende Lo-
kation gilt, gebildet.

4 Symbolische Simulation

Sämtlichen Zeitwörtern, die von einem hybriden Automaten akzeptiert werden und in
ihrer Gesamtheit das Verhalten des Automaten bilden, stehen vom Nutzer definierte
Zeitwörter zur Spezifikation zeit- und sicherheitskritischer Eigenschaften gegenüber.
Zum Nachweis der vom Nutzer spezifizierten Eigenschaften in hybriden Systemen wird
die symbolische Simulation in CLP [JM94,FA97,HW07] (Constraint Logic Program-
ming) eingesetzt. CLP vereinigt zwei Paradigmen:

– Lösen von Constraints durch effiziente mathematische Verfahren und
– Logische Programmierung zur deklarativen Beschreibung sowie Lösungssuche.
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Ausgehend von dem Grundgedanken, das Akzeptanzproblem der vom Nutzer als Zeit-
wort definierten Eigenschaft durch eine Anfrage an das hybride System mit effizienten
Techniken zu lösen, kann die symbolische Simulation in CLP wie folgt erklärt werden.

Begriff 1
Die symbolische Simulation in CLP ist durch die Abarbeitung einer Anfrage
’query(Eigenschaft, Hybrides System, Startlokation, Startzeit, StartVarBelegung)’
als Ziel G nach:

der Erfüllbarkeit der Eigenschaft in Form eines Zeitwortes
an das hybride System in Form einer Menge von Regeln in CLP

vom Anfangszustand 〈G, true〉 mit dem wahren Constraintspeicher true festgelegt.
Während der Ausführung werden an die Zeiten und Variablen der als Zeitwort vorlie-
genden Eigenschaft Bedingungen des Nutzers als auch des hybriden Systems gebunden,
die als Constraintsystem im Constraintspeicher C durch den Constraintlöser verein-
facht, gelöst bzw. zu Widersprüchen geführt werden.

Anhand eines Beispiels werden der Lösungsvorgang und Ergebnisse der symbolischen
Simulation in CLP illustriert.

<
<0       S

S := 1

Einfache_Prüfung

S := 1

<0       S

Studienbüro

S:=0

S := 0

S       2
Info_Pruef_b, DB_Pruef_b

DB_Vor_b,Info_Vor_b
BeginnBeginn

Abbildung 2. Synchronisation des Studienbüros mit dem Prüfungsablauf

In der Abbildung 2 ist ein stark vereinfachtes Beispiel zur Synchronisation eines Ab-
laufes in einem ’Studienbüro’, bei welchem Informationen zum Bestehen von Prü-
fungen erfasst werden, mit dem Prozess zur Verwaltung in einer Datenbank ’Einfa-
che_Prüfung’, bei welchem die erfassten Informationen gespeichert werden, dargestellt.
Das dargestellte System ist ein zur Umgebung offenes System, welches sich auch mit
der Umgebung synchronisiert. Mit Hilfe einer Uhr ’S’ für die Systemzeit werden die
zeitlichen Bedingungen der Synchronisation festgelegt. Zu Beginn wird die Uhr ’S’
an einer für alle an der Synchronisation teilnehmenden Prozesse beginnenden Tran-
sition auf Null gesetzt. Die beginnende Transition ist mit einem schwarz ausgefüllten
Rechteck gekennzeichnet. Während der Ausführung der Prozesse muss die Uhr ’S’ eine
Systemzeit beinhalten, die gleich bzw. größer Null ist. Dabei schreitet die Uhr ’S’ laut
’Ṡ:=1’ mit einem Anstieg von einer Zeiteinheit pro Takt fort.
Beide Prozesse, ’Studienbüro’ und ’Einfache_Prüfung’, werden durch ein Ereignis ’Be-
ginn’ gestartet, welches entsprechend SDL [EHS97] als Signal aus der Umgebung emp-
fangen wird. Wird im Studienbüro die Information ’Info_Vor_b’ einer bestandenen Vor-
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aussetzung erfasst, so wird diese Information unter Zurücksetzen der Uhr ’S’ auf Null,
als Signal ’DB_Vor_b’ an ’Einfache_Prüfung’ gesendet. Wird im Studienbüro die Infor-
mation ’Info_Pruef_b’ einer bestandenen Prüfung unter der Bedingung ’S ≤ 2’ erfasst,
so wird diese Information als Signal ’DB_Pruef_b’ an den Datenbankprozess ’Einfa-
che_Prüfung’ gesendet.
In den Abbildungen 3 und 4 sind die Verhaltensbeschreibungen der Abläufe von ’Stu-
dienbüro’ und ’Einfache_Prüfung’ enthalten.

<

<< <

Studium
Info_Pruef_bBeginn

A := 0

, A := 0

Info_Vor_b
A   20

22 A  <  24

0     A

A := 1

Pruefung 
0     A  <  24

A := 1

Abbildung 3. Ablauf im Studienbüro

< <

<

<
Pruefung 

0     B  <  24

DB_Pruef_b ,

B := 0
22 B  <  24

Erfolgreich
0     B
B := 1B := 1

B := 0

Beginn

Voraussetzung

B := 1

0     B  <  22
B < 22
DB_Vor_b ,

Abbildung 4. Ablauf der Prüfung

Eine Uhr ’A’ zur Messung der lokalen Zeit wird für das Studienbüro zu Beginn auf Null
gesetzt. In einer Anfangslokation ’Studium’, welche auch die Endlokation zur Akzep-
tanz eines vollständig bestandenen Prüfungsablaufes bildet, verbleibt der Prozess bis ei-
ne Information einer erfolgreich bestandenen Voraussetzung zur Prüfungszulassung als
Signal ’Info_Vor_b’ an den Datenbankprozess ’Einfache_Prüfung’ weitergeleitet wer-
den kann. Dabei gilt für den zeitlichen Verlauf von ’A’ die Bedingung ’0 ≤ A’, wobei
’A’ mit einer Zeiteinheit (Monat) pro Takt fortschreitet. Die Voraussetzung zur Prüfung
kann laut einer Durchführungsordnung nur innerhalb der ersten 20 Monaten von ei-
nem Studenten erbracht werden. Die nachfolgende Lokation ’Pruefung’ muss laut einer
Studien- und Prüfungsordnung bereits im 24. Monat verlassen sein, d.h. später ist das
Bestehen der Prüfung nicht mehr möglich. Laut der Bedingung ’22 ≤ A < 24’ an der
Transition zum Erfassen und Senden des Signals ’Info_Pruef_b’ über eine bestandene
Prüfung ist der offizielle Prüfungszeitraum auf den 22. und 23. Monat festgelegt, wo-
durch eine Prüfung andererseits durch eine Durchführungsordnung nicht vor dem 22.
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Monat bestanden werden kann. Beim Bestehen der Prüfung wird die Uhr ’A’ für einen
erneuten Ablauf auf Null zurückgesetzt.
Durch ein Signal ’Beginn’ aus der Umgebung wird wie in Abbildung 4 ein Prozess
für einen Prüfungsvorgang in einer Datenbank aktiviert, wobei eine lokale Uhr ’B’ mit
Null initialisiert ist. Eine Prüfungsvoraussetzung muss und kann laut der Lokationsbe-
dingung ’0 ≤ B < 22’ und der nachfolgenden Transitionsbedingung bis zum 22.Monat
erbracht werden. Ist die Voraussetzung erbracht, so führt eine bestandene Prüfung im
Zeitraum vom 22. bis zum 24. Monat zu einem erfolgreichen Abschluss.
Zeitwörter des synchronisierend hybriden Automaten der Abbildung 2 können nun wie
folgt notiert werden:

〈{Beginn↓}, T [0] {S, A, B},
〈release({}, ’true’),
conclude({Snach=0, Anach=0, Bnach=0},

0 ≤ Snach ∧ 0 ≤ Anach ∧ 0 ≤ Bnach < 22)〉〉,
〈{DB_Vor_b↓,Info_Vor_b↑}, T [1], {S, A, B},
〈release({S=Svor+(T [1]-T [0]), A=Avor+(T [1]-T [0]), B=Bvor+(T [1]-T [0])},

(0 ≤ S ∧ 0 ≤ A ∧ 0 ≤ B ≤ 22) ∧ (A < 20 ∧ B < 22)),
conclude({},0≤ Snach ∧ 0 ≤ Anach < 24 ∧ 0 ≤ Bnach < 24)〉〉,
〈{DB_Pruef_b↓,Info_Pruef_b↑}, T [2], {S, A, B},
〈release({S=Svor+(T [2]-T [1]), A=Avor+(T [2]-T [1]), B=Bvor+(T [2]-T [1])},

(0 ≤ S ∧ 0 ≤ A ≤ 24 ∧ 0 ≤ B ≤ 24) ∧ (22 ≤ A < 24 ∧ 22≤B < 24)),
conclude({Anach=0, Bnach=0},0≤ Snach ∧ 0 ≤ Anach ∧ 0 ≤ Bnach)〉〉

Dabei ist die Variable der symbolischen Zeit T für jede Transition mit einer fortlaufen-
den Nummer indiziert. Für die Variablen der Uhren S, A und B gilt:

Svor, Avor, Bvor = Werte der Variablen bei erfolgreichem Abschluss
der vorherigen Transition

Snach, Anach, Bnach = Werte der Variablen bei erfolgreichem Abschluss
der betrachteten Transition.

