
INSTITUT FÜR INFORMATIK

Programmiersprachen und

Rechenkonzepte

24. Workshop der GI-Fachgruppe

”
Programmiersprachen und Rechenkonzepte“

Bad Honnef, 2.-4. Mai 2007

Michael Hanus, Bernd Braßel (Hrsg.)

Bericht Nr. 0707

August 2007

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Programmiersprachen und Rechenkonzepte

24. Workshop der GI-Fachgruppe

”
Programmiersprachen und Rechenkonzepte“

Bad Honnef, 2.-4. Mai 2007

Michael Hanus, Bernd Braßel (Hrsg.)

Bericht Nr. 0707

August 2007

e-mail: mh@informatik.uni-kiel.de, bbr@informatik.uni-kiel.de

Dieser Bericht enthält eine Zusammenstellung der Beiträge des
24. Workshops Programmiersprachen und Rechenkonzepte,

Physikzentrum Bad Honnef, 2.-4. Mai 2007.

Vorwort

Seit 1984 veranstaltet die GI–Fachgruppe ”Programmiersprachen und Rechenkonzepte“, die aus
den ehemaligen Fachgruppen 2.1.3 ”Implementierung von Programmiersprachen“ und 2.1.4 ”Al-
ternative Konzepte für Sprachen und Rechner“ hervorgegangen ist, regelmäßig im Frühjahr einen
Workshop im Physikzentrum Bad Honnef. Das Treffen dient in erster Linie dem gegenseitigen
Kennenlernen, dem Erfahrungsaustausch, der Diskussion und der Vertiefung gegenseitiger Kon-
takte.
In diesem Forum werden Vorträge und Demonstrationen sowohl bereits abgeschlossener als auch
noch laufender Arbeiten vorgestellt, unter anderem (aber nicht ausschließlich) zu Themen wie

• Sprachen, Sprachparadigmen

• Korrektheit von Entwurf und Implementierung

• Werkzeuge

• Software-/Hardware-Architekturen

• Spezifikation, Entwurf

• Validierung, Verifikation

• Implementierung, Integration

• Sicherheit (Safety und Security)

• eingebettete Systeme

• hardware-nahe Programmierung

In diesem Technischen Bericht sind einige der präsentierten Arbeiten zusammen gestellt. Allen
Teilnehmern des Workshops möchten wir danken, dass sie durch ihre Vorträge, Papiere und
Diskusion den jährlichen Workshop erst zu einem spannenden Ereignis machen. Ein besonderer
Dank gilt den Autoren die mit ihren vielfältigen Beiträgen zu diesem Band beigetragen haben.
Ein abschließender Dank gebührt noch den Mitarbeitern des Physikzentrums Bad Honnef, die
durch ihre umfassende Betreuung für eine angenehme und anregende Atmosphäre gesorgt haben.

Kiel, im August 2007 Michael Hanus, Bernd Braßel

Inhaltsverzeichnis

Glass-Box Testing of Functional Logic Programs
Sebastian Fischer and Herbert Kuchen . 1

Putting Declarative Programming into the Web: Translating Curry to JavaScript
Michael Hanus . 9

Typebasierte Analyse von JavaScript
Phillip Heidegger . 19

Akton-Algebra: Programmierung diskreter physikalischer Systeme
Hermann von Issendorff . 22

Synthesizing Design Models from Scenarios by Learning
Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern and Martin Leucker 30

Googles MapReduce Programming Model – Revisited
Ralf Lämmel . 32

Lifting Currys Monomorphism Restriction
Wolfgang Lux . 33

Formalization of the Java 5.0 Type System
Martin Plümicke . 41

Source-to-Source Transformations for WCET Analysis:The CoSTA Approach
Adrian Prantl . 51

Slicing zur Modellreduktion von symbolischen Kellersystemen
Dirk Richter and Wolf Zimmermann . 61

Verifying Concurrent List-Manipulating Programs by LTL Model Checking
Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger . 70

Combining Tools and Languages for Static Analysis and Optimization of High-Level Abstractions
Markus Schordan . 72

Design-by-Contract für funktionale Sprachen mit verzögerter Auswertung
Stefan Wehr . 82

Tabular Expressions and Total Functional Programming
Baltasar Trancón y Widemann . 84

Monadic, Lazy Assertions in Haskell
Frank Huch and Olaf Chitil . 94

Towards A New Denotational Semantics For Curry and The Algebra of Curry
Bernd Braßel and Jan Christiansen . 104

Glass-Box Testing of Functional Logic Programs?

Sebastian Fischer1 and Herbert Kuchen2

1 Department of Computer Science
University of Kiel, Germany

sebf@informatik.uni-kiel.de
2 Department of Information Systems

University of Münster, Germany
kuchen@uni-muenster.de

Abstract. We employ the narrowing-based execution mechanism of the
functional logic programming language Curry in order to automatically
generate a system of test cases for glass-box testing of Curry programs.
The test cases for a given function are computed by narrowing a call
to that function with initially uninstantiated arguments. The generated
test cases are produced w.r.t. a selected code-coverage criterion such as
control-flow coverage. Besides an adaption of the notion of control-flow
coverage to functional (logic) programming, we present a novel coverage
criterion for this programming paradigm.

1 Introduction

Curry [1] is a programming language that aims at integrating different declar-
ative programming paradigms into a single programming language. Its syntax
is similar to Haskell [2] but it uses a different evaluation mechanism [3] and
supports free variables and nondeterministic computations like logic languages.
Declarative programming languages offer a high degree of abstraction which
eases the development of complex systems. They help to write more readable
and re-usable code [4] which, however, can still contain errors. Ultimate con-
fidence in the correctness of a program can only be achieved by proofs with
regard to a complete and formal specification. Declarative languages are usually
based on a formal semantics, which helps to formally certify some properties
of declarative programs. However, proving complex systems correct turns out
to be too difficult and time consuming, even in the context of declarative pro-
gramming. Therefore, heuristic approaches to expose errors gain importance also
in this area. Recently, techniques have been proposed to systematically debug
programs that are known to be erroneous [5–9]. However, little can be found
in the literature about the systematic testing of functional logic programs. This
paper intends to help filling this gap. As the functional part of Curry is basically
Haskell98 without type classes, we can also apply our tool to generate test cases
for Haskell programs.
? This work was partially supported by the German Research Council (DFG) grant

Ha 2457/5-2.

1

1.1 Testing

Approaches to software testing can be divided into black-box testing, where test
cases are deduced from a specification without taking the concrete implementa-
tion into account, and glass-box testing3, which aims at a systematic coverage
of the code. Both approaches do not exclude each other, but can be combined.
Black-box testing is often used to evaluate larger parts of an application. Glass-
box testing is preferred for testing small program units with a complex algo-
rithmic structure, which makes it hard to deduce all possible behaviors from
the specification. Since declarative programs typically consist of a sequence of
small function definitions, glass-box testing is even more suited for declarative
languages than for imperative languages. Moreover, the lack of side effects ren-
ders it possible to test parts of an algorithm independently. We will focus on
glass-box testing in this paper.

Regardless of the way test cases have been generated, they can not only be
used for testing a program unit once. More importantly, they can be used for
so-called regression testing, i.e., the suite of collected test cases is automatically
processed in order to check whether some change in the program affects the
already implemented functionality.

1.2 Related Work

Existing tools for testing functional programs generate random test cases or de-
duce them from a specification [10, 11], i.e., they are based on black-box testing.
Since they do not take the implementation into account, they cannot ensure that
all parts of the program are actually executed by the test cases. Hence, errors in
uncovered parts of the program may remain undetected.

In [12, 13] an approach for generating glass-box test cases for Java is pre-
sented. Techniques known from logic programming are incorporated into a sym-
bolic Java virtual machine for code-based test-case generation. A similar ap-
proach based on a Prolog simulation of a Java Virtual Machine is presented in
[14]. A related approach to test-case generation for logic programs is discussed
in [15]. Here, test cases are not generated by executing the program but by
first computing constraints on input arguments that correspond to an execu-
tion path and then solving these constraints to obtain test inputs that cover the
corresponding path.

We transfer the approach for Java presented in [12, 13] to the functional
logic programming language Curry. However, instead of extending an abstract
machine by components for backtracking and handling logic variables, we can
just employ the usual execution mechanism of Curry, since it already provides
these features. Actually, this approach to test-case generation seems to be tailor-
made for functional logic languages. Our approach is based on a transformation
of Curry programs and, hence, not restricted to a specific Curry implementation.

3 Glass-box testing is often called white-box testing, although one can of course not
look inside a white box.

2

Besides testing, there are different approaches for debugging functional logic
programs, which are remotely related to testing. Trace debuggers [16, 6, 7] record
information about a specific (usually erroneous) program run and present it to
the user in a structured way. Different kinds of views can be employed to analyze
the recorded program trace. Algorithmic debuggers ask the user a sequence of
questions about the correctness of subcomputations in order to find an error
in a program [9]. Algorithmic debugging can be implemented as an interactive
view on a program trace. With tools for observational debugging [16, 8] the pro-
grammer can annotate her code with observer functions to record parts of the
computation. With this approach, only selected parts considered interesting by
the programmer are recorded, which saves memory. Both tracing and observa-
tional debugging are approaches to locate an already present error. They are not
aiming at but can be combined with testing.

Due to space restrictions, we only discuss our approach informally. A full ver-
sion of this paper including an introduction to Curry, implementation details and
experimental results is presented in [17]. In Section 2 we introduce the concept
of code coverage and consider two different code-coverage criteria for functional
logic programs. In Section 3 we describe how test cases can be generated w.r.t.
different code-coverage criteria before we conclude and point out directions for
future work in Section 4.

2 Code Coverage

Before we explain our approach to generate test cases for Curry, let us briefly
recall the basics of glass-box testing for imperative languages. For testing a
function one collects a set of test cases which covers the possible behaviors of
the function in a reasonable way. A test case is a pair of a function call and a
corresponding expected result.

Since there are often infinitely many possible inputs and corresponding com-
putation paths through a program, it is impossible to test all of them. But even
if the number of paths was finite, many of them would cover the same control
and data flow and would hence be equivalent from the point of view of testing.
For cost effective testing, one is interested in a minimal set of test cases covering
the code according to a selected coverage criterion.

Classical criteria known from testing imperative programs are coverage of
the (nodes and) edges of the control-flow graph and the so-called def-use chain
coverage [18]. The latter requires that each sequence of statements is covered,
which starts with a statement computing a value and ends with a statement,
where this value is used and where this value is not modified in between.

It is important to understand that no coverage criterion guarantees the ab-
sence of errors, including the criteria presented in this paper. They rather try to
detect as many errors as possible with limited effort. It is always possible to find
examples where a given coverage criterion fails to expose an error. Nevertheless
coverage criteria are useful in order to find the majority of the errors, in partic-

3

ular in algorithmically complex code. Remaining errors can be eliminated, e.g.,
by black-box testing.

Lazy declarative languages like Curry have no assignments and a rather com-
plicated control-flow (due to laziness), which cannot easily be represented by a
control-flow graph. Therefore, we cannot simply transfer the notions of code
coverage from the imperative to the declarative world, but need adapted no-
tions. Here, we will present two different coverage criteria: Global Branch Cov-
erage (GBC) and Function Coverage (FC) which correspond both to variants of
control-flow coverage in imperative languages. However, let us point out that our
approach works with any coverage criterion. We only require that the coverage
can be described by a set of coverable items. These items can represent control-
and/or data-flow information.

2.1 Global Branch Coverage

In glass-box testing for imperative languages, typically only code sequences that
are part of a single function or procedure declaration are considered. Due to
control structures like loops present in imperative languages, there is often no
need to consider more than one function to obtain interesting test cases.

In declarative programming, (recursive) function calls are used to express
control structures and to replace loops. Since the functions in a declarative pro-
gram are typically very small and consist of a few lines only, it is not sufficient
in practice to cover only the branches of the function to be tested. Thus, we will
aim at covering the branches of all the directly and indirectly called functions,
too.

The main idea of this approach is that we label all the alternatives in or and
case expressions with pairwise different labels and that we try to make sure that
every labelled alternative will be executed at least once by some test case. This
means that each alternative of an or expression and each ei in a case expression

case e of {p1 → e1; . . . ; pn → en}

will be evaluated to head normal form. Or expressions are used to model nonde-
terministic alternatives and case expressions denote pattern matching. See [19]
for more details. To test the definition of a function f, we can compute the set
of all functions reachable from f and generate test cases that cover all branches
of these functions.

2.2 Function Coverage

Covering all branches of all reachable functions may produce a lot of overhead.
Moreover, it may be impossible to cover all branches of the called functions, since
the parameters passed to them do not permit this. Thus, we are interested in a
criterion which focuses on the code of the function to be tested. As mentioned,
a simple coverage of all branches of the considered function will expose too few
errors in practice. Thus, we extend this approach slightly. We will ensure that

4

in addition to all branches of the original call to the considered function, also
all branches of all recursive calls to that function have to be executed. As shown
in [17], the resulting criterion called Function Coverage (FC) works quite well
in practice. If we assume that all functions called by the considered function f
have been tested before, FC allows to find strictly more errors than GBC, since
FC will then not only ensure that every branch is executed once, but that every
branch will be checked in every call to the considered function.

As for GBC, it may be sometimes impossible to cover all branches for each
recursive call, since the actual parameters do not permit this. In this case, we
will confine ourselves to execute the reachable branches.

As a simple example consider the labeled definition of the append function
(++) for lists:

(++) :: [a] -> [a] -> [a]
l ++ ys = case l of {
[] -> 〈1〉 ys;
(x:xs) -> 〈2〉 x : (xs++xs) }

Here, the test case [0] ++ [] = [0] suffices to reach global branch coverage
without exposing the error in branch 〈2〉 (xs++xs should be xs++ys).