Diese Unterscheidung wurde vorgenommen, um syntaktisch hervorzuheben, wann wel-
cher Wert einer Variablen verwendet wird. Die Unterscheidung ist auch für die symboli-
schen Simulation in CLP von Bedeutung, da dort keine expliziten Zuweisungsoperato-
ren vorhanden sind und Variablen mathematischen Werten entsprechen. In den Zeitwör-
tern wurden Invarianten bereits in unbedingte Transitionsbedingungen transformiert.
Weiterhin ist ein Nutzer an dem Bestehen der Voraussetzung zur Prüfung innerhalb von
19 Monaten interessiert, was durch folgendes Zeitwort formuliert werden kann:

〈{Beginn↓}, T [0] {S, A, B},true〉,
〈{DB_Vor_b↓,Info_Vor_b↑}, T [1], {S, A, B},T [1]≤ 19〉,
〈{DB_Pruef_b↓,Info_Pruef_b↑}, T [2], {S, A, B},true〉
Wird nach dieser Eigenschaft in unserem hybriden System gefragt, so ergibt sich wäh-
rend des Ablaufes der symbolischen Simulation eine Berechnung, wie diese in Abbil-
dung 5 nachvollzogen werden kann. Jedem Symbol des Zeitwortes ist ein Aufruf des
Prädikates zur Abarbeitung durch die symbolische Simulation zugeordnet, wobei drei
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Abbildung 5. Ergebnisse des Laufes

Aufrufe von 0 bis 2 zu unterscheiden sind. Alle Variablen sind hier entsprechend der
Zugehörigkeit zu einem Aufruf mit der Nummer des Aufrufes initialisiert. Während ei-
nes Aufrufes werden sämtliche Constraints des hybriden Systems und des Nutzers, die
zu dem betrachteten Symbol gehören, im Constraintspreicher gesammelt und als Cons-
traintsystem gelöst. Im Constraintspeicher verbleibende Variablen mit ihren Constaints
bilden zusammen mit den Variablenbedingungen des folgenden Aufrufes weiter zu lö-
sende Constraintsysteme, wodurch induktiv Beziehungen zu allen weiteren Aufrufen
entstehen und die Gesamtlösung ermittelt werden kann. Aus der zusätzlichen Bedin-
gung des Nutzers ergibt sich im Zusammenhang mit ’T[2]-T[1] ≤ 2’ und ’22 ≤ T[2]
< 24’ als Bedingungen des dritten Aufrufes ein Widerspruch. Entweder können zur
Erfüllung der Nutzeranforderung die Prüfungszeiträume zwischen 22 und 24 Monaten
nicht eingehalten werden oder die Bedingung der übergeordneten Verordnung, dass ei-
ne Prüfung maximal 2 Monate nach dem Bestehen der Voraussetzung absolviert werden
muss. Als Konsequenz der Lösung sind entweder die Ansprüche des Nutzers zu ändern
oder das Modell ist zu verbessern.
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5 Ausblick

Noch werden Zeitwörter in flachen Strukturen überprüft. Zur Verbesserung der Effi-
zienz bezüglich Zeit und Speicherplatz sind in der Zukunft geschachtelte Wörter wie
bei [AM06,AAB+07] zu untersuchen. Durch den Einsatz von Techniken wie direk-
tes Backjumping zu aufgetretenen Konflikten anstelle des üblichen Backtracking und
Konfliktlernen wie aus [EFH08] sowie priorisierte Constraints entsprechend gewählter
Anwendungsgebiete [BLLT07] kann weiterhin eine effizientere Ausführung der sym-
bolischen Simulation in CLP erreicht werden. Grenzen zu entscheidbaren Unterklas-
sen hybrider Systeme sind im Allgemeinen schwer zu ermitteln [AMPS08], wodurch
verschiedene Richtungen in Ansätzen zur Untersuchung solcher Probleme notwendig
sind.
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Datenfluss in bedarfsgesteuerten Berechnungen

Sebastian Fischer1 and Herbert Kuchen2
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Quelltext-Überdeckung ist ein häufig verwendeter Maßstab zur Bewertung
der Qualität von Programmtests. Sie erlaubt eine Beurteilung der durchge-
führten Testläufe anhand der von ihnen ausgeführten Teile des Programms.
Überdeckungs-Kriterien für imperative Sprachen reichen von einfachen Krite-
rien wie

– Anweisungs-Überdeckung, bei der überprüft wird, welche im Programm no-
tierten Anweisungen ausgeführt werden, über

– Kontrollfluss-Überdeckung, bei der überprüft wird, welche Knoten bzw. Kan-
ten des dem Programm zugeordneten Kontrollfluss-Graphen, durchlaufen
werden, bis hin zu

– Datenfluss-Überdeckung, bei der überprüft wird, welche Zuweisungen an Va-
riablen welche ihrer Verwendungen beeinflussen.

Jüngst gewinnt Quelltext-Überdeckung auch im Bereich funktionaler Pro-
grammierung an Bedeutung, da die Programmiersprache Haskell [1] in zuneh-
mendemMaße für die Entwicklung massentauglicher Anwendungen genutzt wird.
Die Entwickler des Window-Managers Xmonad [2], verwenden Haskell Program
Coverage (HPC [3]), um die Qualität ihrer durchgeführten Tests zu bewerten.
HPC verwendet ein vergleichsweise einfaches Überdeckungs-Kriterium, über-
prüft nämlich, welche im Programm notierten Ausdrücke von der Berechnung
angefordert wurden. Diese Form der Überdeckung hat zwei wesentliche Vorzüge:

1. sie lässt sich sehr effizient aufzeichnen und
2. sie lässt sich dem Benutzer anschaulich päsentieren – sowohl in Form prozen-

tualer Zusammenfassungen als auch durch farbig angereicherte Programm-
texte, in denen markiert ist, welche Ausdrücke nicht verwendet wurden.

Gelegentlich suggeriert HPC allerdings zu viel Vertrauen in durchgeführte Tests.
So gibt es Beispiele, in denen HPC 100% Überdeckung bescheinigt, Fehler im
Programm jedoch nach den durchgeführten Testläufen unentdeckt bleiben. Prin-
zipiell kann kein Überdeckungs-Kriterium die Fehlerfreiheit von Programmen
garantieren. Es lohnt sich dennoch, solche Kriterien zu entwickeln, die möglichst
gründliche Tests erfordern.

Im letzten Jahr haben wir ein Werkzeug zur Testfall-Generierung für die Pro-
grammiersprache Curry [4] vorgestellt, das eine minimale Anzahl von Testfällen
anhand von Kontrollfluss-Überdeckungs-Information berechnet (vgl. [5]). Dieses
Werkzeug verwendet den der Programmiersprache zu Grunde liegenden Auswer-
tungsmechanismus Narrowing, der es ermöglicht, Berechnungen mit unbekannter
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Information durchzuführen. Testfälle werden hier dadurch erzeugt, dass die zu
testende Funktion mit unbekannten Eingaben aufgerufen wird und die Eingaben
während der Berechnung gebunden werden.

Wir haben unser Werkzug um ein neues Kriterium für Datenfluss-Überdeckung
in deklarativen Programmen mit bedarfsgesteuerter Auswertung erweitert (vgl.
[6]). Anders als in imperativen Sprachen basiert unser Kriterium nicht auf Zuwei-
sungen an und Verwendungen von Variablen sondern auf algebraischen Datenty-
pen und Musteranpassung. Im Wesentlichen fließen Daten von Programmstellen,
an denen ein Konstruktor notiert ist, zu Programmstellen, an denen ein Muster
diesen Konstruktor verwendet. Eine andere Form von Datenfluss entsteht durch
Funktionen höherer Ordnung: (partiell angewendete) Funktionen fließen zu ihrer
Applikation.

Da im Allgemeinen unentscheidbar ist, welcher Datenfluss durch ein Pro-
gramm möglich ist und ferner eine Approximation ohne eine Programmausfüh-
rung nicht-triviale Programm-Analysen erfordert, haben wir eine Programm-
transformation entwickelt, die ein beliebiges deklaratives Programm so anrei-
chert, dass es neben seinem eigentlichen Ergebnis auch den durch die Berechnung
induzierten Datenfluss berechnet. Das transformierte Programm ist selbst rein
deklarativ, verwendet also keine Seiteneffekte zur Protokollierung des Datenflus-
ses. Auch wird die Reihenfolge der Auswertung des ursprünglichen Programms
nicht verändert. Die berechnete Überdeckung entspricht also der bedarfsgesteu-
erten Auswertung des ursprünglichen Programms.
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Für das Testen deklarativer Sprachen haben in letzter Zeit Tools wie Quick-
Check starke Beachtung gefunden, die das Black-Box-Testen durch zufällig ge-
nerierte Eingaben unterstützen. Varianten von QuickCheck wie LazySmallCheck
versuchen, diesen Ansatz dadurch zu verbessern, dass gültige Testeingaben aus
der zu testenden Eigenschaft abgeleitet werden und nicht mehr durch maßge-
schneiderte Generatoren erzeugt werden müssen. Diese Ansätze zum Black-Box-
Testen wurden empirisch mit dem Glass-Box-Testtool CyCoTest verglichen, das
automatisch Testfälle erzeugt, die die Überdeckung des Kontroll- und/oder Da-
tenflusses der zu testenden Module sicherstellen. Als Grundlage fÃĳr den empiri-
schen Vergleich wurden 10 Beispielanwendungen betrachtet, unter denen sowohl
Basisdatenstrukturen wie AVL-Baum und Heap als auch klassische Algorith-
men wie Strassen, Dijkstra und Kruskal sowie praktische Anwendungen wie die
Berechnung des günstigsten Bahntickets sind. Als Ergebnis zeigt sich, dass Cy-
CoTest knapp gefolgt von QuickCheck die meisten Fehler aufspüren kann, wobei
QuickCheck hierzu deutlich weniger Zeit benötigt.
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Abstract. The validation of data flow results safely separates complex
program analyses from the use of their results. This is useful in mobile
code scenarios where a code consumer with limited computational capa-
bilities wishes to enforce that the code exhibits properties described by
the analysis results in order to check security policies or to safely apply
optimisations to the program.
Any valid data flow solution has to solve the system of data flow equa-
tions which describes the data flow problem for the given program. The
check that a given solution solves the system of data flow equations is
more efficient than the original analysis because it requires a single pass
over the equation system only. Essentially, the validation phase does not
have to recompute the fix-point computations of the iterative data flow
algorithm because a fix-point is given by the transmitted result.
This general principle can be applied to the validation of interprocedural
summary functions which yields a validation strategy for interprocedural
analysis results. An important requirement is that the consumer can com-
pare summary functions with each other. We present a function model
which provides a checkable order relation on summary functions as well
as all other operations needed during the validation process. The model
is based on expressions which establish the connection to the inducing
data flow problem in a generic way.
The additional integration of function variables into the summary func-
tion model allows for the representation and late integration of analysis
results from unavailable program parts. This gives rise to an incremental
validation scenario, where the code consumer can subsequently validate
analysis results of several software modules.

Validation, Data Flow Analysis, Interprocedural Analysis, Mobile Code

1 Problem Statement

According to the general validation principle, a given solution is valid with re-
spect to a data flow problem if it solves the corresponding system of inequalities.
A set of summary functions, invocation contexts and intermediate solutions make
? taiko@upb.de, Fax: 0049 5251 60 6697
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up an interprocedural solution. They can be validated by checking a more com-
plex system of inequalities which specifies the interprocedural data flow problem.
The application of the validation principle in the interprocedural scenario is dis-
cussed in depth in [Klo08].

The validation pass over the system of inequalities requires a data structure
for summary functions which supports the following operations:

Function Application because the application of a summary function yields
the intermediate results in the second phase of the analysis that computes
data flow values.

Function Composition because function composition acts as the transfer func-
tion in the summary function computation phase.

Function Meet because it defines the semantics of join points.
Function Comparison to decide whether the inequalities that make up the

equation system hold.

The original paper [Klo08] presents a model for summary functions that sup-
ports all of these operations efficiently. This contribution extends the definition
of the summary function model by function variables and normalisation rules
but postpones a thorough formal treatment of the new features which is about
to appear in the subsequent publications.

2 Summary Function Model

A summary function ψnm maps the program state of point n to the state of point
m and comprises the effects of all executions paths between these two points.
Our summary function model comprises several modelling ideas:

1. The program state is decomposed into an environment - i.e. a mapping from
an arbitrary set of data flow variables to data flow values. Dependencies
between different pieces of the program state can be captured more precisely
in such a fine-grained model.

2. The representation of a summary function consists of data flow expressions
which reduce the summary function computation to operations supplied by
the inducing data flow problem. The inducing data flow problem is defined
by instruction-level transfer functions and a value lattice only. Thus, the
summary function model “lifts” the definition of an intraprocedural analysis
to an interprocedural analysis in a generic way.

3. The summary function model supplies a simple comparison criterion. The
existence of an efficient comparison operation is vital for the validation pro-
cess.

4. We define a set of normalisation rules which reduce a data flow expression
to a canonical form. The reduction process corresponds to a partial evalu-
ation of the expressions and it is essential to keep the size of the function
representation under control.
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5. Finally, the use of function variables in data flow expressions can model the
potential effects of unavailable parts of the program. The function variables
can either be substituted by summary functions as soon as the corresponding
code becomes available or their effects can be safely approximated at any
point in time. This additional degree of freedom supports an incremental
validation scenario where the validator subsequently validates and integrates
analysis results for classes which are loaded at different points in time.

The presentation of the summary function model is structured as follows.
Firstly, we define the summary function model formally. Secondly, we briefly
describe how the summary function model supports the required function oper-
ation like function meet, function composition, and function comparison. Subse-
quently, we consider several normalisation rules, that partially evaluate the data
flow expressions and which lead to a compact normal form.

2.1 Model Definition

We start with a definition of the program state in terms of an environment which
maps a set of arbitrary data flow variables to data flow values.

Definition 1 (Program State). Let V ar = {x, y, z, . . .} denote an arbitrary
set of data flow variables and let L be the lattice of data flow values of an in-
ducing analysis. Then we model the program state at a program point m by an
environment envm, i.e. a mapping from data flow variables to data flow values:

envm = 〈x→ xm, y → ym, z → zm . . .〉
Thus, the variable x refers to some data flow fact “x”, while xm denotes the

value of the data flow fact x at program point m.
Our central modelling idea is to define the semantics of a summary function

ψmn with respect to a single data flow fact x by the following equation

xm = fxnm(envn) with fxmn(envn) = exnm

The function fx maps the program state at point n to the value of x at point
m denoted by xm. We call function fxmn evaluation function of x because the
evaluation of the expression exmn yields the result of the function. The data flow
expression exmn is the defining expression of fxmn.

It is important to observe that an evaluation function takes the whole en-
vironment as parameter but evaluates to a single data flow flow value for x. A
summary function which manipulates the whole environment consists of a tuple
of evaluation functions - one for each data flow fact. Evaluation functions and
their defining data flow expressions are superscribed with the name of the data
flow fact they evaluate to. Thus,

Definition 2 (Summary Function). The summary function ψmn which maps
the program state envm at program point m to the program state envn at point
n is defined by

ψmn = 〈fxmn, fymn, fzmn, . . .〉 = 〈exmn, eymn, ezmn, . . .〉
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Figure 1 shows an example for the structure of the summary function and
the environment in a small program where the program states consists of three
local variables only.
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Fig. 1. Environments and the Summary Function Model

For the sake of simplicity, we abbreviate the environment envm = 〈x →
xm, y → ym, . . .〉 by (xm, ym, . . .) and we notate function definitions which take
the environment as parameter similarly to function definitions in a programming
language, thus ψmn(env) = ψmn(x, y, . . .).

Many of the traditional analysis choose an direct correspondence between the
variables of the program and the data flow variables to model the program state.
However, data flow variables in the set V ar can also refer to different program
entities like available expressions, global fields etc.

The definition of data flow expressions, which define the evaluation functions
completes the summary function model.

Definition 3. Data Flow Expression A data flow expression e has the form

e ::= c | x | e1uLe2 | ti(e1, . . . , ei) | si(e1, . . . , e|V ar|)

where c is a data flow value of the inducing lattice, x ∈ V ar is a data flow
variable, ti ∈ ET is an elementary transfer function of the inducing data flow
problem, and si ∈ FctV ar is a free function variable.

This definition assumes that the inducing data flow problem is a meet-
problem so that the safe approximation of two element is given by the greatest
lower bound operator uL. Join-problems are treated similarly.

The different kinds of data flow expressions deal with several aspects of the
data flow problem in question:

Constant Expressions (c) do not depend on the input environment. They
model the generation of data flow facts.
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Data Flow Variables (x) refer to specific elements of the input environment.
They can express value assignments etc. and act as insertion points during
function application and function composition (see Section 2.2.

Safe Approximation Expressions (uL) model the safe approximation of two
data flow facts. This is vital do reduce the function meet to the meet-operator
of the inducing lattice.

Elementary Transfer Functions (ti) model more complex dependencies be-
tween data flow facts. They are required to increase the expressiveness of
the model to data flow analyses like linear constant propagation. We will
not discuss this part of the summary function model further in this contri-
bution.

Function Variable Expressions (si) act as insertion point for summary func-
tions that model the effects of code which becomes available later.

After the formal introduction of the summary function model, we continue
with the definition of the operations on summary functions, before we briefly
consider the reduction of data flow expressions to a compact canonical form.

2.2 Function Operations

The definition of the required function operations is straight-forward and can be
summarized as follows:

Function Application → evaluation of expressions with variables substituted
by parameter values

Function Composition → substitution of variables with subexpressions
Function Meet → meet of expressions
Function Comparison → comparison of subexpressions

Function Application and Composition Variable expressions give rise to the def-
inition of function application and composition because they describe how a
single piece of the output state - namely x - depends on the input state. The
evaluation function fxmn(x, y, z, . . .) = exmn can contain references to input state
like x, y, or z. A concrete input state envm = (xm, ym, zm) yields the value of x
at program point n by substitution of variables in exmn with the values in envm
, thus

∀v ∈ V ar, fxmn(x, y, z, . . .) = exmn : xn = fxmn(xm, ym, zm, . . .) =def e
x
mn|[v/vm]

Similarly, function composition reduces to substitution of variables, too. Con-
sider the subsequent function application of f11′ and f22′ in Figure 2. The
evaluation function fx11′ defines the state x1′ = fx11′(x1) in terms of x1 while
fx22′(x2) = ex22′ defines the state x2′ in terms of x2. Furthermore, the states x1′

and x2 are equal, so that x2 = x1′ = fx11′(x1) = ex11′ . Consequently, the defining
expression ex11′ can substitute x2 in ex22′ . This yields a defining expression ex12′

which describes the dependency of x2′ to the input state x1. Thus,
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fxlm(x) = exlm , fxmn(x) = exmn :
fxln = fxmn ◦ fxlm =def f

x
mn(e

x
lm) = exmn|[x/ex

lm
] = exln

Essentially, the substitution removes the intermediate state at the point be-
tween the two functions. The identity expression at point 3 effectively propagates
the defining expressions from point 1. Constant expressions stop the propagation
because they do not contain variables that can be substituted. However, they
generate a new data flow information by a constant expression.

Function Meet and the Order Relation of Functions The flow of control merges
at join points in the program. After the join point only those data flow facts
remain valid which are valid on all paths immediately before the join point.
This is captured by the safe approximation operator uL of the inducing data
flow lattice. The meet of summary functions reduces to the meet of expressions.
Consider the situation in the example program in Figure 2 where two summary
functions map the input state x to the two points x2′ and x3′ immediately
before the join point denoted by x4. The meet of these two functions maps the
input state directly to the state at the join point. This state is defined by the
conservative approximation of the predecessor states x4 = x2′ uL x3′ which in
turn are defined by the expressions in fx12′ and fx33′ respectively. Thus, the meet
of these expressions captures the semantics of the join point and defines the
function meet:

fx14 = fx12′ uψ fx33′ =def e
x
12′ uE ex33′ = 5uL ⊥

171



The definition of a meet operation always gives rise to the definition of an
order relation because x u y = y ⇔ x w y. Accordingly, the meet of data flow
expressions leads to a simple criteria to decide the order relation of expressions.