On the other hand, there are two calls of (++) to be covered with FC, the
initial call and the recursive call in branch 〈2〉. We require both calls to execute all
branches of (++). With the above test case, the recursive call does not execute
branch 〈2〉 and our tool also generates the test case [0] ++ [1] = [0] that
exposes the error.

If we fail to fix the error and write ys++xs, then the test cases [] ++ [] = []
and [0] ++ [1] = [0,1] suffice to fulfill both GBC and FC. None of the cov-
erage criteria exposes this error which hints at the incomplete nature of every
coverage criterion discussed at the beginning of this section.

3 Generating Test Cases

Let us now consider, how we can generate a system of test cases for some coverage
criterion. For each test case, we need to find a sequence of parameters with a
corresponding expected result. Moreover, we would like the set of test cases to
cover all coverable items according to the selected criterion.

A naive way of producing a set of test cases in a functional logic language
is to call the function f to be tested with a sequence of unbound logic variables
x1,...,xn as parameters and to compute all possible solutions of f x1...xn.
Each computation will bind the logic variables to some terms such that the
function called with these terms as parameters causes the desired coverage. The
result of this computation will be the desired expected result for the test case.
Note, that we do not need to integrate a constraint solver like [13] because in a
functional-logic language free variables can be bound by the built-in narrowing
mechanism. In order to obtain a list of test cases for a function f, we could collect
the results of the test-case generation with the primitive function allValues
using encapsulated search [20]:

5

allValues (let x1,...,xn free
in ((x1,...,xn), f x1 ... xn))

Unfortunately, this naive approach will in general fail to produce the desired
minimal set of test cases. Typically, it will even generate an infinite number of
them. This does not mean that this narrowing-based generation of test cases
cannot be used at all. We rather have to make sure that the computation is
controlled in such a way that not too many test cases are generated.

In our approach, we record the set of covered items during the computation
along with every computed result. Note that this approach is independent of the
selected coverage criterion. Given this additional information, we can demand
further results until we obtain the desired coverage. Thus, we need to be able to
compute the result of encapsulated search lazily. Moreover we have to rely on a
fair search strategy, as, e.g., offered by KiCS [21], that ensures that all results
are eventually computed.

With a non-fair depth-first search, the overall computation would try to
find an infinite amount of solutions for some subexpression before considering
an alternative which causes the missing items to be covered. In particular in
situations, where the desired coverage cannot be achieved (as explained in Sub-
section 2.2), additional means for controlling the computation are required. One
possibility is to limit the recursion depth based on an additional parameter which
keeps track of it. Alternatively, the computation could be stopped, if the last n
generated test cases do not cover any new coverable item (n has to be configured
appropriately). The simplest means for controlling the computation is to limit
the amount of generated test cases to some fixed n (which has to be configured
appropriately). Our system can be combined with any of these alternatives.

The reader may wonder, why we need to use the generated test cases at all
for testing, since they reflect the actual behavior of the system and one can
hence observe an erroneous behavior by just looking at a generated test case.
The reason is that the test cases are needed for regression testing, i.e., in order
to check whether a change of the system does not destroy the already working
functionality.

The approach described so far does not ensure a minimal set of test cases. In
order to get a minimal set of test cases, we need an additional step which removes
redundant test cases. Obviously, this problem is the set covering problem which
is known to be NP-complete [22]. Since it is not essential in our context that
we really find a minimal solution, we are happy with any heuristic producing
a small solution. Sometimes, a larger set of smaller test cases may be preferred
over a smaller set of larger test cases because small test cases are usually easier
to verify by humans. However, for regression testing the smaller set is always
cheaper to check.

Not all Curry implementations support the guessing of numbers in arith-
metic operations. Currently only KiCS [21] does it – by implementing numbers
as algebraic datatype [23]. In order to be able to handle guessing in arithmetic
operations in other Curry implementations as well, we employ the system of con-
straint solvers presented in [13]. During the computation, generated constraints

6

are checked for consistency against other already generated constraints in order
to select valid computation paths. After the computation, we solve the gener-
ated constraints and instantiate numerical variables according to the computed
solution in order to produce a test case.

4 Conclusions and Future Work

We have shown how glass-box testing based on systematic coverage of the code
can be adapted from the imperative world to a functional logic programming
language.

We have developed two coverage criteria for the functional (logic) program-
ming paradigm and presented a tool which generates a system of test cases
automatically according to a selected coverage criterion. This tool employs the
narrowing-based execution mechanism of Curry in order to generate test-cases.
The computation is controlled by the set of items to be covered and redundant
test cases are eliminated by a heuristic for the set covering problem.

We have demonstrated that Function Coverage exposes errors that can re-
main undetected in test cases that satisfy Global Branch Coverage. On the other
hand, it usually does not expose errors in reachable functions, so these need to
be tested separately.

As future work, we plan to investigate the notion of data-flow coverage in
the context of declarative programming. We also plan to integrate specifications
that are employed to automatically verify the generated test cases.

References

1. Hanus, M., et al.: Curry: An integrated functional logic language (version 0.8.2).
Available at URL http://www.informatik.uni-kiel.de/~curry (2006)

2. Peyton Jones, S., ed.: Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press (2003)

3. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. Journal of the
ACM 47(4) (2000) 776–822

4. Hughes, J.: Why Functional Programming Matters. Computer Journal 32(2)
(1989) 98–107

5. Chitil, O., Runciman, C., Wallace, M.: Freja, hat and hood – a comparative
evaluation of three systems for tracing and debugging lazy functional programs.
In: Proc. of the 12th International Workshop on Implementation of Functional
Languages (IFL 2000), Springer LNCS 2011 (2001) 176–193

6. Braßel, B., Hanus, M., Huch, F., Vidal, G.: A semantics for tracing declarative
multi-paradigm programs. In: Proc. of the 6th International ACM SIGPLAN
Conference on Principle and Practice of Declarative Programming (PPDP’04),
ACM Press (2004) 179–190

7. Braßel, B., Fischer, S., Huch, F.: A program transformation for tracing functional
logic computations. In: International Symposium on Logic-based Program Synthe-
sis and Transformation (LOPSTR 2006). LNCS, Springer (2006) To appear.

7

8. Braßel, B., Chitil, O., Hanus, M., Huch, F.: Observing functional logic compu-
tations. In: Proc. of the Sixth International Symposium on Practical Aspects of
Declarative Languages (PADL’04), Springer LNCS 3057 (2004) 193–208

9. Caballero, R., Rodŕıguez-Artalejo, M.: Ddt: a declarative debugging tool for
functional-logic languages. In: Proceedings of the 7th International Symposium on
Functional and Logic Programming (FLOPS 2004), Springer LNCS 2998 (2004)
70–84

10. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices 35(9) (September 2000) 268–279

11. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In Peña, R., ed.: The 14th International workshop on the
Implementation of Functional Languages, IFL’02, Selected Papers. Volume 2670
of LNCS., Madrid, Spain, Springer (September 2002) 84–100

12. Müller, R., Lembeck, C., Kuchen, H.: A symbolic Java virtual machine for test-case
generation. In: Proceedings IASTED. (2004)

13. Lembeck, C., Caballero, R., Müller, R., Kuchen, H.: Constraint solving for generat-
ing glass-box test cases. In: Proceedings of International Workshop on Functional
and (Constraint) Logic Programming (WFLP). (2004) 19–32

14. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code using Analysis and Transformation of Logic Programs. In: Ninth International
Symposium on Practical Aspects of Declarative Languages. LNCS, Springer-Verlag
(January 2007) To appear.

15. Mweze, N., Vanhoof, W.: Automatic generation of test inputs for Mercury pro-
grams. In: International Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR 2006). LNCS, Springer (2006) To appear.

16. ART: Hat – the Haskell tracer (version 2.04). Available at URL
http://haskell.org/hat/ (2005)

17. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: Proc. of the 9th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2007), ACM Press (2007) to appear.

18. Pressman, R.S.: Software Engineering: a Practitioner’s Approach. McGraw-Hill,
Inc. (1992)

19. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. Journal of Symbolic Computation 40(1)
(2005) 795–829

20. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional logic
computations. Journal of Functional and Logic Programming 2004(6) (2004)

21. Braßel, B., Huch, F.: Translating Curry to Haskell. In: Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005),
ACM Press (2005) 60–65

22. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The
MIT Press, Cambridge, Mass. (1990)

23. Braßel, B., Fischer, S., Huch, F.: Declaring numbers. In: Proc. of the 16th Interna-
tional ACM SIGPLAN Workshop on Functional and (Constraint) Logic Program-
ming (WFLP 2007). (2007) to appear.

8

Putting Declarative Programming into the Web:

Translating Curry to JavaScript⋆

– Extended Abstract –

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. We propose a framework to construct web-oriented user in-
terfaces in a high-level way by exploiting declarative programming tech-
niques. Such user interfaces are intended to manipulate complex data
in a type-safe way, i.e., it is ensured that only type-correct data is ac-
cepted by the interface, where types can be specified by standard types
of a programming language as well as any computable predicate on the
data. If the client’s browser has JavaScript enabled, one could also check
the correctness of the data on the client side providing immediate feed-
back to the user. In order to release the application programmer from
the tedious details to interact with JavaScript, we propose an approach
where the programmer must only provide a declarative description of the
requirements of the user interface from which the necessary JavaScript
programs and HTML forms are automatically generated.

1 Motivation

The implementation of software systems can be coarsely classified into two parts:
the implementation of the application logic and the implementation of the user
interface. If one uses declarative programming languages, the first part can be
implemented with reasonable efforts. In contrast, the construction of the user
interface is usually complex and tedious. In order to simplify the latter task,
scripting languages with toolkits and libraries, like Tcl/Tk, Perl, or PHP, are
one approach to support this goal. Since scripting languages often lack support
for the development of complex and reliable software systems (e.g., no static
type and interface checking, limited code reuse due to the lack of high-level
abstractions), they are often used to implement the user interface whereas the
application logic is implemented in some other language. This approach creates
new problems since it is well known that such combinations could cause security
leaks in web applications [9]. Therefore, an alternative solution is the embed-
ding of such domain-specific languages in high-level languages able to provide
appropriate abstractions. This paper follows the latter alternative and considers
an approach to construct web user interfaces (WUIs) in a declarative way. The

⋆ This work was partially supported by the German Research Council (DFG) grant
Ha 2457/5-2. A full version of this extended abstract has appeared in [6].

9

Fig. 1. A WUI for a list of persons containing various input errors

core idea of the declarative construction of WUIs has been presented in [4]. In
this paper we combine this construction with the existing features of scripting
languages by compiling parts of the declarative interface specifications into a
scripting language available in almost all web browsers: JavaScript.

In order to provide an example of the new approach presented in this paper,
we give a short summary of the framework to construct WUIs presented in [4].
This approach to construct WUIs is useful in situations where data of an applica-
tion program should be manipulated via standard web browsers (i.e., by HTML
forms). The application program supplies the WUI with the current data of the
application and an operation to store the modified data. Furthermore (and most
important), it provides a type-oriented specification of the WUI structure that
matches the type of the application data. For this purpose, the WUI framework
contains a set of basic WUIs to manipulate data of basic types, e.g., integers,
truth values, strings, finite sets, and a set of WUI combinators to construct
WUIs for complex data types from simpler types similarly to type constructors
in programming languages. For instance, there are combinators for tuples, lists,
union types etc. The framework ensures that the user inputs only type-correct

data, i.e., if the user tries to input illegal data (e.g., incorrect integer constants,
empty strings, wrong dates or email addresses), the WUI does not accept the
data and asks the user to correct the input. Figure 1 shows an example of a
WUI for a list of persons containing various input errors. Note that errors can
occur not only in individual input fields but also as illegal combinations of dif-
ferent fields, like the date in the second row. Thanks to this feature of the WUI
framework, the application program need not check the input data and perform
appropriate actions (e.g., providing error forms to correct the input etc). This
considerably simplifies the task of programming the user interface.

10

In this paper we show how to exploit the existence of JavaScript interpreters
in web browsers in order to increase the functionality of WUIs. By translat-
ing conditions in WUIs into JavaScript programs, one can check user inputs
on the client side, i.e., forms with illegal inputs are not sent to the web server.
This feature reduces the number of client/server interactions and provides in-
stantaneous feedback on incorrect inputs on the client side. However, Curry
is a powerful language with advanced programming features (e.g., higher-order
functions, laziness, logic variables, constraint solving, concurrency). Thus, it is
not reasonable to translate into JavaScript all possible conditions that can be
implemented in Curry, since this might finally require to communicate a com-
plete Curry implementation to the web client. This is not only inefficient (since
JavaScript is usually interpreted) or impossible (due to space and time limita-
tions of the JavaScript interpreter) but also not necessary: the correctness of
the user input is always checked on the server side (due to the principle in web
programming that one should never trust user inputs from web browsers even
if they are checked by scripts on the client side, since one never knows whether
the input comes from a human using a web browser or another malicious pro-
gram [9]). Thus, one is free to select only particular conditions that are easy to
translate into JavaScript. This is the idea used in the following in order to get
a reasonable and practically applicable combination of two different worlds of
programming.

2 Basics: Curry, HTML, JavaScript

We assume familiarity with functional logic programming and the language
Curry (see [5] for a recent survey and [8] for details about Curry).

Writing programs that generate HTML documents requires a decision about
the representation of HTML documents. A textual representation (as often used
in CGI scripts written in Perl or with the Unix shell) is very poor since it
does not avoid certain syntactical errors (e.g., unbalanced parenthesis) in the
generated document. Thus, it is better to introduce an abstraction layer and
model HTML documents as elements of a specific data type together with a
wrapper function that is responsible for the correct textual representation of
this data type. Since HTML documents have a tree-like structure, they can
be represented in functional or logic languages in a straightforward way. For
instance, the type of HTML expressions is defined in Curry as follows:

data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Thus, an HTML expression is either a plain string or a structure consisting of
a tag (e.g., b,em,h1,h2,. . .), a list of attributes (name/value pairs), and a list of
HTML expressions contained in this structure. Thus, the HTML code

<p>This is an <i>example</i></p>

is represented by the data term

11

HtmlStruct "p" [] [HtmlText "This is an ",

HtmlStruct "i" [] [HtmlText "example"]]

Since it is tedious to write HTML documents in this form, one can provide
various functions as useful abbreviations (htmlQuote transforms characters with
a special meaning in HTML into their HTML quoted form):

htxt s = HtmlText (htmlQuote s)

par hexps = HtmlStruct "p" [] hexps

italic hexps = HtmlStruct "i" [] hexps

...