Theorem 1 (Order Relation on Expressions). An expression e1 safely ap-
proximates an expression e2 if it contains strictly more subexpressions than e2.
Two expressions are equal if they contain exactly the same subexpressions.

Functions are in order relation if their defining expressions are in order rela-
tion.

3 Normalisation Rules

The simple definition of the meet of expression compares two expressions purely
syntactically. As a consequence, semantically equivalent expressions like 4 uL 3
and ⊥ are not considered to be equal. The meet of these expressions yields

(4 uL 3)uE ⊥= 4 uL 3uL ⊥

Thus, the result expressions tend to be larger than necessary. However, it is
possible to define simplifications - e.g. folding of constant expressions - which
lead to a much more compact representation.

An expression in normal form consists of the conservative approximation
expression of a single constant value, data flow variables, and function appli-
cation expressions where each function occurs only once and whose parameter
expressions are also in normal form.

The following reduction rules lead to this normal form:

Constant Folding (CF)

c1 uL c2 CF−→ c3 with c3 = c1 uL c2

The constant folding reduction replaces constant terms by their lower bound
and it ensures that a single constant will remain on the outermost level of the
nesting structure of each expression.

Duplicate Variable Removal (VAR)

x uL x V AR−→ x

The VAR-reduction reduces the occurrences of a single variable to a single
representative. It is justified by the fact that the conservative approximation
operator uL is reflexive.

172



Bottom Shortcut (BSC)

e uL ⊥ BSC−→ ⊥
The BSC-reduction exploits the special status of the least element ⊥ in the
inducing lattice. This element represents the loss of all information. No matter
to which concrete lattice element the expression e evaluates, the final result of the
conservative approximation with ⊥ will always yield ⊥. Therefore, the original
compound expression can be represented much more efficiently by ⊥ which is
known to be the result of any possible evaluation.

The fine-grained representation is vital for the effectiveness of the BSC-
reduction because it is much more likely that data flow information is lost for a
single variable than for the whole program state.

Push Out Upper Bound (POUB)

If [t(p)]|[xi:=>,si(e)=>]ucold = cnew < cold then t(p)ucold POUB−→ t(p)ucnew
The intuition of the POUB-reduction can be summarised as follows: even

though we do not know the precise semantics of elementary transfer functions,
we can still determine an upper bound for the expression t(p). The reason is that
the substitution of all variable occurrences in the parameter expression p leads
to an upper bound for this expression and the result of the function application
to such an upper bound leads is an upper bound of the function due to the
monotony of t.

The POUB-reduction does not loose any precision, even though the constant
term may be replaced by a weaker one. The POUB-reduction determines the
best possible result for the evaluation of t. Thus, the final result can only be
weaker than the new value of the constant term.

It’s main purpose of the rule is to enable additional BSC-reductions. For
example, consider an elementary transfer function which maps the most pes-
simistic element ⊥ to itself - which is quite often the case. Furthermore, assume
that the substitution of all variables in the parameter expressions leads to the
most pessimistic element. Then,

t(e|[xi:=>,si(e)=>]) = t(⊥) u c POUB−→ t(⊥) u ⊥
BSC−→ ⊥

Distributivity (DSTR)

ti(p1) uL ti(p2)
DSTR−→ ti(p1 uL p2)

si(p1) uL si(p2)
DSTR−→ si(p1 uL p2)

The distributivity rule ensures that each normal form has a single appli-
cation of a specific function on each level of the nested expression structure.
Furthermore, it enables additional normalisations of the combined parameter
expressions.
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Discussion The final comparison criterion for data flow expressions is similar
to the criterion stated at the end of Section 2: A data flow expression e1 is
weaker than an expression e2 if its normal form contains strictly more subex-
pressions than the normal form of e2. The most pessimistic expression ⊥ plays
a special role because it represents the expression which consists of all potential
subexpression.

The normalisation rules lead to a normal form which is unique. Furthermore,
the order relation of expressions directly leads to the definition of an appropriate
order relation on summary functions. The reason is that weaker expressions can
only evaluate to weaker results which is the vital property of the definition of
weaker summary functions. Due to space limitations we omit the proofs in this
contribution.

One of the most important properties of the normalisation rules is, that they
restrict the “width” of a data flow expressions, because each variable, elemen-
tary transfer function and function variable can occur only once on each level.
Furthermore, the BSC-reduction reduces the size of expressions significantly,
whenever the analysis in question yields safe lower bound. Examples include
constant propagation which often compute that a value cannot be constant and
type inference analysis for statically typed languages which can use the declared
type as a safe lower bound.

However, the “depth” of the expressions is not limited yet, because func-
tion expression can contain arbitrary expressions as parameter expressions. This
problem can solved in two different ways. Firstly, we can limit the maximum
nesting depth of an expression. This approach is somehow related to the call-
string approach, when it is restricted to call strings of a fixed length 1. This
restriction also limits the number of methods on the call stack which are consid-
ered for the summary function computation. The second way to deal with the
nesting depth is to take specific properties of the inducing data flow analysis
into account. The termination of the inducing analysis is usually guaranteed by
the fact that the data flow lattice is finite or that at least the elementary trans-
fer function yield a fix-point after a finite number of steps. As a consequence,
the interprocedural analysis can also be restricted to a finite number of nested
function applications because a further nesting cannot contribute to the final
result anymore. The difference is that the second approach drops dependencies
to further calls which maintains the precision of the result while the first ap-
proach safely approximates dependencies to further calls which results in a loss
of precision. However, the second approach requires problem specific knowledge
while the first one can be applied to any analysis.

4 Missing Parts of the Program

The integration of function variables into the expression model enables the de-
ferred integration of missing summary functions. A function variable can be
1 This is the usual strategy to guarantee the termination of the call-string approach

for arbitrary analyses
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substituted as soon as the corresponding summary function becomes available.
This way it is possible to ship analysis results, which constitute a partial solution
of the analysis problem . At the same time, the substitution of summary func-
tions maintains the precision of the result. In contrast, most analysis which have
to deal with unknown program parts safely approximate the potential effects
and accept the loss of precision.

Interestingly, the corresponding result of such overly conservative analysis
can be derived from the expression representation at any point in time: the
validator just have to substitute the remaining function variables by the most
pessimistic element of the inducing lattice and evaluate the result expression.

Even more importantly, function variable expressions are already subject to
the normalisation process because they are first class elements of the expres-
sion model. As a consequence, the normalisation process has the potential to
remove dependencies to unavailable parts of the program ahead of time. The
most prominent situation occurs at join points. Assume that the analysis infers
that a variable x does not contain a constant value on one path and that the
value of the variable depends on the result of an unknown method call on the
other path, then

ex = ⊥ u smethodi
(. . .) BSC−→ ⊥

This directly captures the intuition, that the unavailable method i cannot
change the result for x anymore, because the analysis has lost all precision on a
known path already.

The integration of function variables as first class values in the summary
function model separates our approach from existing approaches to incomplete
program analysis. Rountev [RSX08] recently proposed a extension of the graph-
based interprocedural analysis model of Reps, Sagiv and Horwitz [RHS95], [SRH96].
This extension combines the graph-representation of summary functions with the
stepwise construction of summary functions developed for component-level anal-
ysis [RMR03]. However, this approach cannot drop dependencies to unavailable
calls ahead of time. Furthermore, the integration of function variables into the
expression model preserves of the validation principle which is a problem that
has not been considered by any other approach we are aware of.
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Abstract. Error raising, propagation, and handling in the functional
programming language Haskell can be imprecise in the sense that a lan-
guage implementation’s choice of local evaluation order, and optimising
transformations to apply, may influence which of a number of poten-
tial failure events hidden somewhere in a program is actually triggered.
While this has pragmatic advantages from an implementation point of
view, it also complicates the meaning of programs and thus requires
extra care when reasoning about them. The proper semantic setup is
one in which every erroneous value represents a whole set of potential
(but not arbitrary) failure causes [PRH+99]. The associated propaga-
tion rules are somewhat askew to standard notions of program flow and
value dependence. As a consequence, standard reasoning techniques are
cast into doubt, and rightly so. We study this issue for one such rea-
soning technique, namely the derivation of (equational and inequational)
free theorems from polymorphic types [Rey83,Wad89]. Continuing earlier
work [JV04], we revise and extend the foundational notion of relational
parametricity, as well as further material required to make it applicable.
More generally, we believe that our new development and proofs help di-
rect the way for incorporating further and other extensions and semantic
features that deviate from the “naive” setting in which reasoning about
Haskell programs often takes place.