Then we can write the example as

par [htxt "This is an ", italic [htxt "example"]]

A dynamic web page is an HTML document (with header information) that is
computed by a program at the time when the page is requested by a client
(usually, a web browser). For this purpose, there is a data type

data HtmlForm = HtmlForm String [FormParam] [HtmlExp]

to represent complete HTML documents, where the first argument to HtmlForm

is the document’s title, the second argument contains optional parameters (e.g.,
cookies, style sheets), and the third argument is the document’s content. Since
a dynamic web page should represent information that often depends on the
environment of the web server (e.g., stored in databases), a dynamic web page
has always the type “IO HtmlForm”, i.e., it is an I/O action [10] that retrieves
some information from the environment and produces a web document.

Dynamic web pages usually process user inputs, placed in various input el-
ements (e.g., text fields, text areas, check boxes) of an HTML form, in order
to generate a user-specific result. For this purpose, the HTML library of Curry
[3] provides an abstract programming model that can be characterized as pro-

gramming with call-back functions. A web page with user input and buttons for
submitting the input to a web server is modeled by attaching an event handler

to each submit button that is responsible for computing the answer document.
We omit further details here (they can be found in [3]) since we consider a more
abstract layer to construct web-based user interfaces that will be described in
Section 3.

JavaScript [2] is an imperative scripting language that can be embedded in
HTML documents. JavaScript programs are executed by the client’s web browser
and have access, via a document object model, to the resources of the browser, in
particular, to the HTML document shown in the browser. For this purpose, the
document is represented as a hierarchical object structure where the attributes
of each object can be accessed or manipulated by the standard “dot notation”.
For instance, the class identifier (whose meaning is usually defined in a style
sheet) of an object elem in an HTML document can be changed to myStyle by
the assignment elem.className = "myStyle".

12

JavaScript programs are usually executed by the web browser when some
event occurs. For instance, if a text input field in an HTML form has an attribute
onblur="f(3)", the function call f(3) is evaluated whenever the user leaves this
input field. We exploit this functionality of JavaScript to check the user input
on the client side before the complete web form is submitted to the server.

3 Type-Oriented Web User Interfaces

In this section we review the type-oriented construction of WUIs, as proposed in
[4], from a programmer’s point of view, before we discuss its extension to include
JavaScript in the next section.

The basic idea of our WUI framework is to provide an easily applicable
method to implement an interface for the manipulation of data of an application
domain. Thus, we assume that the application program supplies a WUI with the
current state of the data and an operation to store the data modified by the user
and acknowledge it to the user. Thus, the main operation to construct a WUI
has the type signature

mainWUI :: WuiSpec a -> a -> (a -> IO HtmlForm) -> IO HtmlForm

so that an expression (mainWUI wspec d store) evaluates to a web page con-
taining an editor that shows the current data d and executes (store d′) when
the user submits the modified data d′. The operation store (also called update

form) usually stores the modified data in a file or database, returns a web page
that informs the user about the successful (or failed) modification, and proceeds
with a further interaction.

The first argument of type WuiSpec a, also called WUI specification, specifies
the kind of interface used to manipulate data of type a. This is necessary since
there are usually various alternative interaction forms for identical data types.
For instance, integer values can be manipulated in text fields (see last column
in the table of Fig. 1) or, if the set of possible values is small, via selection
boxes (see the two columns before the last one in Fig. 1). Therefore, the WUI
framework provides a couple of predefined interaction forms for various data
types. For instance, there are predefined entities

wString :: WuiSpec String

wInt :: WuiSpec Int

to manipulate strings and integer values in simple text input fields, respectively.
Similarly, there is an entity

wSelectInt :: [Int] -> WuiSpec Int

to select a value from a list of integers by a selection box.
In order to construct WUIs for complex data types, there are WUI combi-

nators that are mappings from simpler WUIs to WUIs for structured types. For
instance, there is a family of WUI combinators for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)

13

wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c -> WuiSpec (a,b,c)

w4Tuple :: WuiSpec a -> WuiSpec b -> WuiSpec c ->

WuiSpec d -> WuiSpec (a,b,c,d)

...

Thus,

wDate = wTriple (wSelectInt [1..31]) (wSelectInt [1..12]) wInt

wPerson = w4Tuple wString wString wString wDate

define WUI specifications for dates and persons consisting of first name, surname,
email address, and date of birth. To manipulate lists of data objects, there is a
WUI combinator for list types:

wList :: WuiSpec a -> WuiSpec [a]

Thus, to manipulate lists of persons as shown in Fig.1, we apply the main con-
struction operation mainWUI to the WUI specification (wList wPerson), which
is of type

WuiSpec [(String,String,String,(Int,Int,Int))] ,

and appropriate data values and update forms.

As discussed above, our type-oriented construction of WUIs leads to type-
safe user interfaces, i.e., the user can only enter type-correct data so that the
application does not need to perform any checks for this purpose. Up to now,
type-correctness is interpreted w.r.t. the types of the underlying programming
language. However, many applications require a more fine-grained definition of
types. For instance, not every triple of natural numbers that can be entered
with the WUI wDate above is acceptable, e.g., the triple (29,2,1982) is illegal
from an application point of view. In order to support also correctness checks
for such application-dependent type constraints, our framework allows to attach
a computable predicate to any WUI: there is an operation (also defined as an
infix operator)

withCondition :: WuiSpec a -> (a->Bool) -> WuiSpec a

that combines a WUI specification with a predicate on values of the same type
so that the result specifies a WUI that accepts only values satisfying the given
predicate. For instance,

wEmail :: WuiSpec String

wEmail = wString ‘withCondition‘ isEmail

defines a WUI that accepts only syntactically correct email addresses provided
that isEmail is a predicate on strings that is satisfied if its argument is a syn-
tactically valid email address.

If application-specific conditions on input values are added, appropriate er-
ror messages should be provided. For this purpose, there is an operation (infix
operator)

14

withError :: WuiSpec a -> String -> WuiSpec a

that combines a WUI specification with a specific message which is shown in
case of inputs that do not satisfy the input constraints. For instance, we can
improve the definition of wEmail with an appropriate error message as follows:

wEmail = wString ‘withCondition‘ isEmail

‘withError‘ "Invalid email address:"

Similarly, if correctDate is a predicate on triples of integers that checks whether
this triple represents a legal date (e.g., correctDate (29,2,1982) evaluates to
False), then the WUI specification wDate above should be better defined by

wDate = wTriple (wSelectInt [1..31]) (wSelectInt [1..12]) wInt

‘withCondition‘ correctDate

‘withError‘ "Illegal date:"

Redefining the WUI for persons by

wPerson = w4Tuple wString wString wEmail wDate

the expression (wList wPerson) denotes a WUI specification for lists of persons
that checks for valid inputs and provides the error messages shown in Fig. 1.

4 Combining WUIs and JavaScript

As mentioned in Section 1, we intend to exploit the existence of JavaScript
interpreters in current web browsers to increase the functionality of WUIs. In
particular, we want to transmit a JavaScript program, together with the HTML
form implementing a WUI, that implements the validation of user inputs in the
HTML form. With this approach, invalid inputs are detected by the web browser
on the client side which provides instantaneous feedback to the user and reduces
the number of client/server interactions. Note that it is not our intention to shift
computations from the server side to the client side in order to reduce the load
of the web server: since a web application should never trust user inputs received
from a client (see Section 1), the validation of inputs by the web application is
mandatory. This design decision has a number of advantages:

– It is not necessary to check all input conditions in a WUI on the client side.

– If the JavaScript program running on the client cannot compute a definite
result, e.g., due to resource limitations, it causes no problem for the web
application since the input is always validated on the server side.

– The same is true if JavaScript is disabled in the client’s browser (e.g., due to
security reasons). In this case, the web forms can still be used (in contrast to
approaches that rely on JavaScript like PowerForms [1]). The only difference
is that input errors are shown after the form has been submitted to the
web server which sends back a new form with error-annotated input fields
(identical to the example in Fig. 1).

15

WUI
specification

HTML form

eager-executable
WUI conditions

JavaScript
code

web server
program

- -

-

?

-

analyze
collect

compile

compile

compute

include

Fig. 2. Structure of the WUI/JavaScript implementation

The implementation of our framework is visualized in Fig. 2. The complete
implementation is available with the current distribution of PAKCS [7]. The
compilation of a web page containing WUIs is performed by the following steps:

1. The source program is analyzed and conditions in WUIs that are “easy to
translate” into JavaScript are marked. These conditions are characterized
as “eager executable”, i.e., it is ensured that the eager (i.e., innermost) and
deterministic rewriting of these conditions produce the same result as in
Curry.

2. The eager-executable conditions are collected together with the functions on
which they depend (which might be distributed in various imported modules)
into a single Curry program.

3. This Curry program is translated into a JavaScript program. Thanks to
the fact that this program can be executed in an eager and deterministic
manner, the translation into JavaScript is straightforward (Curry functions
are mapped into JavaScript functions, data constructors are mapped into
arrays, pattern matching is mapped into switch statements etc). In order to
reduce the size of the generated JavaScript programs (that is transmitted
to the client together with the HTML code), a couple of code optimizations
are applied by the compiler. The details of this compilation process and the
subsequent optimizations can be found in [6].

4. The original Curry program is compiled with a standard Curry compiler and
installed on the web server.

5. If a client demands a web page containing the WUI, the Curry program
computes the corresponding HTML form and sends it to the client together
with the generated JavaScript program.

Note that the implementation of WUIs, as described in [4], must also consider
the integration of JavaScript code in the HTML form. For this purpose, the
individual functions to generate HTML code from WUI specifications (they are
implicitly contained in the WUI specifications but not directly accessible) gen-
erate also the calls to the JavaScript code for eager-executable conditions. These
calls are attached to input fields if possible (in case of text fields with onblur

events) and also collected for the complete WUI and attached to the submit

16

Program Curry JS JSO

lines bytes lines bytes lines bytes

posSum 1 21 19 278 3 63

isEmail 27 654 183 3050 77 1598

person 71 1624 404 6546 126 2777

exam 102 2333 629 10072 211 4613
Table 1. Code size of some programs

button. The check of the complete WUI follows an innermost strategy in case
of hierarchical data structures (like list of persons containing dates): first, the
basic input parts are checked and, if they do not contain an error, the parts
constructed from these parts are checked. This strategy is reasonable since it
avoids superfluous error messages related to global properties if the individual
parts contain input errors. Furthermore, the possible error messages must also
be included in the generated HTML code. Since they should be only visible
when an input error is detected by the JavaScript code corresponding to the
WUI conditions, the error messages are initially invisible and they are made
visible, if necessary, by the JavaScript code. This is implemented by the use of
different styles for the error elements that is changed by the JavaScript code (see
Section 2).

In order to provide an impression of the size of the generated JavaScript
code, Table 1 contains the results of compiling some example programs from
Curry into JavaScript. The columns contain the sizes of the source Curry pro-
gram (including all dependent functions but without comments), the generated
JavaScript code without optimization (JS), and the generated JavaScript code
including optimizations to reduce the code size (JSO). For each class of pro-
grams, the number of code lines and the code size in bytes is shown. The first
three programs are WUI conditions mentioned in this paper, and program exam

consists of the conditions of a web-based examination management tool. The
difference between the entries in the columns JS and JSO clearly shows that the
code optimizations are important and effective.

5 Conclusion

We have proposed a new framework to construct web-based user interfaces in
a declarative way that is combined with features of JavaScript in order to ex-
ploit existing technologies without efforts for the application programmer. The
construction of WUIs is type-oriented, i.e., the programmer selects basic WUI
components and combine them with specific combinators in order to obtain a
WUI that can be applied to manipulate the data of the application domain. An
important feature of WUIs is the possibility to include computable conditions
on input data. Since these conditions are checked before the data is transferred
to the application program, the application must only specify such conditions

17

but need not check their validity or implement the necessary interactions with
the user to correct wrong inputs.

References

1. C. Brabrand, A. Møller, M. Ricky, and M.I. Schwartzbach. PowerForms: Declar-
ative Client-side Form Field Validation. World Wide Web Journal, Vol. 3, No. 4,
pp. 205–214, 2000.

2. D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 5th edition edition, 2006.
3. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-

ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

4. M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

5. M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

6. M. Hanus. Putting Declarative Programming into the Web: Translating Curry to
JavaScript. In Proceedings of the 9th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming (PPDP’07), pp. 155–166.
ACM Press, 2007.

7. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2007.

8. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.informatik.uni-kiel.de/~curry, 2006.

9. S.H. Huseby. Innocent Code: A Security Wake-Up Call for Web Programmers.
Wiley, 2003.

10. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

18

Typebasierte Analyse von JavaScript

Phillip Heidegger

Arbeitsbereich Programmiersprachen
Institut für Informatik
Universität Freiburg

Der AJAX Trend sorgt für eine starke Verbreitung von JavaScript und un-
terstreicht die Bedeutung der Sprache. Um die Zuverlässigkeit der entwickel-
ten Software sicherzustellen und ein professioneller Einsatz von JavaScript zu
ermöglichen, werden Analysewerkzeuge benötigt, wie diese für viele andere Pro-
grammiersprachen erhältlich sind.

Es gibt viele Ansätze, JavaScript sicherer zu machen. Eine Arbeit von Yu u.a.
schlägt z.B. eine dynamische Methode vor [5]. Sie definiert eine Regelmenge, die
JavaScript Quellcode dynamisch verändert. Dies ermöglicht dem Besucher einer
Webseite, sich eine für ihn angepasste Regelmenge zu erstellen, die festlegt, wel-
che Aktionen der JavaScript Quellcode ausführen darf. Bei einer solchen Lösung
wird dem dynamischen Charakter von JavaScript Rechnung getragen und es
werden Funktionen wie eval, Document.write u.a. unterstützt. Allerdings bie-
tet eine solche Lösung für JavaScript Sicherheitsprobleme einem Programmierer
keine Hilfestellung, Fehler in seinem Programm zu finden. Der Adressat des von
Yu u.a. vorgestellten Ansatzes ist der Benutzer des Internetbrowsers.

Ist aber das Ziel, für einen JavaScript Programmierer Analysemethoden zu
entwickeln, die ihm helfen seine Programme vor der Auslieferung an den Kunden
auf Fehler zu analysieren, erfordert dies eine statische Analyse des Quellcodes.
Als Beispiel sei hier ein Onlineportal eine Internetbank genannt. Dynamische
Methoden würden erst nach Auslieferung oder bestenfalls beim Testen zu Er-
gebnissen führen. Bei einem Internetportal im sicherheitskritischen Umfeld ist
dies nicht ausreichend.

Für statische Analysen muss angenommen werden, dass dem Programmie-
rer der vollständige Quellcode seiner Anwendung statisch zur Verfügung steht.
Dies bedeutet z.B., dass die Funktion eval mit statischen Analysen nicht zu
behandeln ist.

Wie alle statischen Methoden, die nicht triviale Eigenschaften über Pro-
grammen berechnen, wird eine statische Analysen für JavaScript Näherungen
durchführen müssen. Hierbei gibt es zwei Möglichkeiten. Lindahl u. Sagonas
stellen in ihrem Artikel einen Ansatz mit Successtypen vor [3]. Hier werden nur
Programme zurückgewiesen, bei denen garantiert wird, dass an einer Stelle des
Codes ein Fehler besteht. Falls nicht sicher ist, ob der Code korrekt ausgeführt
werden kann, wird bei Successtypen das Programm nicht vom Typsystem zurück-
gewiesen.

Die zweite Möglichkeit besteht in einer konservativen Analyse des Quellcodes,
der nur korrekte Programme bzgl. eines Typsystems als gültig einordnet. Für
gültige Programme ist eine gewisse Menge Eigenschaften garantiert. So stellt

19

das Typsystem von Java z.B. sicher, dass bei einer Multiplikation keine Strings
mit Zahlen multipliziert werden [1].

In Vortrag wird die zweite Methodik gewählt und eine korrekte Analyse
für die Scriptsprache JavaScript kurz vorgestellt. Würde die Eigenschaft, keine
Zahlen mit Strings multiplizieren zu können, auf ein Typsystem für JavaScript
übertragen, so würde der JavaScript Ausdruck x = "2" * 4; vom Typsystem
als ungültig abgelehnt. Das Multiplizieren des Strings "2" und der Zahl 4 wäre
unzulässig. In JavaScript werden Werte aber kontextabhängig in passende Werte
anderen Typs konvertiert und der Ausdruck liefert die Zahl 8. Ein Typsystem,
das die Multiplikation von Strings und Floats generell ablehnt, würde somit Pro-
gramme zurückweisen, die ein korrektes Laufzeitverhalten besitzen. Dies wird
sich im Allgemeinen nicht komplett vermeiden lassen, wenn man auf Korrekt-
heit Wert legt, aber es muss zumindest sichergestellt werden, dass die einfachen
Konvertierungen vom Typsystem behandelt werden können. Der im Vortrag vor-
gestellte Ansatz basiert stark auf der Arbeit ,,Towards a Type System for Ana-
lysing JavaScript Programs“ von Peter Thiemann [4].

Vor der Vorstellung des Typsystems wird JavaScript anhand einiger Beispiele
dargestellt. Hierdurch soll ein Gefühl für die Sprache vermittelt werden, und auf
einige Fehlerquellen hingewiesen werden, die für einen Programmierer schwer zu
erkennen sind.

Ein kurzes Beispiel für einen Fehler in JavaScript Programmen, der sehr
schwer zu finden ist, und der auf dem Konvertierungsverhalten von JavaScript
basiert, wird hier kurz erwähnt.

var y = 0;
y.x = "Hallo";
alert(y.x);

Der angegebene Programmausschnitt erstellt eine Variable y, und weist dieser
den Floatwert 0.0 zu. Durch die automatische Konvertierung wird in der nächs-
ten Zeile einem Objekt, das durch Konvertierung der Zahl in ein Objekt ent-
standen ist, die Eigenschaft x gegeben, und diese auf den Wert "Hallo" gesetzt.
Leider wird dieser Wert in der dritten Zeile nicht ausgegeben, denn das Objekt
wurde nicht an die Variable y gebunden. Aus diesem Grund wird in Zeile drei
nochmals ein zum Floatwert 0.0 passendes, anderes Objekt erstellt. Dies besitzt
keine Eigenschaft x. Somit erscheint undefined auf dem Bildschirm (Details
siehe [4] oder [2]).

An dem Beispiel sieht man eine der zentralen Herausforderungen, denen sich
ein Typsystem für JavaScript stellen muss, neben den Konvertierungen von Wer-
ten. Objekte von JavaScript haben die Fähigkeit, dynamisch zur Laufzeit Ihre
Eigenschaften, sowohl den Wert auch auch die Existenz der Eigenschaften, zu
verändern.

Es folgt eine kurze Vorstellung des Typsystems aus meiner Diplomarbeit [2].
Das Typsystem beinhaltet Union- und Intersectiontyps, behandelt die automati-
schen Konvertierungen von Werten in JavaScript, und kann mit den dynamischen
Objekte und der Fehlerbehandlung vom JavaScript umgehen. Es stellt z.B. si-

20

cher, dass Fehler, wie im Programmausschnitt dargestellt, nicht möglich sind,
aber es akzeptiert den Ausdruck "2" * 4.

Ein paar Beispiele gültiger JavaScript Programme, die das vorhandene Typsys-
tem noch zurückweist, werden im Vortrag vorgestellt und bildet eine Überleitung
zu der Frage, wie das Typsystem geeignet erweitert werden kann, um auch mit
den in diesen Beispielen angesprochenen Problemen umgehen zu können. Wie
und ob dies möglich ist, ist noch unklar. Es werden ein paar mögliche Ansätze
diskutiert. Das vorhandene Typsystem erlaubt es bis jetzt lediglich, Constraints
zu generieren. Lösungstrategien dieser Constraints stellt ein weiteres Diskussi-
onsthema dar.

Literatur

1. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Speci-
fication, The (3rd Edition) (Java Series). Addison-Wesley Professional, July 2005.

2. Phillip Heidegger. Typbasierte Werkzeuge für Fehlersuche und Wartung von Java-
Script Programmen, 2007. Deutschland, Universität Freiburg, Diplomarbeit.

3. Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on suc-
cess typings. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN symposium on
Principles and practice of declarative programming, pages 167–178, New York, NY,
USA, 2006. ACM Press.

4. Peter Thiemann. Towards a type system for analyzing javascript programs. In
European Symposium On Programming, pages S. 408 – 422, 2005.

5. Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript instrumen-
tation for browser security. 2007.

21

Akton-Algebra:
Programmierung diskreter physikalischer Systeme

Hermann von Issendorff

Institut für Netzwerkprogrammierung
Hauptstr. 40, D-21745 Hemmoor

1. Einführung
Zwischen Software und Hardware besteht bisher ein Bruch. Räumliche Strukturen
können bisher nicht in Form eines schrittweise ausführbaren Programms, d.h.
konstruktiv beschrieben werden. Mit anderen Worten: Es gibt bisher keine
Programmiersprache mit Raumzeitsemantik. Aus diesem Grunde war es bisher auch
nicht möglich, die Aufbauordnung diskreter physikalischer Systeme als Folge von
Konstruktionsschritten formal zu beschreiben. Ein wichtiges Beispiel diskreter
physikalischer Systeme ist das Layout elektronischer Schaltungen.

Hardware-Design-Sprachen, beispielsweise VHDL oder Verilog, simulieren
lediglich die Funktionen und Zeitverhalten einer Schaltung. Für das Layout, d.h. für
die Erzeugung der Hardware-Struktur, werden nur die Verbindungen zwischen
abhängigen Komponenten übernommen (Paarlisten), die räumliche Nachbarschaft der
Komponenten bleibt unberücksichtigt. Ersatzweise muss daher mit sehr aufwändigen
stochastischen Verfahren eine neue Layout-Struktur erzeugt werden, die generell
suboptimal und viellagig ist.

Akton-Algebra ist eine Programmiersprache, mit der sich diskrete räumliche
Strukturen, die dynamisch oder statisch sein können, konstruktiv beschreiben lassen.
Akton-Algebra hat damit einen wesentlich allgemeineren und damit gänzlich anderen
Ansatz als klassische Programmiersprachen, die auf die Struktur des zentralen
Speichers und damit auf das Konzept des sequentiellen Zustandsautomaten
ausgerichtet sind. Unter allen möglichen dynamischen oder statischen Strukturen
bilden die klassischen Rechner nur eine kleine Klasse, und ebenso die ihr
zugeordneten klassischen Programmiersprachen. Eine markante Eigenschaft dieser
Programmiersprachen ist, dass alle raumbezogenen strukturellen Merkmale wie
Kreuzungen oder Zyklen in Komplexkonstrukten verborgen sind. Kreuzungen sind
z.B. in jeder bedingten Verzweigung und in jeder arithmetischen Operation
unvermeidlich, Zyklen sind Bestandteil jeder Speicherung und jeder Rekursion. Mit
Akton-Algebra dagegen können alle räumlichen Merkmale und alle Funktionen
analytisch beschrieben werden und damit auch alle klassischen
Programmiersprachen.

Auf abstrakter Ebene beschreibt Akton-Algebra die topologische Struktur
gerichteter Knotennetze. Da Akton-Algebra kompositional ist, kann jeder Knoten
endlich viele Eingangs- und endlich viele Ausgangskanten haben. Die Menge der
Basiselemente der Akton-Algebra gliedert sich zum einen in eine Menge, die die
Grundstrukturen gerichteter Knotennetze repräsentieren, zum anderen in zwei weitere

22

Mengen, die zur Abbildung der dreidimensionaler Strukturen auf die eindimensionale
aktonalgebraischen Beschreibung erforderlich sind.

Auf konkreter Ebene können den Knoten Funktionen, Abmessungen oder beides
zugeordnet werden. Durch Zuweisung von Funktionen zu den Knoten wird ein
Knotennetz zu einem Datenverarbeitungssystem und die aktonalgebraische
Beschreibung des Knotennetzes folglich zu einem DV-Programm. Da dieses DV-
Programm aber die räumliche Struktur des Datenverarbeitungssystems enthält,
unterscheidet es sich wesentlich von klassischen Programmen. Um auf einem
klassischen Rechner ablauffähig zu werden, muss es auf dessen sequentielle
Verarbeitungsstruktur transformiert werden. Durch Zuweisung von Abmessungen zu
den Knoten wird ein Knotennetz zu einem materiellen Objekt, und seine
aktonalgebraische Beschreibung folglich zu einem Layout-Programm, d.h. zu einer
Bauanleitung für das materielle Objekt. Layout-Sprachen, mit denen die planare oder
räumliche Struktur eines materiellen Objekts beschrieben werden kann, gibt es bisher
nicht.

2. Eigenschaften und Aufbau der Akton-Algebra
Diskrete reale Systeme bestehen aus einer Menge materieller Komponenten, die
statisch oder dynamisch sein können. Wenn die Komponenten dynamisch sind, d.h.
wenn sie materielle Objekte produzieren oder Funktionen auswerten, dann haben sie
ein zeitliches Verhalten und werden in einer zeitlichen Ordnung aktiviert. Sind die
Komponenten statisch, dann kann man ihnen eine Assemblierungsordnung zuweisen,
die ebenfalls eine zeitliche Ordnung induziert.

Abstrahiert man ein diskretes reales System von seiner Metrik, dann reduziert sich
das System auf ein gerichtetes Knotennetz, dessen Knoten die Funktionen des
Systems enthalten. Abstrahiert man von der Funktionalität, dann erhält man ein
gerichtetes Netz von Bausteinen, die gewisse räumliche Abmessungen haben.
Abstrahiert man von der Metrik und der Funktionalität, dann erhält man ein
Knotennetz, das nur noch die Abhängigkeiten der Knoten wiedergibt. In einem
solchen gerichteten Netz sind irgendwelche zwei Knoten entweder abhängig oder
unabhängig, und jeder Knoten kann mit einer endlichen Zahl von Vorgängerknoten
und einer endlichen Zahl von Nachfolgerknoten verbunden sein.

Konkretisiert man das Knotennetz wieder mit seiner ursprünglichen Metrik und
Funktionalität, dann erhält man wieder das ursprüngliche System. Das gerichtete
Knotennetz stellt damit eine Strukturklasse dar, die allen diskreten realen Systemen
eigen ist. Eine Programmiersprache, die gerichtete Knotennetze beschreibt, wäre
daher eine gemeinsame Grundlage für alle diskreten realen Systeme. Akton-Algebra
hat diese Eigenschaft.

Es ist zu betonen, dass die Abstraktion von Metrik und Funktionalität keine
Abstraktion von Raum und Zeit bedeutet. Jeder Knoten eines Knotennetzes hat immer
eine endliche, wenn auch unbekannte, räumliche Ausdehnung. Der Durchlauf vom
Knoteneingang zum Knotenausgang hat also immer eine endliche, wenn auch
unbekannte, zeitliche Dauer. Das bedeutet, dass jede Aktion, die auf einem
Netzknoten durchgeführt wird, ein diskreter Schritt in Raum und Zeit ist. Für diesen
Schritt, gleich ob er eine konkrete Komponente oder einen abstrakten Netzknoten
bezeichnet, wurde die Bezeichnung "Akton" gewählt.