1 Introduction

Functional languages come with a rich set of conceptual tools for reasoning about
programs. For example, structural induction and equational reasoning tell us

⋆ This author was supported by the DFG under grant VO 1512/1-1.
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that the standard Haskell functions

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [ ] = [ ]
takeWhile p (x : y) | p x = x : takeWhile p y

| otherwise = [ ]

map :: (α→ β)→ [α]→ [β]
map h [ ] = [ ]
map h (x : y) = h x : map h y

satisfy the following law for appropriately typed p, h, and l:

takeWhile p (map h l) = map h (takeWhile (p ◦h) l) . (1)

But programming language reality can be a tough game, leading to unex-
pected failures of such near-obvious laws. For example, [PRH+99] proposes a
design for error handling based on a certain degree of impreciseness. The major
implementations GHC and Hugs (as well as one distribution of the language
Clean) have integrated this design years ago. However, the attendant semantics
betrays law (1) to be wrong. An instantiation showing this is p = null , h = tail ,
and l = [[i] | i ← [1..(div 1 0)]] (or any other immediately failing expression of
type list-of-lists), where

null :: [α]→ Bool
null [ ] = True
null (x : y) = False

tail :: [α]→ [α]
tail [ ] = error “Prelude.tail: empty list”
tail (x : y) = y

are standard Haskell functions as well. The problem with (1) now is that its
left-hand side yields exactly the “divide by zero”-error coming from l, whereas
its right-hand side may also yield the “Prelude.tail: empty list”-error. This is so
due to the semantics of pattern-matching in the design of [PRH+99] (and also
[MLP99]). In short, it prescribes that when pattern-matching on an erroneous
value as scrutinee, not only are any errors associated with it propagated, but
also are the branches of the pattern-match investigated in “error-finding mode”
to detect any errors that may arise there independently of the scrutinee. This is
done in order to give the language implementation more freedom in arranging
computations, thus allowing more transformations on the code prior to execu-
tion. But here it means that when takeWhile (null ◦ tail) encounters an erroneous
value, also (null ◦ tail) x is evaluated, with x bound to a special value Bad ∅
that exists only to trigger the error-finding mode. And indeed, the application
of tail on that x raises the “Prelude.tail: empty list”-error, which is propagated
by null and then unioned with the “divide by zero”-error from l. In contrast,
takeWhile null on an erroneous value does not add any further errors, because
the definition of null raises none. And, on both sides of (1), map h only ever
propagates, but never introduces errors.

Thus, if we do not want to take the risk of introducing previously nonexistent
errors, we cannot use (1) as a transformation from left to right, even though this
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might have been beneficial (by bringing p and h together for further analysis or
for subsequent transformations potentially improving efficiency). The supposed
semantic equivalence simply does not hold. Note that this does not necessarily
mean that for a given language implementation we will always, or ever, see
different errors on the left- and right-hand sides of (1). After all, for the example
instantiation above the semantics prescribes that the right-hand side may yield
either of the two errors in question, so for a given interpreter or compiler it might
very well happen that always the same as on the left-hand side appears. But that
would be pure coincidence on which we cannot rely. If all the guarantee we have
is that the language implementation builds on the semantics of [PRH+99], then
we have to accept that the arbitration between the two potential errors may
in principle vary with set of flags, time of day, phase of the moon, and so on.
Impreciseness in the semantics has its price, and if we are not ready to abandon
the overall design (which would be tantamount to taking away considerable
freedom from language implementors), then we better learn how to cope with it
when reasoning about programs.

The above discussion regarding a concrete instantiation of p, h, and l gives
negative information only, namely that (1) may break down in some cases. It
does not provide any positive information about conditions on p, h, and l under
which (1) actually is a semantic equivalence. Moreover, it is relative to the
particular definition of takeWhile given at the very beginning, whereas laws
like (1) are often derived more generally as free theorems [Rey83,Wad89] from
types alone, without considering concrete definitions. In the study reported here
we undertake to develop the theory of free theorems for Haskell with imprecise
error semantics. This continues earlier work [JV04] for Haskell with all potential
error causes (including nontermination) conflated into a single erroneous value⊥.
That earlier work gives that in this setting (1) is a semantic equivalence provided
p 6= ⊥ and h is strict and total in the sense that h ⊥ = ⊥ and for every x 6= ⊥,
h x 6= ⊥. The task set ourselves involves finding the right generalisations of
such conditions for a setting in which not all errors are equal. Questions like the
following ones arise:

– From which erroneous values should p be different?
– For strictness, is it enough that h preserves the least element ⊥, which in

the design of [PRH+99] denotes the union of all error causes, including non-
termination?

– Or do we need that also every other erroneous value (denoting a collection
of only some potential error causes, maybe just a singleton set) is mapped
to an erroneous one? To the same one? Or to ⊥?

– For totality, is it enough that “non-⊥ goes to non-⊥”?
– Does this allow “non-⊥ goes to non-⊥ but erroneous”?
– Or do we need “nonerroneous goes to nonerroneous”?

Fortunately, we are not left groping in the dark. Our investigation can be very
much goal-directed by studying proof cases of the (relational) parametricity the-
orem, which is the foundation for all free theorems, and trying to adapt the
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proof to the imprecise error setting. This leads us to discover, among other for-
mal details and ingredients, the appropriate generalised conditions sought above
(first as restrictions on relations, then specialised to the function level). In fact,
we think that beside the results we provide for the imprecise error setting, our
study can also serve as a guide on how to go about extending relational para-
metricity to new language features and semantic designs in general. We have
established both equational and inequational parametricity theorems, including
one for the refinement order of [MLP99]. And while we do not deal with error
recovery through exception handling in the IO monad, we have made some initial
steps into the realm of exceptions as first class citizens by integrating a prim-
itive (Haskell’s mapException) that allows manipulating already raised errors
(respectively, their descriptive arguments) from inside the language.

2 Standard Parametricity

We start out from a standard denotational semantics for a polymorphic lambda-
calculus that corresponds to Haskell without distinguishing error causes, i.e.,
with only one erroneous value ⊥.

The syntax of types and terms is given as follows:

τ ::= α | Int | [τ ] | τ → τ | ∀α.τ

t ::= x | n | t + t | [ ]τ | t : t | case t of {[ ]→ t ; x : x→ t} |
λx : τ.t | t t | Λα.t | t τ | fix | let! x = t in t ,

where α ranges over type variables, x over term variables, and n over the integers.
We include integers and lists as representatives for numeric types and algebraic
datatypes, and addition as an exemplary numeric operation. Note that the cal-
culus is explicitly typed and that type abstraction and application are explicit
in the syntax as well. General recursion is captured via a fixpoint combinator,
while selective strictness (à la seq) is provided via a strict-let construct.

Fig. 1 gives the typing rules for our calculus. Standard conventions apply here.
In particular, typing environments Γ take the form α1, . . . , αk, x1 : τ1, . . . , xl : τl

with distinct αi and xj , where all free variables occurring in a τj have to be
among the listed type variables.

For example, the function map can be defined as the following term and then
satisfies ⊢ map : τ , where τ = ∀α.∀β.(α→ β)→ [α]→ [β]:

fix τ (λm : τ.Λα.Λβ.λh : α→ β.λl : [α].
case l of {[ ]→ [ ] ; x : y → (h x) : (m α β h y)}) .

The denotational semantics interprets types as pointed complete partial or-
ders (for short, pcpos ; least element always denoted ⊥). The definition in Fig. 2,
assuming θ to be a mapping from type variables to pcpos, is pretty standard.
The operation lift⊥ takes a complete partial order, adds a new element ⊥ to
the carrier set, defines this new ⊥ to be below every other element, and leaves
the ordering otherwise unchanged. To avoid confusion, the original elements are
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Γ, x : τ ⊢ x : τ Γ ⊢ n : Int Γ ⊢ [ ]τ : [τ ] Γ ⊢ fix : ∀α.(α → α) → α

Γ ⊢ t1 : Int Γ ⊢ t2 : Int

Γ ⊢ (t1 + t2) : Int

Γ ⊢ t1 : τ Γ ⊢ t2 : [τ ]

Γ ⊢ (t1 : t2) : [τ ]

α, Γ ⊢ t : τ

Γ ⊢ (Λα.t) : ∀α.τ

Γ ⊢ t : [τ1] Γ ⊢ t1 : τ2 Γ, x1 : τ1, x2 : [τ1] ⊢ t2 : τ2

Γ ⊢ (case t of {[ ] → t1 ; x1 : x2 → t2}) : τ2

Γ, x : τ1 ⊢ t : τ2

Γ ⊢ (λx : τ1.t) : τ1 → τ2

Γ ⊢ t1 : τ1 → τ2 Γ ⊢ t2 : τ1

Γ ⊢ (t1 t2) : τ2

Γ ⊢ t : ∀α.τ1

Γ ⊢ (t τ2) : τ1[τ2/α]

Γ ⊢ t1 : τ1 Γ, x : τ1 ⊢ t2 : τ2

Γ ⊢ (let! x = t1 in t2) : τ2

Fig. 1. Typing Rules.

tagged, i.e., lift⊥ S = {⊥} ∪ {⌊s⌋ | s ∈ S}. The complete partial order lifted
in the definition of [[Int]]θ is the flat one without ordering between integers. For
list types, prior to lifting, [ ] is only related to itself, while the ordering between
“− : −”-values is component-wise. The recursive occurrence of [[[τ ]]]θ is resolved
by taking the greatest fixpoint, thus providing for infinite lists. The function
space lifted in the definition of [[τ1 → τ2]]θ is the one of monotonic and con-
tinuous maps between [[τ1]]θ and [[τ2]]θ, ordered point-wise. Finally, polymorphic
types are interpreted as appropriately lifted sets of functions from pcpos to val-
ues restricted as in the last line of Fig. 2, and again ordered point-wise (i.e.,
g1 ⊑ g2 iff for every pcpo D, g1 D ⊑ g2 D).

[[α]]θ = θ(α)

[[Int]]θ = lift⊥ {. . . , −2, −1, 0, 1, 2, . . .}
[[[τ ]]]θ = lift⊥ ({[ ]} ∪ {a : b | a ∈ [[τ ]]θ , b ∈ [[[τ ]]]θ})
[[τ1 → τ2]]θ = lift⊥ {f : [[τ1]]θ → [[τ2]]θ}
[[∀α.τ ]]θ = lift⊥ {g | ∀D pcpo. (g D) ∈ [[τ ]]θ[α7→D] \ {⊥}}

Fig. 2. Standard Semantics of Types.