23

Das Knotennetz eines realen Systems hat generell eine dreidimensionale Struktur.
Ein Programm dagegen besteht aus einer geordneten Folge von Symbolen und hat
damit eine eindimensionale Struktur. In diesem Abschnitt wird gezeigt, dass ein
gerichtetes dreidimensionales Knotennetz eindeutig und vollständig auf die
eindimensionale Beschreibung eines Programmtextes abgebildet werden kann.

Die Klasse der Knotennetze, mit der wir uns hier befassen, ist gerichtet und hat
immer zumindest einen Eingangs- und zumindest einen Ausgangsknoten. Jeder
Knoten eines Knotennetzes hat eine Eingangs- und eine Ausgangsschnittstellen. Die
Schnittstellen können zwei verschiedene Elemente enthalten, die mit pin und gap
bezeichnet werden. Ein pin kennzeichnet die Verbindung zu einem anderen Knoten;
ein gap kennzeichnet eine Leerstelle. Jede Schnittstelle enthält mindestens ein pin-
oder ein gap-Element.

Eine universelle Eigenschaft aller gerichteten Knotennetze ist, dass sie mit 4
fundamentalen Knotensorten aufgebaut werden können. Die erste, Head genannte
Sorte, hat keine Vorgängerknoten, aber einen Nachfolgerknoten. Der Input von Head
enthält daher nur ein gap. Die zweite, Tail genannte Sorte, hat keinen Nachfolger
aber einen Vorgänger. Der Output von Tail enthält daher nur ein gap. Die dritte, Body
genannte Sorte, hat einen Vorgänger und einen Nachfolger, einen Vorgänger und
zwei Nachfolger oder zwei Vorgänger und einen Nachfolger, d.h. mindestens ein pin
im Input und im Output. Die letzte, CS (Closed System) genannte Sorte, hat weder
Vorgänger noch Nachfolger, d.h. nur gaps im Input und im Output.

Akton

{Head, Body, Tail, CS}

{Entry, Up, Set} {Fork, Join, Link} {Exit, Down, Off}

Akton

{Head, Body, Tail, CS}

{Entry, Up, Set} {Fork, Join, Link} {Exit, Down, Off}

Bild 1: Sortenhierarchie der Strukturknoten.

Die vier Knotensorten Head, Tail, Body und CS bilden das fundamentale
Vokabular der Akton-Algebra. Sie sind die erste Ebene einer Sortenhierarchie (Bild
1), an deren Spitze die All-Sorte Akton steht.

Die Knotensorten nachfolgender Ebenen haben zusätzliche Eigenschaften. Als
Untersorten von Body lassen sich unmittelbar die drei Sorten Fork, Join und Link
einführen. Die Fork-Sorten haben einen Vorgänger und zwei Nachfolger, die Join-
Sorten zwei Vorgänger und einen Nachfolger und Link einen Vorgänger und einen
Nachfolger. Sie sind die elementaren Knoten mit den Eigenschaften von Body.
Ebenso lässt sich zu Head die Untersorte Entry und zu Tail die Untersorte Exit
einführen, die die Eigenschaften eines elementaren Systemeingangs bzw. elementaren
Systemausgangs haben. Zwei weitere Untersorten von Head und Tail sind für die
Abbildung gerichteter räumlicher Knotennetze auf die eine Dimension eines
Programmtextes erforderlich.

24

Knotennetze haben eine Struktur, die wegen der Abstraktion von der Metrik nur
noch topologisch ist. Topologische Strukturen erhalten die
Nachbarschaftsbeziehungen der Knoten, wenn das Knotennetz in irgendeiner Weise
stetig deformiert wird. Als Deformation sind auch Schnitte im Netz zugelassen,
sofern die Zuordnung der Schnittenden gewährleistet ist. Macht man die Deformation
auf die gleiche Weise rückgängig, dann erhält man wieder die Originalstruktur. Im
Folgenden wird diese Erhaltungseigenschaft angewendet, um die räumliche Struktur
gerichteter Knotennetzen bijektiv auf die eine Dimension eines Programmtextes
abzubilden.

Zur Beschreibung der topologischen Raumstruktur eines Knotennetzes ist ein
topologisches Referenzsystem erforderlich. Wegen der fehlenden Metrik kann dieses
nur relational sein. Ein dreidimensionales relationales Referenzsystem lässt sich
durch die Annahme eines Beobachters definieren, der zwischen links und rechts,
oben und unten, sowie vorne und hinten unterscheiden kann. Unter diesen drei
orthogonalen Achsen muss eine ausgewählt werden, der die Richtung des
Knotennetzes aufgeprägt wird. Diese Achse erhält dadurch den Charakter einer Lese-
oder Ausführungsrichtung. Dem üblichen westlichen Lesestandard folgend wählen
wir hierfür die Richtung von links nach rechts. Da jeder Knoten eine Aktion
repräsentiert und jede Aktion eine Dauer hat, induziert diese Festlegung auch eine
Zeitrichtung; "links" kann daher auch als "früher" und "rechts" als "später"
interpretiert werden.

y

ux

v y

Down ux

vUp

Link

y

ux

v y

Down ux

vUp

Link

 Bild 2: Planarisierung, d.h.. Beseitigung von
 Kreuzungen, durch Aufschneiden und
 Einführen eines Down/Off- Paars.

Die Abbildung des Knotennetzes auf den Programmtext erfolgt in mehreren
Schritten:

1. Das Knotennetz wird so orientiert, dass alle Systemeingänge links und alle
Systemausgänge rechts liegen.

2. Das Knotennetz wird auf eine Ebene projiziert, die durch links/rechts und
oben/unten aufgespannt ist. Dabei werden generell Verbindungskreuzungen
entstehen, die jeweils durch die Ersetzung der untenliegenden
Knotenverbindung durch ein mit Down/Up bezeichneten Sortenpaars
aufgelöst werden (Bild 2). Down ist Untersorte von Tail und Up ist
Untersorte von Head.

3. Das resultierende Knotennetz ist planar, kann aber noch nichtorientierbare
Teilstrukturen, d.h. Zyklen oder Traversen enthalten. Diese Strukturen
werden durch Einführung eines weiteren Sortenpaars, das mit Off/Set
bezeichnet wird, aufgeschnitten und sodann ebenfalls von links nach rechts

25

orientiert (Bild 3). Off ist Untersorte von Tail, und Set ist Untersorte von
Head. Das Off/Set-Paar wird auch zum Aufspalten von Knotennetzen
verwendet, die keinen Eingang (Entry) und keinen Ausgang (Exit) haben.

4. Das planare, vollständig ausgerichtete Knotennetz kann nun zu einer
gerichteten Sequenz umgeformt werden, die partiell aus Teilsequenzen
abhängiger Knoten besteht. Zur Kennzeichnung der Abhängigkeit wird eine
"Next" genannte und mit dem Symbol ">" bezeichneten links/rechts-Relation
eingeführt. In gleicher Weise wird zur Kennzeichnung der Unabhängigkeit
von Teilsequenzen eine "Juxta" genannte und mit dem Symbol "/"
bezeichneten oben/unten-Relation eingeführt. Um die Klammerung zu
reduzieren wird zudem angenommen, dass Juxta stärker bindet als Next.

x
y u

OffSet

v
y u vx

Link

x zy

u v w

OffSet

v

yx z

u w

Link

x
y u

OffSet

v
y u vx

Link

x zy

u v w

OffSet

v

yx z

u w

Link

Bild 3: Orientierung von Zyklen und Traversen durch

Aufschneiden und Einführen eines Off/Set-Paars.

3. Funktionale Beschreibung realer Systeme
Die Sprache der Aktonalgebra, mit der sich, wie gezeigt wurde, die topologische
Struktur abstrakter Systemen programmieren lässt, kann nun in einfacher Weise zu
Programmiersprachen erweitert werden, die die Funktionalität und die Metrik
konkreter realer Systeme beinhalten. Die Akton-Algebra bildet dabei das einheitliche
Skelett aller so erzeugbaren Programmiersprachen.

Wir beginnen mit der Einführung von Funktionalität. Sie prägt einem System ein
zeitliches Verhalten auf: Die Vorgänge auf dem Knotennetz hängen von den
Eingabeparametern ab.

Funktionen sind definitionsgemäss linkstotale und rechtseindeutige Relationen.
Als Akton haben sie damit immer mindestens einen Eingangsparameter und genau
einen Ausgangsparameter, d.h. eine Link- oder eine Join-Struktur. Binäre Funktionen
sind direkt durch elementare Link- und Join-Strukturen darstellbar. Höhere
Funktionen, d.h. solche mit mehr als zwei Eingangsparametern, lassen sich daraus
durch Komposition aufbauen. Die Parameter können entweder als analoger Wert auf
einem Pin oder als digitale Werte auf mehreren Pins dargestellt werden. Formal
werden Funktionen als Untersorten zu den Sorten Link und Join definiert.

26

In diesem Kapitel wird lediglich ein einfaches digitales System als Beispiel
behandelt. Die dabei gewonnenen Erkenntnisse können aber problemlos auf
komplexe digitale, analoge oder gemischt digital/analoge Systeme angewendet
werden.

Bekanntlich kann jedes funktionale digitale System unter Verwendung nur einer
der Funktionssorten Nand oder Nor aufgebaut werden. Unerwähnt bleibt dabei
meistens, dass immer auch ein Verbindungselement, d.h. ein Element mit 1-1-
Funktion, erforderlich ist. Hier soll es mit Wire bezeichnet werden. Statt der
Funktionssorten Nand oder Nor werden im Folgenden nur die Funktionssorte And
und dazu die inverse Funktionssorte Not verwendet. Als Untersorten von Join und
Link werden somit definiert

Join:={And, ..} und Link:={Wire, Not}.

Zur Schaltungssimulation muss jeder Funktionssorte eine Wahrheitstabelle
zugeordnet werden.

Als Beispiel für ein digitales System dient hier das SR-Flipflop, d.h. die einfachste
Schaltung eines digitalen Speichers (Bild 4). Die Schaltung mit den klassischen
Schaltsymbolen gezeigt. Die Ein- und Ausgangsparameter sind spezifiziert durch:

Entry:={Ea,Eb} mit out(Ea):= a, out(Eb):= b,

Exit:={Xc,Xd} mit in(Xc):= c, in(Xd):= d und
a,b,c,d∈ {0,1}

a

b d

ca

b d

c

Bild 4: Schaltbild eines SR-Flipflops.

Die punktierte Linie stellt eine unterkreuzende Verbindung dar, im Akton-
Ausdruck beschrieben durch ein Down/Up-Paar. Die gestrichelte Linie stellt eine
Verbindung auf der Schaltungsebene dar, im Akton-Ausdruck beschrieben durch ein
Off/Set-Paar. Die Schaltung SRFkt wird durch den Akton-Ausdruck

SRFkt :=
 (Wire/Up>And>Not>Fork>Wire/Off)/(Set/Wire>And>Not>Fork>Down/Wire)

mit den Schnittstellen
in(SRFkt) = {pin/pin}

out(SRFkt) = {pin/pin}.

beschrieben. Der vollständige Ausdruck, der auch die Spezifikation der Ein- und
Ausgänge des Systems einschliesst, ist damit

Ea/Eb > SRFkt > Xc/Xd.

27

4. Metrische Beschreibung realer Systeme (Layout)
Die Abbildung eines diskreten realen Systems auf ein abstraktes Knotennetz setzt
Stetigkeit voraus, was bedeutet, dass die Komponenten stetig verformbar sein
müssen. Die gleiche Verformbarkeit muss natürlich gegeben sein, wenn das abstrakte
Knotennetz wieder konkretisiert werden soll, d.h. die ursprüngliche Metrik des realen
Systems oder eine andere Metrik annehmen soll.

Die Forderung nach stetiger Verformbarkeit lässt sich durch die beiden
Annahmen ersetzen, dass alle Komponenten eine konvexe Oberfläche haben und
weitere, funktionsneutrale Komponenten eingefügt werden dürfen.

Ein einfaches Verfahren zur Konkretisierung lässt sich durch die Einführung
eines einheitlichen quadratischen bzw. kubischen Rasters erreichen. Jede
Systemkomponente ist dann in Vielfachen des Rastermasses beschreibbar.

Als Beispiel für die metrische Beschreibung wird wieder das SR-Flipflop
verwendet. Zur Unterscheidung von der funktionalen Beschreibung verwenden wir
einfache Grossbuchstaben für die Schaltungskomponenten. In Anlehnung an die
realen Gegebenheiten wird festgelegt, dass And-Komponenten A in Breite und Länge
die Abmessungen 2×3, Inverter N und Down/Up- Komponenten V (Via) die
Abmessungen 2×2, und die Strukturkomponenten von Fork F und Wire W die
Abmessungen 1×1 haben.

Soweit sich durch diese Festlegungen die Grösse der Schnittstellen ändert, werden
diese durch gap-Elemente erweitert. Dies ist bei den Komponenten A, N und V der
Fall. Da die gap-Elemente an beliebiger Stelle in die Schnittstellen eingefügt werden
können, ergeben sich weitere Untersorten. Im Beispiel werden nur die Schnittstellen
definiert, die tatsächlich Verwendung finden. Bezüglich A ist das out(A):= gap/pin
und bezüglich N in(N):= gap/pin und out(N):= gap/pin. Bezüglich V ist zwischen Vu,
out(Vu):= pin/gap und Vd, in(Vd):= pin/gap zu unterscheiden.