The semantics of terms in Fig. 3 is now also standard. It uses λ for denoting
anonymous functions, and the following two operators:

h $ a =

{
f a if h = ⌊f⌋
⊥ if h = ⊥ h $$ D =

{
g D if h = ⌊g⌋
⊥ if h = ⊥ .

The expression
⊔

((h $)i ⊥) in the definition for fix means the supremum of the
chain ⊥ ⊑ h $ ⊥ ⊑ h $ (h $ ⊥) · · · . Altogether, we have that if Γ ⊢ t : τ and
σ(x) ∈ [[τ ′]]θ for every x : τ ′ occurring in Γ , then [[t]]θ,σ ∈ [[τ ]]θ .

The key to parametricity results is the definition of a family of relations by
induction on a calculus’ type structure. The appropriate such logical relation for
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[[x]]θ,σ = σ(x)

[[n]]θ,σ = ⌊n⌋

[[t1 + t2]]θ,σ =

(
⌊n1 + n2⌋ if [[t1]]θ,σ = ⌊n1⌋, [[t2]]θ,σ = ⌊n2⌋
⊥ otherwise

[[[ ]τ ]]θ,σ = ⌊[ ]⌋
[[t1 : t2]]θ,σ = ⌊[[t1]]θ,σ : [[t2]]θ,σ⌋

[[case t of {[ ] → t1 ; x1 : x2 → t2}]]θ,σ =

8><>:
[[t1]]θ,σ if [[t]]θ,σ = ⌊[ ]⌋
[[t2]]θ,σ[x1 7→a, x2 7→b] if [[t]]θ,σ = ⌊a : b⌋
⊥ if [[t]]θ,σ = ⊥

[[λx : τ.t]]θ,σ = ⌊λa.[[t]]θ,σ[x 7→a]⌋
[[t1 t2]]θ,σ = [[t1]]θ,σ $ [[t2]]θ,σ

[[Λα.t]]θ,σ =

(
⌊λD.[[t]]θ[α7→D],σ⌋ if [[t]]θ[α7→{⊥}],σ 6= ⊥
⊥ if [[t]]θ[α7→{⊥}],σ = ⊥

[[t τ ]]θ,σ = [[t]]θ,σ $$ [[τ ]]θ

[[fix]]θ,σ = ⌊λD.⌊λh.
F

((h $)i ⊥)⌋⌋

[[let! x = t1 in t2]]θ,σ =

(
[[t2]]θ,σ[x 7→a] if [[t1]]θ,σ = a 6= ⊥
⊥ if [[t1]]θ,σ = ⊥

Fig. 3. Standard Semantics of Terms.

our current setting is defined in Fig. 4, assuming ρ to be a mapping from type
variables to binary relations between pcpos. We use idD to denote the identity
relation on the pcpo D. The operation list takes a relation R and maps it to

list R = {(⊥,⊥), (⌊[ ]⌋, ⌊[ ]⌋)} ∪ {(⌊a : b⌋, ⌊c : d⌋) | (a, c) ∈ R, (b, d) ∈ list R} ,

where again the greatest fixpoint is taken. For two pcpos D1 and D2, Rel(D1, D2)
collects all relations between them that are strict, continuous, and bottom-reflect-
ing. Strictness and continuity are just the standard notions, i.e., membership of
the pair (⊥,⊥) and closure under suprema. A relation R is bottom-reflecting if
(a, b) ∈ R implies that a = ⊥ iff b = ⊥. The corresponding explicit condition on f
and g in the definition of ∆τ1→τ2,ρ serves the purpose of ensuring that bottom-
reflectingness is preserved throughout the logical relation. Overall, reasoning
like [JV04] then gives the following parametricity theorem.

Theorem 1 If Γ ⊢ t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

– for every α occurring in Γ , ρ(α) ∈ Rel(θ1(α), θ2(α)), and
– for every x : τ ′ occurring in Γ , (σ1(x), σ2(x)) ∈ ∆τ ′,ρ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ.
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∆α,ρ = ρ(α)

∆Int,ρ = id lift⊥{...,−2,−1, 0, 1, 2, ...}
∆[τ ],ρ = list ∆τ,ρ

∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel(D1, D2).

(u $$ D1, v $$ D2) ∈ ∆τ,ρ[α7→R]}

Fig. 4. Standard Logical Relation.

3 Imprecise Error Semantics

We want to treat different failure causes as semantically different, rather than
conflating them into a single erroneous value ⊥. To this end, we add a new
term-former error with typing rule Γ ⊢ error : ∀α.Int→ α.

Our treatment of errors shall be that of [PRH+99] and [MLP99]. Their main
innovation, and the reason for calling the semantics “imprecise”, is the use of
sets of possible failure causes. Formally, let

E = {ErrorCall n | n ∈ {. . . , −2, −1, 0, 1, 2, . . .}} (2)

and Ent = {NonTermination} ∪ E , where NonTermination and ErrorCall are (for
now) only descriptive tags for use in the denotational semantics, but without
direct syntactical counterparts in the underlying calculus. The set of all erroneous
values is then

Verr = {Bad e | e ∈ P(E) ∪ {Ent}}
and its elements are ordered by

Bad e ⊑ Bad e′ iff e ⊇ e′ . (3)

[PRH+99] then replaces the standard operation lift⊥ by

lifterr S = Verr ∪ {Ok s | s ∈ S} .
The approximation order on such error-lifted complete partial orders (hence-
forth, for short, elcpos) is given by (3) on erroneous values, by taking over the
order from S for nonerroneous values, and by mandating that⊥ = Bad Ent is be-
low all, even nonerroneous, values, while otherwise erroneous and nonerroneous
values are pairwise incomparable.

With these definitions in place, Fig. 5 should hold no surprises, as it is in
complete analogy to Fig. 2. Of course, we now assume that θ maps to elcpos
only. Some of the term semantics definitions in Fig. 6 are directly taken over
from Fig. 3, modulo lifting via Ok rather than via ⌊−⌋, and thus need not be
further discussed here. The definitions of [[t1 t2]]errθ,σ and [[fix]]errθ,σ are as in Fig. 3,
but use the following variant of the operator $:

h $ a =

{
f a if h = Ok f

Bad (e ∪E(a)) if h = Bad e ,
where E(a) =

{
∅ if a = Ok v

e if a = Bad e .
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The crucial point here, taken over from [PRH+99], is that application of an
erroneous function value incurs all potential failures of the argument as well. Also
essentially taken over are the definitions of [[t1 + t2]]errθ,σ and [[case t of {[ ] →
t1 ; x1 : x2 → t2}]]errθ,σ , except that we do not check for overflow in the case
of addition. To bring about erroneous values other than ⊥ in the first place,
we have the obvious definition of [[error]]errθ,σ . The definitions of [[Λα.t]]errθ,σ and
[[t τ ]]errθ,σ follow the corresponding ones in Fig. 3, but with the following variant
of the operator $$:

h $$ D =

{
g D if h = Ok g

Bad e if h = Bad e .

Finally, the definition of [[let! x = t1 in t2]]errθ,σ follows the one in Fig. 3, but
similarly to the definition of [[case t of {[ ] → t1 ; x1 : x2 → t2}]]errθ,σ , and
in line with the operational semantics of [MLP99], t2 is evaluated in “error-
finding mode” to contribute further potential failure causes in case t1 is already
erroneous.

[[α]]errθ = θ(α)

[[Int]]errθ = lifterr {. . . , −2, −1, 0, 1, 2, . . .}
[[[τ ]]]errθ = lifterr ({[ ]} ∪ {a : b | a ∈ [[τ ]]errθ , b ∈ [[[τ ]]]errθ })
[[τ1 → τ2]]

err
θ = lifterr {f : [[τ1]]

err
θ → [[τ2]]

err
θ }

[[∀α.τ ]]errθ = lifterr {g | ∀D elcpo. (g D) ∈ [[τ ]]errθ[α7→D] \ Verr}

Fig. 5. Error Semantics of Types.

4 Parametricity for Imprecise Error Semantics

In this extended abstract, we do not detail the formal development leading to an
analogue of Theorem 1 for the imprecise error semantics. Rather, we just give
the resulting definitions and formal statements here.

Definition 2 A relation R is error-strict if idVerr ⊆ R.

Definition 3 A relation R is error-reflecting if (a, b) ∈ R implies that E(a) =
E(b) and T (a) = T (b), where

T (x) =

{
Ok if x = Ok v

Bad if x = Bad e

For given elcpos D1 and D2, let Relerr (D1, D2) collect all relations between them
that are error-strict, continuous, and error-reflecting.
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[[x]]errθ,σ = σ(x)

[[n]]errθ,σ = Ok n

[[t1 + t2]]
err
θ,σ =

(
Ok (n1 + n2) if [[t1]]

err
θ,σ = Ok n1, [[t2]]

err
θ,σ = Ok n2

Bad (E([[t1]]
err
θ,σ) ∪E([[t2]]

err
θ,σ)) otherwise

[[[ ]τ ]]errθ,σ = Ok [ ]

[[t1 : t2]]
err
θ,σ = Ok ([[t1]]

err
θ,σ : [[t2]]

err
θ,σ)

[[case t of {[ ] → t1 ; x1 : x2 → t2}]]errθ,σ =8><>:
[[t1]]

err
θ,σ if [[t]]errθ,σ = Ok [ ]

[[t2]]
err
θ,σ[x1 7→a, x2 7→b] if [[t]]errθ,σ = Ok (a : b)

Bad (e ∪E([[t1]]
err
θ,σ) ∪E([[t2]]

err
θ,σ[x1 7→Bad ∅, x2 7→Bad ∅])) if [[t]]errθ,σ = Bad e

[[λx : τ.t]]errθ,σ = Ok (λa.[[t]]errθ,σ[x 7→a])

[[t1 t2]]
err
θ,σ = [[t1]]

err
θ,σ $ [[t2]]

err
θ,σ

[[Λα.t]]errθ,σ =

(
Ok (λD.[[t]]errθ[α7→D],σ) if [[t]]errθ[α7→Verr ],σ

= Ok v

Bad e if [[t]]errθ[α7→Verr ],σ
= Bad e

[[t τ ]]errθ,σ = [[t]]errθ,σ $$ [[τ ]]errθ

[[fix]]errθ,σ = Ok (λD.Ok (λh.
F

((h $)i ⊥)))

[[let! x = t1 in t2]]
err
θ,σ =

(
[[t2]]

err
θ,σ[x 7→Ok v] if [[t1]]

err
θ,σ = Ok v

Bad (e ∪ E([[t2]]
err
θ,σ[x 7→Bad ∅])) if [[t1]]

err
θ,σ = Bad e

[[error]]errθ,σ = Ok (λD.Ok (λa.