Für die Sorten Fork und Wire werden je drei Untersorten eingeführt, die
unterschiedliche Positionen des Outputs relativ zum Input haben. Bei Wire-
Komponenten W kann der Output relativ zum Input gegenüber, links oder rechts
liegen, was durch die Indizes s (straight), l (left) und r (right) gekennzeichnet werden
soll. Bei Fork-Komponenten F geschieht das durch ein Indexpaar, mit dem die
relativen Positionen der beiden identischen Output-Teile angegeben werden. Als
metrische Untersorten von Fork und Wire werden somit definiert:

F:={Fls, Fsr, Flr}, W:={Ws, Wl, Wr}.

Zur Verkürzung der Schreibweise wird zusätzlich eingeführt, dass die Länge von
Ketten einer Aktonsorte x durch einen präfixen Faktor n angegeben werden. Der
Faktor ist definiert durch:

(n+1)x= nx>x, n>0, 1x=x, n∈ N, x∈ A+ .

Mit diesen Vorgaben kann das Layout des SR-Flipflops unter Anwendung der
Termersetzungsregeln von Tabelle 1, insbesondere der Link-Regeln, in vielfacher
Weise verändert werden. Ein besonders kompaktes Layout des SR-Flipflops ist in
Bild 5 dargestellt und in dem Aktonausdruck SRLay beschrieben:

28

A N

A N

A N

A N

Bild 5: Layout eines SR-Flipflops

SRLay = (2Ws/Vu>A>N>Fsr>2Ws/((Wr>4Ws>2Wl)/3Ws>A>N>Fsl>Vd/Ws)

Das konkrete SR-Flipflop SRLay hat die Schnittstellen

in(SRLay) = {pin/gap/gap/gap/pin}
out(SRLay) = {gap/pin/gap/gap/pin}.

5. Zusammenfassung und Anmerkungen
In dieser Beschreibung wird eine Akton-Algebra genannte Programmiersprache
vorgestellt, mit der sich nicht nur die Verarbeitung von Daten bzw. die Auswertung
von Funktionen programmieren lässt, sondern auch die räumliche Struktur des
Systems, auf dem die Verarbeitung stattfindet. Bisher gibt es keine andere
Programmiersprache, die das leistet.

Beides, die Programmierung der Funktionen und die Programmierung der
räumlichen Struktur bzw. Layouts wurde am Beispiel des SR-Flipflops gezeigt.

Zu ergänzen ist, dass Akton-Algebra nicht etwa auf die Schaltungsebene
beschränkt ist, sondern mittels Komposition auf jeder höheren Ebene angewendet
werden kann. Beispielsweise können in der gleichen Weise auch Rechnernetze
beschrieben werden, d.h. Netze, in denen die Rechner die Komponenten sind.

29

Synthesizing Design Models from Scenarios by

Learning

Benedikt Bollig1, Joost-Pieter Katoen2, Carsten Kern2, and Martin Leucker3

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

3 Institut für Informatik, TU München, Germany

Extended Abstract:

The elicitation of requirements is the main initial phase in the typical software
engineering development cycle. A plethora of elicitation techniques for require-
ment engineering exist. Popular requirement engineering methods, such as the
Inquiry Cycle and CREWS [NE00], exploit use cases and scenarios to specify
the system’s requirements. Sequence diagrams are also at the heart of the UML.
A scenario is a partial fragment of the system’s behavior, describing the system
components, their message exchange and concurrency. Their intuitive yet formal
nature has resulted in a broad acceptance. Scenarios can be positive or nega-
tive, indicating a desired or unwanted system behavior, respectively. Different
scenarios together form a more complete description of the system behavior.

The following design phase in software engineering is a major challenge as it
is concerned with a paradigm shift between the requirement specification—a par-
tial, overlapping and possibly inconsistent description of the system’s behavior—
and a conforming design model, a complete behavioral description of the system
(at a high level of abstraction). During the synthesis of design models, usually
automata-based models that are focused on intra-agent communication, con-
flicting requirements will be detected and need to be resolved. Typical resulting
changes to requirements specifications include adding or deleting scenarios, and
fixing errors that are found by a thorough analysis (e.g., model checking) of the
design model. Obtaining a complete and consistent set of requirements together
with a related design model is thus a highly iterative process.

We propose a novel technique that is aimed to be an important stepping stone
towards bridging the gap between scenario-based requirement specifications and
design models. The novel aspect of our approach is to exploit learning algorithms
for the synthesis of distributed design models from scenario-based specifications.
Since message-passing automata (MPA, for short) [BZ83] are a commonly used
model to realize the behavior as described by scenarios, we adopt MPA as de-
sign model. We present a procedure that interactively infers an MPA from a
given set of positive and negative scenarios of the system’s behavior provided
as message sequence charts (MSCs) (cf. figure 1). This is achieved by generaliz-
ing Angluin’s learning algorithm for deterministic finite-state automata (DFA)
[Ang87] towards specific classes of bounded MPA, i.e., MPA that can be used to
realize MSCs with channels of finite capacity. Moreover we investigated classes
of regular MSC languages and corresponding MPA which can (not) be learned.

30

Tool

User

MSCs DFA
Synthesis (MPA)

Interaction

host fct.

snd

snd

host fct.

snd

ack

host fct.

snd

ack

ack

1

2

3

47

8

9

5

6

!snd

?snd

!snd

!snd

!ack

?snd!snd

?snd!snd?ack!ack

!ack ?ack

p!q(req)

q?p(req)p!q(req) p!q(ack)

q?p(req) q!p(ack)

A1: A2:

Fig. 1. Transforming MSCs into MPA

The full version of this work can be found in [BKKL07]. We also developed
a tool named Smyle (Synthesizing models by learning from examples) which
supports our approach. A version of Smyle can be freely downloaded from the
tool’s homepage at: http://smyle.in.tum.de.

References

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

[BKKL07] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker.
Replaying play in and play out: Synthesis of design models from scenarios
by learning. In Orna Grumberg and Michael Huth, editors, Proceedings of
the 13th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’07), volume 4424 of Lecture Notes in
Computer Science, pages 435–450, Braga, Portugal, March 2007. Springer.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. of
the ACM, 30(2):323–342, 1983.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In
ICSE 2000, pages 35–46. ACM, 2000.

31

Google’s MapReduce Programming
Model — Revisited?

Ralf Lämmel

Microsoft Corp., Data Programmability Team, Redmond, USA

Abstract. Google’s MapReduce programming model serves for process-
ing large data sets in a massively parallel manner. We deliver the first
rigorous description of the model including its advancement as Google’s
domain-specific language Sawzall. To this end, we reverse-engineer the
seminal papers on MapReduce and Sawzall, and we capture our find-
ings as an executable specification. We also identify and resolve some
obscurities in the informal presentation given in the seminal papers.
We use typed functional programming (specifically Haskell) as a tool
for design recovery and executable specification. Our development com-
prises three components: (i) the basic program skeleton that underlies
MapReduce computations; (ii) the opportunities for parallelism in exe-
cuting MapReduce computations; (iii) the fundamental characteristics of
Sawzall’s aggregators as an advancement of the MapReduce approach.
Our development does not formalize the more implementational aspects
of an actual, distributed execution of MapReduce computations.

Keywords: Data processing; Parallel programming; Distributed pro-
gramming; Software design; Executable specification; Typed functional
programming; MapReduce; Sawzall; Map; Reduce; List homomorphism;
Haskell.

? The full paper appears in the Science of Computer Programming journal.

32

Lifting Curry’s Monomorphism Restriction

Wolfgang Lux

University of Münster
wlux@uni-muenster.de

Abstract. The multi-paradigm declarative language Curry combines
features from modern functional, logic, and functional-logic program-
ming languages. Curry’s syntax is similar to that of the functional lan-
guage Haskell and, also like Haskell, Curry’s type system is based on the
Hindley-Milner typing discipline, which allows automatic type inference
without declaring types explicitly. However, Curry’s type system suffers
from a monomorphism restriction that requires the types of all local vari-
ables to be monomorphic, whereas in the Hindley-Milner type system,
the types of let-bound variables can be generalized polymorphically.

Curry’s monomorphism restriction is a consequence of the presence of un-
bound logical variables whose type cannot be generalized. Yet, restricting
all let-bound variables to monomorphic types unnecessarily causes rejec-
tion of some perfectly sound programs and also may be an obstacle to
compiling Haskell programs with a Curry compiler. This paper shows
how Curry’s monomorphism restriction can be lifted for a broad class of
definitions by means of a purely syntactic analysis. This analysis is re-
lated to the value restriction employed by ML-like languages in order to
ensure type soundness of programs in the presence of mutable variables.

1 Introduction

The multi-paradigm declarative language Curry [Han06] aims at amalgamating
the most important features from functional, logic, and functional-logic program-
ming languages. Curry’s syntax and semantics for ground expressions are similar
to that of the functional language Haskell [Pey03]. In particular, Curry supports
the introduction of local functions and variables inside let-declarations and with
where clauses. Local declarations are also used in order to introduce logical vari-
ables, which in contrast to many other logic and functional-logic languages must
be declared explicitly.

Like other modern declarative languages, Curry’s type system is based on
the Hindley-Milner typing discipline [Hin69,DM82], which combines paramet-
ric polymorphism with automatic type inference. As an extension to the basic
Hindley-Milner type system, Curry supports polymorphic recursion for explicitly
typed function declarations. On the other hand, Curry’s type system also suffers
a serious restriction: it does not support polymorphic generalization of the types
of local variables declared in let expressions and where clauses. For instance, all
definitions in Fig. 1 are not valid according to Curry’s typing rules because the

33

f1 = (1:nil, ’a’:nil) where nil = []

f2 = [z (), z False] where z = const 0

f3 = last (last "Curry")

where last = (λxs → let y,ys free in xs =:= ys ++ [y] &> y)

Fig. 1. Functions using polymorphic local variables

local variables nil, z, and last are used at different types in the bodies of their
respective functions.

The monomorphism restriction for let-bound variables in Curry is motivated
by the fact that logical variables must have a monomorphic type. If polymor-
phic types were allowed for logical variables, it would be possible to define a
polymorphic cast function with type ∀αβ.α → β

cast x | x=:=y = y where y free

This typing is unsound because it would allow casting the type of an expression
into any other type1. Furthermore, logical variables may appear in the result of
a function, e.g.,

unknown = x where x free

which is defined in the Curry Prelude. Note that a different logical variable is
returned for each use of this function and therefore the constraint

(unknown,unknown) =:= (1,[])

is satisfiable.
Nevertheless, all definitions from Fig. 1 are perfectly sound. Furthermore, the

definition of f3 would be accepted if the local variable definition were replaced
by a function definition

last xs = let y,ys free in xs =:= ys ++ [y] &> y

Thus, Curry’s monomorphism restriction causes some perfectly sound definitions
to be rejected and limits the usability of the so-called point-free programming
style. In this paper we propose a modification to Curry’s typing rules that allows
inferring polymorphic types for let-bound variables when the bound expression
cannot contain any logical variables.

The rest of this paper is structured as follows: In the following section we
will first review Curry’s present typing rules. In Sect. 3 we will identify a class of
1 In fact, such a polymorphic cast function can be implemented in current Curry

implementations by abusing an extension that allows evaluating equality constraints
between partial applications. For instance, the type ∀αβ.α → β is inferred for the
function

cast’ x | ign x =:= ign y = y where y free; ign x y = x

34

expressions for which it is easy to compute groundness information. Based on this
class, we will propose an extension of the typing rules that allows polymorphic
generalization for variables bound to ground expressions. The fourth section
presents related work and in Sect. 5 we will consider the relation of Curry’s
monomorphism restriction to the often criticized monomorphism restriction in
Haskell. The final section section then concludes and gives an outlook on future
work.

2 Curry’s Typing Rules

The typing rules for Curry as presented in the Curry report (cf. Sect. 4.2 of
[Han06]) assume that all local declarations of a program except for let-free dec-
larations introducing new logical variables have been lifted into arguments of
auxiliary functions. Thus, all variables bound in let expressions become lambda-
bound variables in the transformed programs and their types are not generalized
according to the typing rules.

Since we are interested in generalizing the types of (some) let-bound variables,
we will not perform such lifting. Note that keeping local variable declarations
also corresponds with recent approaches to define the operational semantics of
functional-logic programs [AHH+02]. In order to simplify the presentation of
the typing rules we will consider only a core language whose syntax is given in
Fig. 2. We use the notation xn as a abbreviation for the sequence x1, . . . , xn.

P ::= d1; . . . ; dn Programs
d ::= data T xn = C1τ1n1 | · · · | Cmτmnm Declarations

| f x1 . . . xn = e
τ ::= x | T τn | τ1 → τ2 Types
e ::= x | C | f Expressions

| e1 e2

| λx.e
| let x = e1 in e2

| let x free in e
| case e of { t1 → e1; . . . ; tn → en }

t ::= C xn Patterns

Fig. 2. Syntax of the core language

Within our language, we distinguish variables (x, x1, x2, etc.), functions (f , f1,
f2, etc.), and constructors (C, C1, C2, etc.).

The arity of a constructor (ar(C)) is equal to the number of type arguments
in its declaration. The arity of a function (ar(f)) is determined by the number
of arguments in its definition. Constructor applications in patterns must be
saturated, i.e., n = ar(C).

35

FV(e) denotes the free variables of a (type) expression e.
A type scheme σ is a type expression with universal quantification for some of

its type variables, i.e., it has the form ∀α1 . . . αn.τ , where {α1, . . . αn} ⊆ FV(τ).
The types of all variables, functions, and constructors of a program are col-

lected in a type environment A, which is a mapping from identifiers to type
schemes. Fig. 3 shows the typing rules for expressions and patterns in the core
language. A function f x1 . . . xn = e is well typed with respect to a type environ-
ment A if A(f) = ∀αn.τ with {αn} = FV(τ) and λx1 . . . λxn.e :: τ is derivable
according to the typing rules. It is straight forward to show that these rules are
in fact equivalent to those presented in the Curry report. The auxiliary function

(INST)
A[x : τ] ` x :: τ
A[f : σ] ` f :: τ
A[C : σ] ` C :: τ

τ = INST(σ)

(APP) A ` e1 :: τ1 → τ2 A ` e2 :: τ1
A ` e1 e2 :: τ2

(ABS)
A[x/τ1] ` e :: τ2

A ` λx.e :: τ1 → τ2

(LET)
A ` e1 :: τ1 A[x/τ1] ` e2 :: τ2

A ` let x = e1 in e2 :: τ2

(EXIST)
A[x/τ1] ` e :: τ2

A ` let x free in e :: τ2

(CASE)
A ` e :: τ1 A ` (tn → en) :: τ1 → τ2

A ` case e of { t1 → e1; . . . ; tn → en } :: τ2

(ALT)
A[xn/τn] ` C xn :: τ A[xn/τn] ` e :: τ ′

A ` (C xn → e) :: τ → τ ′

Fig. 3. Typing rules for the core language

INST instantiates a polymorphic type scheme ∀αn.τ with fresh type variables:
INST(∀αn.τ) = τ [αn/βn] where βn fresh.

As mentioned before, and in contrast to the Hindley-Milner type system, the
type of a let-bound variable is not generalized within the body of a let expression
in the (LET) rule. Hence, all variables have monomorphic types, which is also
reflected in the first case of the (INST) rule.

3 Identifying Ground Expressions

As explained in the introduction, restricting the types of all let-bound variables
to monomorphic types is too restrictive. It would be sound to replace the (LET)

36

rule by two rules that enable polymorphic generalization for ground expressions.

(LET-M)
A ` e1 :: τ1 A[x/τ1] ` e2 :: τ2

A ` let x = e1 in e2 :: τ2
if e1 is not ground

(LET-P)
A ` e1 :: τ1 A[x/σ1] ` e2 :: τ2

A ` let x = e1 in e2 :: τ2

if e1 is ground,
σ1 = GEN(A, τ1)

In addition, the first case of the (INST) rule has to be generalized in the obvious
way. The auxiliary function GEN quantifies the free type variables of a type
scheme with respect to a type environment: GEN(A, τ) = ∀αn.τ where {αn} =
FV(τ) \ FV(A).

The problem here is to distinguish ground and non-ground expressions. The
information necessary for this distinction could be determined by a groundness
analysis. However, we prefer to not making a complex semantic analysis a pre-
requisite or part of type checking. Another option would be augmenting the type
system itself with groundness information. However, this comes with the cost of
complicating the type system and also leads to incompatibilities with Haskell.

Still, even without a semantic analysis we can approximate groundness of
expressions better than at present in Curry, where effectively every expression is
considered non-ground. While it is impossible to determine the logical variables
in the result of a function application without a semantic analysis, it is easy to
determine the set of logical variables in expressions which are normal forms al-
ready. Therefore, we identify a subclass of expressions that we call non-expansive.
In our core language, a non-expansive expression is either

– a variable x,
– an application of a n-ary constructor C to not more than n non-expansive

expressions,
– an application of a n-ary function f or lambda abstraction λx1 . . . λxn.e to

not more than n− 1 non-expansive expressions, or
– an expression let x = e1 in e2 where e1 and e2 are both non-expansive

expressions.

An expression is called expansive if it is not non-expansive.
It is easy to prove that the logical variables that can appear in the result of

reducing a non-expansive expression e must come from the context of e: LV(e) ⊆
FV(e) if e is non-expansive. Since the types of the variables in FV(e) are collected
in the type environment A and the free type variables in A are not generalized,
it is sound to replace the (LET) rule in Fig. 3 by the new rules (LET-M) and
(LET-P) from Fig. 4.

With the new typing rules all functions from Fig. 1 are now well typed.
Obviously, minor variations of these functions are still not considered well typed
with our simple approach, e.g.

f4 = (1:nil, ’a’:nil) where nil = id []

Here the type of nil is not generalized because the expression id [] is expansive.
However, we conjecture that examples like f4 occur rarely in practice.

37

(LET-M)
A ` e1 :: τ1 A[x/τ1] ` e2 :: τ2

A ` let x = e1 in e2 :: τ2
if e1 is expansive

(LET-P)
A ` e1 :: τ1 A[x/σ1] ` e2 :: τ2

A ` let x = e1 in e2 :: τ2

if e1 is non-expansive,

σ1 = GEN(A, τ1)

Fig. 4. Modified typing rules

4 Related Work

Our approach to identify ground expressions purely syntactically is inspired by
the value restriction used in ML-like languages in order to ensure type sound-
ness in the presence of mutable references. Mutable references present a similar
problem for type soundness like logical variables in Curry. A mutable reference
in Objective Caml has type ’a ref and supports assignment and dereference
operations (denoted by := and prefix !, respectively). New references are con-
structed and initialized by an application of the ref constructor. Even though
the ref type itself is polymorphic, the type of a variable bound to a mutable
reference must not be generalized since otherwise it would be possible to define
an unsound polymorphic cast function, e.g.,

let cast x = let r = ref x in !r

In order to prevent this unsoundness, early implementations of ML did not
allow generalization of any type variables which appear under a ref constructor.
However, it became soon clear that this approach was too restrictive as it did
preclude the polymorphic use of some useful functions that were using references
internally. For instance, in those early ML implementations the type of cast
would be monomorphic. However, since each application of cast uses its own
mutable reference and the visibility and lifetime of the reference do not extend
beyond the right hand side of cast, it is sound to assign type ∀α.α → α to cast.

A first step towards this more general typing was the introduction of imper-
ative type variables in the Tofte discipline [Tof90] which is used in Standard ML
90. Imperative type variables are marked with * and must be instantiated to
ground types whenever a side effect may occur. Later more refined type systems
based either on effect analysis by Talpin and Jouvelot [TJ92] or closure typing by
Leroy and Weis [LW91] were introduced. Finally, Wright and Felleisen [WF94]
proposed the value restriction, which is now used in ML-like languages and is
based on restricting polymorphic generalization to syntactic values. Due to the
fact that ML-like languages use an eager evaluation strategy and do not provide
logical variables, the class of non-expansive expressions in our proposal is slightly
different from syntactic values in ML.

Recently, Garrigue [Gar04] has proposed a relaxed version of the value re-
striction for ML, where polymorphic generalization is also allowed for all type

38

variables of a type which appear only in covariant positions. As a special rule,
the argument position of the ref type is always considered contravariant. Obvi-
ously, this relaxation does not apply in Curry because otherwise the type of the
variable x in the expression

let x = (let y free in y) in ...

would be generalized incorrectly to ∀α.α.
The problem of typing let-expressions in functional-logic languages has not

been addressed to our knowledge so far. This may, in part, be due to the fact
that many functional-logic languages, e.g. BABEL and T OY do not provide
local definitions.

5 Relation to Haskell’s Monomorphism Restriction

Haskell also suffers from a monomorphism restriction, which is often criticized.
The restriction in Haskell is related to overloading with type classes and is
present in order to avoid unexpected losses of efficiency. In particular, Haskell’s
monomorphism restriction prevents the generalization of all constrained type
variables in a definition that is syntactically a value definition, i.e., which is of
the form x = e. For instance, considering the two superficially functions sqr1
and sqr2 in

sqr1 x = x * x
sqr2 = λx → x*x

the function sqr1 has type ∀α.Num α ⇒ α → α, whereas the type variable α
is not generalized in sqr2’s type. Therefore, the expression (sqr1 (0::Int),
sqr1 (0::Double)) is well typed and (sqr2 (0::Int), sqr2 (0::Double))
is not. It is always possible to overcome this restriction with the help of an
explicit type signature. For instance, with a type signature sqr2 :: Num a ⇒
a → a the definitions of sqr1 and sqr2 become completely interchangeable.
The rationale behind Haskell’s monomorphism restriction is that the expression
bound to a variable is shared and its value evaluated at most once. However,
sharing is – necessarily – lost if the value of sqr2 is supposed to be used at
different instances of the Num class.2

The Haskell monomorphism restriction and the Curry monomorphism re-
striction are orthogonal. Thus, Haskell’s monomorphism restriction would apply
in just the same way in an implementation of Curry that is enriched with type
classes. On the other hand, we can use our distinction of expansive and non-
expansive expression in order to lift Haskell’s restriction. Since non-expansive
expressions cause no evaluation at runtime at all, the argument that losing shar-
ing can degrade performance does not apply. By applying our modified typing
2 In a dictionary based implementation of type classes, loss of sharing becomes obvious.

Without a type signature, sqr2 would be using a fixed Num dictionary. However, if
sqr2 is supposed to be used polymorphically, it acquires an implicit parameter for
the Num dictionary and thus becomes a unary function.

39

rule to overloaded value definitions, we see that the type of sqr2 can be gener-
alized to Num a ⇒ a → a.

6 Conclusion

In this paper we have presented a simple scheme that recovers polymorphic gen-
eralization for let-bound variables in some cases in the functional-logic language
Curry. As a consequence of this generalization, some programs, which previously
were rejected by Curry compilers, now become valid Curry programs. This gives
the programmer a greater freedom in the use of programming styles and also
leads to greater compatibility between Haskell and Curry.

As future work, we plan to formally prove the correctness of our typing
scheme. Furthermore, we plan to investigate the possibility of enriching Curry’s
type system with groundness information so that a larger class of programs will
be accepted. Yet, such information should be introduced in such a way that it
does not break compatibility with Haskell – at least most of the time.

References

[AHH+02] Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and Germán Vi-
dal. An operational semantics for declarative multi-paradigm languages.
ENTCS, 70(6), 2002.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In Proc. POPL’82, pages 207–212. MIT Press, 1982.

[Gar04] Jacques Garrigue. Relaxing the value restriction. In Yukiyoshi Kameyama
and Peter J. Stuckey, editors, Proc. FLOPS 2004, LNCS 2998, pages 196–
213. Springer, 2004.

[Han06] Michael Hanus (ed.). Curry: An integrated functional logic language. (ver-
sion 0.8.2).
http://www.informatik.uni-kiel.de/~mh/curry/report.html, 2006.

[Hin69] Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29–60, 1969.

[LW91] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment.
In Proc. POPL’91, pages 291–302, 1991.

[Pey03] Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries The
Revised Report. Cambridge University Press, 2003.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In
LICS, pages 162–173, 1992.

[Tof90] Mads Tofte. Type inference for polymorphic references. Information and
Computation, 89(1):1–34, 1990.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

40

Formalization of the Java 5.0 Type System

Martin Plümicke

University of Cooperative Education Stuttgart/Horb
Department of Information Technology

Florianstraße 15
D–72160 Horb

tel. +49-7451-521142
fax. +49-7451-521190

m.pluemicke@ba-horb.de

Abstract. With the introduction of Java 5.0 the type system has been
extended by parameterized types, type variables, type terms, and wild-
cards. As a result very complex types can arise. The term

Vector<? extends Vector<AbstractList<Integer>>>

is for example a correct type in Java 5.0.
In this paper we present a formalization of this type system. We define the
set of correct Java 5.0 type terms, formally. We give a formal definition
of the Java 5.0 subtyping ordering. Finally, we consider the properties of
the subtyping ordering, which follow from the introduction of wildcards.

1 Introduction

With the introduction of Java 5.0 [1] the type system has been extended by
parameterized types, type variables, type terms, and wildcards. As a result very
complex types can arise. For example the term

Vector<? extends Vector<AbstractList<Integer>>>

is a correct type in Java 5.0.
Considering all that, it is often rather difficult for a programmer to recognize
whether such a complex type is the correct one for a given method or not.
This has caused us to develop a Java 5.0 type inference system which assists the
programmer by calculating types automatically [2]. This type inference system
allows us, to declare method parameters and local variables without type anno-
tations. The type inference algorithm calculates the appropriate and principle
types.
In [1] the Java 5.0 type system is specified. This specification is done in a semi-
formal way. Some definitions are rather formal, as the subtyping relation (§4.10)
or the capture conversion (§5.1.10). Other definitions are only given informal, as
wildcard types. The presentation is sometimes less clearly arranged.
In this paper we present an integrated framework for the Java 5.0 type system.
Without loss of generality we restrict the type system to parameterized reference

41

types with and without wildcards. We do not consider base types (int, boolean,
float, . . .) and raw types.
The paper is organized as follows. In the second section we give the definition of
correct Java 5.0 type terms. In the third section we define the subtyping relation,
as an extension of the extends relation given by the class declarations. In the
fourth section we consider the soundness property of the Java 5.0 type system.
Finally, we close with a summary and an outlook.

2 Java 5.0 Simple Types

The base of the types are elements of the set of terms TΘ(TV), which are given

as a set of terms over a finite rank alphabet Θ = Θ
(n)
n∈N of class names and a set

of type variables TV . Therefore we denote them as type terms instead of types.

Example 1. Let the following Java 5.0 program be given:

class A<a> implements I<a> { ...}

class B<a> extends A<a> { ...}

class C<a extends I,b> { ...}

interface I<a> { ...}

interface J<a> { ...}

class D<a extends B<a> & J, b> { ...}

The rank alphabet Θ = Θ
(n)
n∈N is determined by

Θ(1) = { A, B, I, J } and Θ(2) = { C, D }.

For example A<Integer>, A<B<Boolean>>, and C<A<Object>, Object> are type
terms.

As the type terms are constructed over the class names, we call the class names
in this framework type constructors.
If we consider the Java 5.0 program of Example 1 more accurately, we recognize
that the bounds of the type parameters b in the class C and the bounds of the
type parameter a in the class D are not considered. This leads to the problem
that type terms like C<C<a, b>, a> are in the term set TΘ(TV), although they
are not correct in Java 5.0.
The solution of the problem is the extension of the rank alphabet Θ to a type
signature, where the arity of the type constructors is indexed by bounded type
variables. This leads to a restriction in the type term construction, such that the
correct set of type terms is a subset of TΘ(TV). Additionally the set of correct
type terms is added by some wildcard constructions. We call the set of correct
types set of simple types STypeTS (BTV) (Def. 4).
Unfortunately, the definitions of the type signature (Def. 2), the simple types
(Def. 4), and the subtyping ordering (Def. 5) are mutually dependent. This is
caused by the fact, that the restriction of the set of simple types is defined

42

by bounded type parameters, whose bounds are also simple types. This means
that, for some definitions, we must assume a given set of simple types, without
knowing, how the set of simple types is exactly defined.