(
Bad {ErrorCall n} if a = Ok n

Bad e if a = Bad e
))

Fig. 6. Error Semantics of Terms.

The new logical relation is defined in Fig. 7, where the versions of $ and $$
from Section 3 rather than those from Section 2 are used, and where

listerr R = idVerr ∪ {(Ok [ ],Ok [ ])}
∪ {(Ok (a : b),Ok (c : d)) | (a, c) ∈ R, (b, d) ∈ listerr R} .

We have proved the following analogue of Theorem 1.

Theorem 4 If Γ ⊢ t : τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

– for every α occurring in Γ , ρ(α) ∈ Relerr (θ1(α), θ2(α)), and
– for every x : τ ′ occurring in Γ , (σ1(x), σ2(x)) ∈ ∆err

τ ′,ρ,

we have ([[t]]errθ1,σ1
, [[t]]errθ2,σ2

) ∈ ∆err
τ,ρ .

Having established Theorem 4, we can use it to derive free theorems that
hold with respect to the imprecise error semantics. When doing so, we typically
want to specialise relations (arising from the quantification in the definition of
∆err
∀α.τ,ρ) to functions. To this end, the following definition is useful. The notation
∅ is used for empty mappings from type or term variables to elcpos and values,
respectively.
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∆err
α,ρ = ρ(α)

∆err
Int,ρ = id lifterr{...,−2,−1, 0, 1, 2, ...}

∆err
[τ ],ρ = listerr ∆err

τ,ρ

∆err
τ1→τ2,ρ = {(f, g) | T (f) = T (g),

∀(a, b) ∈ ∆err
τ1,ρ. (f $ a, g $ b) ∈ ∆err

τ2,ρ}
∆err
∀α.τ,ρ = {(u, v) | ∀D1, D2 elcpos,R ∈ Rel err (D1, D2).

(u $$ D1, v $$ D2) ∈ ∆err
τ,ρ[α7→R]}

Fig. 7. Logical Relation for Imprecise Error Semantics.

Definition 5 A term h with ⊢ h : τ1 → τ2 and [[h]]err∅,∅ = Ok f is

– error-strict if f a = a for every a ∈ Verr , and
– error-total if T (f a) = Ok for every a ∈ [[τ1]]err∅ \Verr .

An h with T ([[h]]err∅,∅ ) = Bad is neither error-strict nor error-total.

For example, null is error-strict and error-total, while tail is neither of both.
Taking up the introductory example, we can then derive the following free

theorem.

Theorem 6 Let t be a term with ⊢ t : ∀α.(α→ Bool)→ [α]→ [α].1 Let h be a
term with ⊢ h : τ1 → τ2 that is error-strict and error-total. Let p be a term with
⊢ p : τ2 → Bool and T ([[p]]err∅,∅ ) = Ok. Then for every term l with ⊢ l : [τ1],

[[map τ1 τ2 h (t τ1 (λx : τ1.p (h x)) l)]]err∅,∅ = [[t τ2 p (map τ1 τ2 h l)]]err∅,∅ .

The inequational setups and the treatment of mapException , as mentioned in
the introduction, are not elaborated on in this extended abstract.
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– Abstract –?
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Abstract. Algebraic data types and catamorphisms (folds) play a central role
in functional programming as they allow programmers to define recursive data
structures and operations on them uniformly by structural recursion. Likewise,
in object-oriented (OO) programming, recursive hierarchies of object types with
virtual methods play a central role for the same reason. There is a semantical
correspondence between these two situations which we reveal and formalize cat-
egorically. To this end, we assume a coalgebraic model of OO programming with
functional objects. The development may be helpful in deriving refactorings that
turn sufficiently disciplined functional programs into OO programs of a desig-
nated shape and vice versa.
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Abstract. Contrary to common belief, recursive functions can be ap-
plied effectively to cyclic data structures. But this requires a special
calling convention: Cyclic recursion has to be detected by inspecting the
call stack at run-time, searching for nested function incarnations with
identical inputs. The cycle can then be handled by returning immedi-
ately with particular results that depend on the intended semantics, e.g.,
primitive corecursion or least/greatest predicate fixpoint. While the han-
dling phase is easy to implement portably in a low-level programming
language, portable access to arguments of any other than the active call
stack frame is not provided by common programming platforms. This
article presents a clean solution to that problem for C-like implementa-
tion languages, based on a versatile stack management approach called
the “stackless transform”. It also provides an example for effective use of
pointers of up to fifth degree.

1 Cyclic Functional Programming

Cyclic functional programming is the extension of strict purely functional pro-
gramming to cyclic data. That is, the referential transparent and side-effect free
evaluation of functions and predicates on data that can be represented by cells
and pointers forming arbitrary finite graph structures.

Semantically, cyclic functional programming retains the call-by-value evalu-
ation of simple functional languages, but differs from its conventional basis by
introducing alternative means of definition: Functions may not only be defined
by recursion (terminates with acyclic results only), but also by corecursion (may
terminate with a cyclic result). Predicates may have more than one fixpoint
solution, and at least the least and greatest ones are equally qualified as in-
tended meanings. It is the user’s choice to define a function either recursively or
corecursively, and to select the desired fixpoint of a predicate definition.

Operationally, these extensions are implemented by special calling conven-
tions. Cyclic reincarnation of a function or predicate can be detected by in-
specting the call stack at run-time, looking for two nested frames with identical
inputs. When such a pair is found, the cyclic situation can be handled in various
ways: For corecursive functions, the outputs of the outer frame are copied to the
outputs of the inner frame (dubbed the ditto operation). This is a sound thing
to do, since for a pure function identical inputs yield identical outputs, and these
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map(f, l) =
if l = [] then return []
else

h := f(l.head);
t := map(f, l.tail);
return cons(h, t)

Fig. 1. Return-Value Style Code

may be “shared” cyclically. Of course, this policy requires that outputs must be
fixed before a potentially cyclic call is made. For predicates, always returning
true/false for the inner incarnation of a cycle pair yields the least/greatest fix-
point, respectively. Intermediate fixpoints can be realized by varying the cyclic
Boolean output value in certain ways. See [Trancón y Widemann, 2008] for the
details.

For an example of how cyclic functional programming works, consider the
famous map function that applies a given function to all elements of a list. It is
defined in the Haskell Prelude like this:

map f [] = []
map f (x : xs) = f x : map f xs

A simple compiler for a strict functional language (unlike the lazy Haskell) might
translate this definition to procedural code like the fragment depicted in figure 1.

This code uses procedure return values for result data flow. However, code in
“destination passing style” [Larus, 1989] like the fragment depicted in figure 2,
that uses output parameters and assignment instead, has definitive advantages
[Bigot and Debray, 1999]. It can call a non-initializing variant of the list con-
structor before all nested computations, to the effect that

1. in a traditional, cycle-free situation, it can be executed efficiently as a loop,
even though the original functional definition is not tail-recursive – a trick
known as “tail recursion modulo constructor” [Warren, 1980].

2. in a cyclic situation, the aforementioned cycle handling mechanism that uses
the ditto operation can be implemented. This is a correct realization for the

map(in f, l; out r) =
if l = [] then r := []
else

r := new cons;
f(in l.head; out r.head);
map(in f, l.tail; out r.tail)

Fig. 2. Destination-Passing Style Code
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interpretation of the above definition as a primitively corecursive function.1
We might thus extend the definition of map in a cyclic functional program-
ming language by the following equation.

map f cycle = ditto

For the case of the map function, cyclic lists are also handled by lazy eval-
uation in a sufficiently effective way: The consumption of any finite number of
elements from the result of map evaluates only finitely many recursive invoca-
tions, and hence terminates. But the approach of cyclic functional programming
also works for recursive predicates, i.e., search problems on cyclic lists, where lazy
evaluation fails miserably. This way, operations such as any, all and filter can be
generalized easily and effectively to cyclic lists. By combination of corecursive
functions and cyclic predicates, even complex operations such as quicksort can
be extended cleanly to the cyclic case.

Once a cycle has been detected, it is straightforward to handle in virtually
any implementation language by providing the appropriate special return value.
For instance, the ditto operation is implemented in C by the following statement,

*inner->r = *outer->r;

assuming that inner and outer point to two nested stack frames that constitute
begin and end of a cycle, that the invoked function has a single output, and that
the field r of the frame structure points to the destination variable for this
output. This is the case for the map example. A similar statement can be added
for each additional output.

Unfortunately, it is more difficult to get access to the stack frames in question
in the first place. There is no obvious candidate for an implementation language
that is efficiently executable, abstracts from hardware details and yet provides
the necessary access to the call stack.

2 Traditional Stack Inspection

Many “managed” languages that are executed on top of a virtual machine run-
time environment provide a limited form of access to the call stack through
virtual machine primitives and auxiliary libraries. The technique called stack
inspection focuses on security issues. Running code may be granted or denied
the privilege to access certain sensitive resources, based on the trustworthiness
of its source. To this end, sets of permissions are assigned to fragments of code at
load-time, or assumed by trustworthy code at run-time. Security is maintained
by checking active permissions before a resource is accessed.

This mechanism is concerned with relating the level of trust required by a
resource to the level of trust granted to calling code, not with discerning patterns
1 albeit restricted to cyclic lists, whereas the semantic corecursive function is concep-
tually well-defined for truly infinite lists as well
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in the input parameters of nested callers. Hence access to inputs of pending
stack frames is not included in either stack inspection primitives or the stack
information exposed to user-level code. This makes stack inspection services as
they come with off-the-shelf run-time environments unsuitable for the purpose
of cycle detection.

The semantics of security-oriented stack inspection are not robust against
program transformations that alter the structure of the call stack, most no-
tably tail call elimination [Fournet and Gordon, 2003]. For our approach to stack
inspection, we can give simple and effective sufficient conditions for the se-
mantic safety of tail call elimination, even in the presence of cycle detection
[Trancón y Widemann, 2008].

3 Stackless Programming

It has been suggested to move frames from the stack to the heap altogether
[Appel and Shao, 1996], in order to obtain the amount of control over the life
time of frames that is necessary to implement first-class continuations. Since
the heap-allocated frames can be ordinary data structures, this would also solve
the problem of accessing input parameters. But there is a heavy penalty to
this solution: While it is possible in principle to use an intermediate language
such as C as the implementation language, many features of the language (stack-
allocated local variables, procedure calls) and its compiler (separate compilation,
inlining, common subexpression elimination) cannot be used. The effort required
to produce correct, reusable and efficient code is thus increased dramatically.

For both educational and economical reasons, we envisage a translation scheme
for cyclic functional programs that produces code at a level of abstraction similar
to the pseudo-code fragments for the map function given above. Therefore we do
not consider a truly stackless implementation. Instead we focus on a promising
hybrid approach called the stackless transform [PyPy, 2008]. It has the appealing
property that it can be realized in a portable fashion in virtually any language
that supports stack-based control flow and heap-allocated data structures. No
additional primitives or external library code is needed.

The stackless transform produces procedures that may be called in either of
two modes: In direct mode, parameters of a call are supplied by an ordinary
stack frame. Calls to subprocedures are also made in direct mode, allocating
nested stack frames. If all operations (primitive or call) succeed, the procedure
returns successfully, deallocating its stack frame. Otherwise, the stack frame is
unwound by allocating a data structure of appropriate type on the heap and
storing local values (parameters and variables) and a reference to the failed
operation. Then the procedure returns with a failure, causing the unwinding
of enclosing stack frames as well. Once unwound, a frame (now on the heap)
may be resumed by calling the procedure in continuation mode. In this mode,
parameter values are restored from the heap to a newly allocated stack frame,
and execution is resumed after the operation that failed previously (which can, by
induction, be assumed to have been retried successfully in the meantime). The
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deallocation of heap frames is delegated to automatic memory management.
A sequential thread of control is formed by maintaining a virtual stack that
accumulates unwound frames, and running a trampoline loop that iteratively
resumes the innermost frame until the virtual stack is empty. Non-sequential
control flow, such as reusable continuations, coroutines, and multithreading can
be implemented by variation of this pattern.

4 Stackless Stack Inspection

The stackless transform seems like a promising candidate for implementing cycle
detection as portable code. The remainder of this paper describes the pitfalls
that prevent a straightforward adaptation of the scheme, and argues that these
problems can be overcome with moderate effort.

To demonstrate the main problem, let us adopt the syntax and basic seman-
tics of C/C++. Let us assume that parameter values are passed by reference:
If a data type is represented as struct C, then an input parameter of this type
is represented as struct C *, and an output parameter as struct C **. Now
consider the following function definition:

foo x = bar (baz x )

The destination-passing style requires allocating a temporary variable to store
the intermediate value of the expression baz x , as in the following code (stackless
transform not shown):

foo(struct C *x, struct C **r) {
struct D *tmp;
baz(x, &tmp);
bar(tmp, r);

}

Now assume that foo runs in direct mode (so the temporary variable is stack-
allocated), and that the nested call to baz is unwound. After unwinding, the
heap-allocated frame for baz will contain a pointer to the stack, namely to the
temporary variable of the calling frame. Successively unwinding this frame will
destroy the connection and leave a dangling pointer in the output parameter of
the baz frame!

This example demonstrates is a general restriction of reversible stack unwind-
ing mechanisms: they fail (or rather, require special precautions) for pointers be-
tween stack frames. That is not an issue for many popular language paradigms,
most notably simple object-oriented languages, where all references are of first
degree (pointers to the heap). But it is an issue for any language with either
first-class references or parameter passing modes, as in the case for our proposed
translation scheme of cyclic functional programming.

Fortunately, the pointers of higher degree that ensue from the output param-
eter passing mode are of a very regular pattern: They live for a single call, and
the callee has three options:
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1. use the pointer exactly once to store an output value at the target location,
2. pass the pointer unused to a nested callee,
3. transfer the pointer to the heap by unwinding.

In summary, pointers that represent output parameters obey an affine logic:
they may be either consumed or stored at most once, but never duplicated. This
implies that they can be made symmetric by a simple scheme, thus avoiding the
dangling-pointer problem by updating pointers to variables being unwound.

This scheme can be realized concisely by C++ smart pointer classes, a class
var for stack variables and a class ref for stack-allocated references (to either
the stack or the heap). Heap-allocated references may be realized as ordinary
pointers, memory management requirements aside.

template <class T> struct var {
T val, **own;
var();
void unwind(T &);

};

template <class T> struct ref {
T *loc, ***reg;
ref(T *);
ref(var<T> &);
ref(const ref<T> &);
void unwind(T *&);
void set(cons T &);

};

Remember that T is usually instantiated with a pointer of first degree of the
form struct C *. Note the ordinary value and pointer fields (var::val and
ref::loc, respectively), and the auxiliary pointers for maintaining symmetry
(var::own and ref::reg, respectively). The operations are defined by the fol-
lowing protocol (repetition of template <class T> omitted for brevity):

– The auxiliary pointer var::own points to the unique heap reference to this
stack variable, if any. Initially, there is none.

var<T>::var() : own(0) {}

– A reference to a stack variable is created by pointing to both fields simulta-
neously.

ref<T>::ref(var<T> * v) : loc(&v.val), reg(&v.own) {}

– A reference to the heap does not use its auxiliary pointer.

ref<T>::ref(T * l) : loc(l), reg(0) {}

– References may be duplicated by the ordinary copy constructor.
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ref<T>::ref(const ref<T> & r) : loc(r.loc), reg(r.reg) {}

The protocol of output parameter passing ensures that the original is no
longer used.

– When a reference is unwound to the heap, only the principal pointer is stored.
The auxiliary pointer, if nonzero, is used to register the newly created pointer
from the heap to the stack. If the auxiliary pointer is zero, a harmless heap-
to-heap reference has been created.

void ref<T>::unwind(T *& heap) {
*heap = loc;
if (reg) *reg = &heap;

}

– When a variable is unwound to the heap, only the principal pointer is stored.
The auxiliary pointer, if nonzero, is used to update the unique heap reference
to this variable to a heap-to-heap reference.

void var<T>::unwind(T & heap) {
*heap = val;
if (own) *own = &heap;

}

– When a reference is used to pass an output value, the auxiliary pointer is
not touched.

void var<T>::set(const T & val) {
*loc = val;

}

The protocol of output parameter passing ensures that the reference is not
reused.

Note that the the type of ref<struct C *>::reg is struct C ****, a pointer
of fourth degree.

5 Difference Parameter Mode

Reconsider the cons operator from figure 2. Its correct use depends on the im-
plicit knowledge that two fields head and tail are created and left uninitialized.
Suppose we wish to make this information explicit, thereby allowing the abstrac-
tion of cons to an auxiliary procedure. This can be achieved by introducing a
third parameter mode. Parameters of this mode are meta-output; they yield ref-
erences to “holes” in the actual output, that is, references to uninitialized data
fields that must be filled in by the caller before he may use the output data. In
analogy to logic programming, where the technique is well-known as difference
lists, we call these parameters difference parameters. A variant of the map func-
tion that uses an auxiliary list constructor procedure with difference parameters
for both fields is depicted in figure 3.
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map(in f, l; out r) =
if l = [] then r := []
else

var h, t;
cons(out r; diff h, t);
f(in l.head; out h);
map(in f, l.tail; out t)

Fig. 3. Difference-Passing Style Code

It is easy to see that the difference mode relates to the output mode like the
output mode to the input mode. A simple pointer realization for the base type
struct C would hence be struct C ***. The smart pointer equivalent, analo-
gous to the previous section, is var<struct C **> and ref<struct C **>. Note
that the type of ref<struct C **>::reg is the formidable struct C *****, a
pointer of fifth degree.

6 Conclusion

We have presented cyclic functional programming as an implementation tech-
nique for functional programs that makes use of cycle detection and handling to
realize corecursive functions and predicates on finite cyclic data. It requires no
lazy evaluation, but destination-passing style outputs and the initialization of
outputs prior to (co)recursive calls for effective termination. The cycle handling
step is trivial to implement, but the cycle detection step requires detailed access
to the call stack, which is hard to obtain in a portable way using a decently
high-level implementation language.

We have demonstrated that the idea of stackless programming, particularly
the hybrid approach of the stackless transform, is suitable to obtain the required
information by unwinding the call stack to a chain of heap data structures. We
have pointed out that stack unwinding requires some care in the presence of
stack-to-stack references, and presented an economic solution scheme that suf-
fices for the kind of stack-to-stack references that arise from destination-passing
style output parameters.

We have also given a concrete example of the application of pointers up to
fourth (output parameters) or fifth (difference parameters) degree. Such exam-
ples are seldom found in literature, and mostly rather curious than demonstrably
useful.
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