Definition 1 (Bounded type variables). Let STypeTS (BTV) be a set of
simple types. Then, the set of bounded type variables is an indexed set BTV =
(BTV (ty))ty∈I(STypeTS (BTV)), where each type variable is assigned to an inter-
section of simple types.
I(STypeTS (BTV)) denotes the set of intersections over simple types (cp. Def.
4). In the following we will write a type variable a bounded by the type ty as a|ty.
Type variables which are not bounded can be considered as bounded type variables
by Object.

Example 2. Let the following Java 5.0 class be given.

class BoundedTypeVars<a extends Number> {

<t extends Vector<Integer> & J<a> & I,

r extends Number> void m (...) { ...}
}

The set of bounded type variable BTV of the method m is given as BTV (Number) =
{ a, r } and BTV (Vector<Integer>& J<a>& I) = { t }.

Definition 2 (Type signature, type constructor). Let STypeTS (BTV) be
a set of simple types. A type signature TS is a pair (STypeTS (BTV), TC)
where BTV is an indexed set of bounded type variables and TC is a (BTV)∗–
indexed set of type constructors (class names).

Example 3. Let the Java 5.0 program from Example 1 be given again. Then,
the corresponding indexed set of type constructors is given as TC(a|Object) =
{ A, B, I, J }, TC(a|I b|Object) = { C }, and TC(a|B<a>&J b|Object) = { D }.

For the following definitions, we need the concept of capture conversion ([1]
§5.1.10).
In order to define the capture conversion, we have to introduce the implicit
type variables with lower and upper bounds first. Implicit type variables are
used in Java 5.0 during the capture conversion, where the wildcards are replaced
by implicit type variables. Implicit type variables cannot be used explictly in
Java 5.0 programs.
We denote an implicit type variable T with a lower bound ty by ty|T and with

an upper bound ty′ by T |ty
′

.
The capture conversion transforms types with wildcard type arguments to equiv-
alent types, where the wildcards are replaced by implicit type variables.

Definition 3 (Capture conversion). Let TS = (STypeTS (BTV), TC) be
a type signature. Furthermore, let be C ∈ TC(a1|u1

,...,an|un) and C<θ1, . . . , θn> ∈
STypeTS (BTV). Thus, the capture conversion C<θ1, . . . , θn> of C<θ1, . . . , θn>

is defined as:

43

– if θi = ? then θi = bi|
ui[aj 7→θj | 16j6n], where bi is a fresh implicit type

variable.
– if θi = ? extends θ′i then θi = bi|

θ′

i & ui[aj 7→θj | 16j6n], where bi is a fresh
implicit type variable with upper bound θ′i &ui[aj 7→ θj | 16j 6n]).

– if θi = ? super θ′i then θi =θ′

i
|bi|

ui[aj 7→θj | 16j6n], where bi is a fresh implicit

type variable with lower bound θ′i and upper bound ui[aj 7→ θj | 16j 6n]).
– otherwise θi = θi

The capture conversion of C<θ1, . . . , θn> is denoted by CC(C<θ1, . . . , θn>).

Example 4. Let the indexed set of type constructors TC from Example 3 be
given again. Then the following holds

CC(A<? extends Integer>) = A<X|Integer&Object>, as A ∈ TC(a|Object),
CC(C<? extends A<c>, c>) = C<Y|A<c>&I<c>, c>, as C ∈ TC(a|I b|Object),

CC(B<? super Integer>) = B<Integer|Z|
Object>, as B ∈ TC(a|Object).

The following definition of the set of simple types is connected to the corre-
sponding definition of parameterized types in [1], §4.5.

Definition 4 (Simple types). The set of simple types STypeTS (BTV) for a
given type signature (STypeTS (BTV), TC) is defined as the smallest set satis-
fying the following conditions:

– For each intersection type ty: BTV (ty) ⊆ STypeTS (BTV)
– TC() ⊆ STypeTS (BTV)
– For tyi ∈ STypeTS (BTV)

∪{ ? }
∪ { ? extends τ | τ ∈ STypeTS (BTV) }
∪ { ? super τ | τ ∈ STypeTS (BTV) }

and C ∈ TC(a1|b1 ...an|bn) holds

C<ty1, . . . , tyn> ∈ STypeTS (BTV)

if after C<ty1, . . . , tyn> subjected to the capture conversion resulting in the
type C<ty1, . . . , tyn>

1, for each actual type argument tyi holds:

tyi ≤
∗ bi[aj 7→ tyj | 16j 6n],

where ≤∗ is a subtyping ordering (Def. 5).
– The set of implicit type variables with lower or upper bounds belongs to

STypeTS (BTV)

The set of intersection types over a set of STypeTS (BTV) is denoted by:
I(STypeTS (BTV)) = { θ1 & . . . & θn | θi ∈ STypeTS (BTV) }

The following example shows the simple type construction, where the arguments
of the type constructors are unbounded, respectively, bounded by Object.

1 For non wildcard type arguments the capture conversion ty
i

equals tyi

44

Example 5. Let the Java 5.0 program from Example 1 and the corresponding in-
dexed set of type constructors TC from Example 3 be given again. Let additional
Integer ∈ TC().
The terms A<Integer> and A<I<Integer>> are simple types.
From Integer ∈ TC() follows Integer is a simple type. As A ∈ TC(a|Object) with
ty1 = Integer follows, that A<Integer> is a simple type. From this follows as I ∈
TC(a|Object) with ty1 = I<Integer>, that A<I<Integer>> is also a simple type.
As A<a>≤∗ I<a> the type term C<A<Integer>, Integer> is also a simple type.
In contrast C<Integer, Integer> is no simple type, as Integer 6≤∗ I<Integer>.

After the definitions of the subtyping relation, we give another example, where
the arguments of the type constructors are bounded and wildcards are used.

The set of bounded type variables BTV is in the following extended by the lower
and upper bounded type variables.

3 Subtyping in Java 5.0

The Java 5.0 inheritance hierarchy consists of two different relations: The “ex-
tends relation” (in sign <) is explicitly defined in Java 5.0 programs by the ex-
tends, and the implements declarations, respectively. The “subtyping relation”
(cp. [1], §4.10) is built as the reflexive, transitive, and instantiating closure of
the extends relation.
In the following we will use ?θ as an abbreviation for the type term “? extends θ”
and ?θ as an abbreviation for the type term “? super θ”.

Definition 5 (Subtyping relation ≤∗ on STypeTS (BTV)). Let TS =
(STypeTS (BTV), TC) be a type signature of a given Java 5.0 program and <

the corresponding extends relation. The subtyping relation ≤∗ is given as the
reflexive and transitive closure of the smallest relation satisfying the following
conditions:

– if θ < θ′ then θ≤∗ θ′.
– if θ1 ≤

∗ θ2 then σ1(θ1)≤∗ σ2(θ2) for all substitutions σ1, σ2 : BTV →
STypeTS (BTV), where for each type variable a of θ2 holds σ1(a) = σ2(a)
(soundness condition).

– a≤∗ θi for a ∈ BTV (θ1&...&θn) and 16 i6n

– It holds C<θ1, . . . , θn>≤
∗ C<θ′1, . . . , θ

′
n> if for each θi and θ′i, respectively,

one of the following conditions is valid:

• θi = ?θi, θ′i = ?θ
′

i and θi ≤
∗ θ

′

i.

• θi = ?θi, θ′i = ?θ
′

i and θ
′

i ≤
∗ θi.

• θi, θ
′
i ∈ STypeTS (BTV) and θi = θ′i

• θ′i = ?θi

• θ′i = ?θi

(cp. [1] §4.5.1.1 type argument containment)
– Let C<θ1, . . . , θn> be the capture conversions of C<θ1, . . . , θn> and

C<θ1, . . . , θn>≤
∗ C<θ′1, . . . , θ

′
n> then holds C<θ1, . . . , θn>≤

∗ C<θ′1, . . . , θ
′
n>.

45

– For an intersection type ty = θ1 & . . . & θn holds ty≤∗ θi for any 16 i6n.
– T |(θ1&...&θn) ≤∗ θi for any 16 i6n.
– θ≤∗

θ|T

Corollary 1. The subtyping relation is an ordering.

The following examples illustrates the subtyping definition.

Example 6. Let the Java 5.0 program from Example 1 be given again. Then the
following relationships hold:

– A<a>≤∗ I<a>, as A<a>< I<a>

– A<Integer>≤∗ I<Integer>, where σ1 = [a 7→ Integer] = σ2

– A<Integer>≤∗ I<? extends Object>, as Integer≤∗ Object

– A<Object>≤∗ I<? super Integer>, as Integer≤∗ Object

The following example shows, how the capture conversions is used.

Example 7. Let the subtyping relationship Vector<Vector<a>>≤∗ Matrix<a>

be given. The the following holds:

Matrix<Integer>≤∗ Vector<Vector<Integer>>

From this follows the question if it holds

Matrix<?Integer>
!

≤∗ Vector<Vector<?Integer>>

or if it holds

Matrix<?Integer>
!

≤∗ Vector<?Vector<?Integer>>

The two Hasse-diagrams presented in Fig. 1 shows that only the second ap-
proach is correct. For the supertype construction of Matrix<?Integer> fol-
lows by the definition of the subtyping relation that the capture conversion
Matrix<X|Integer> must be built. This means that, Vector<Vector<X|Integer>> is
a supertype of Matrix<?Integer>. As Vector<Vector<?Integer>> is no super-
type of Vector<Vector<X|Integer>>, it is also no supertype of Matrix<?Integer>.
In contrast the simple type Vector<?Vector<?Integer>> is a supertype of
Vector<Vector<X|Integer>>, which means that Vector<?Vector<?Integer>> is
also supertype of Matrix<?Integer>.

4 Soundness of the Java 5.0 type system

Let us consider again the definition of the subtyping relation (Def. 5). It is sur-
prising that the condition for σ1 and σ2 in the second item is not σ1(a)≤∗ σ2(a),
but σ1(a) = σ2(a). This is necessary to get a sound type system. This property
is the reason for the introduction of wildcards in Java 5.0 (cp. [1], §5.1.10).
Let the following Java 5.0 classes be given.

46

|IntegerX

|IntegerX?

CC

?

?

?

?

|IntegerX

Matrix< >

Vector< Vector<Integer>>

Integer

Vector<Vector< >>

Matrix< >

Vector< Vector< >>

Vector< Vector< >>

Integer

CC

X

|IntegerX

|Integer

?

?Matrix< >

Vector<Vector< >>

Integer

Vector<Vector< >>

Matrix< >

Vector<Vector<Integer>>

Integer

Fig. 1. Subtyping relation with capture conversion

class Super { ...}
class Sub extends Super { ...}

class Application {
public static void main(String[] args) {
Vector<Super> v = new Vector<Sub> (); //not really correct

v.addElement(new Super()); }
}

An element of the type Vector<Sub> is assigned to the variable v of the type
Vector<Super>. This is no problem, as all elements which have the type Sub

have also the type Super. Then a new element of the type Super is added to
the vector which is assigned to the variable v. Now we have the problem, that
elements of this vector have the type Sub and Super is no subtype of Sub. If this
would be type correct, the type system would be unsound.
As in expression assignments, like Vector<Super> v = new Vector<Sub>();

the type of the right hand side must be a subtype of the left hand side’s type,
the subtyping restriction of Def. 5 is introduced. The restriction demands that
the declaration must be Vector<Super> v = new Vector<Super>> ();. But,
sometimes assignments like

Vector<Super> v = new Vector<Sub> ();

would although be desirable. Therefore wildcards are introduced.
For example it is allowed:

Vector<? extends Super> v = new Vector<Sub> ();

Now Vector<Sub> is a subtype of Vector<? extends Super>, which means
the assignment is type correct. In this case v.addElement(new Super()); is
prohibited as Super is no subtype of “? extends Super”. This means that the
unsoundness problem is also solved.

47

On the other hand, if an element of a subclass should be added to a vector of
its superclass, the parameter of the vector must have a lower bound:

Vector<? super Super> v2 = new Vector<Super> ();

v2.addElement(new Sub());

In this case only vectors with a parameter of a supertype of Super can be
assigned to v2. This means that no unsoundness arises.
We have used wildcard types like “? extends Super”, although there are no
simple types. Therefore we have to extend the set of simple type.

Definition 6 (Extended simple types). Let STypeTS (BTV) be a set of sim-
ple types. The corresponding set of extended simple types is given as

ExtSTypeTS (BTV)= STypeTS (BTV)
∪ { ? }
∪ { ? extends θ | θ ∈ STypeTS (BTV) }
∪ { ? super θ | θ ∈ STypeTS (BTV) }

.

Wildcard types cannot be used explicitly in Java 5.0 programs. But they are
allowed as instances of type variables, which means that types like this occur
implicitly during the type check of Java 5.0 programs (cp. example 8).
Additionally, we have to extend the subtyping relation to wildcard types.

Definition 7 (Subtyping relation ≤∗ on ExtSTypeTS (BTV)). Let ≤∗ be
a subtyping relation on a given set of simple types STypeTS (BTV). Then ≤∗ is
continued on the corresponding set of extended simple types ExtSTypeTS (BTV)
by: For θ≤∗ θ′:

– θ≤∗ ?θ′,
– ?θ≤

∗ θ′, and
– ?θ≤

∗ ?θ′.

In the following we give two examples, which shows some properties of wildcard
types in Java 5.0.

Example 8. Let us consider again the class Vector with its methods addElement
and elementAt and the classes Sub and Super.
Let the following declaration be given:

Vector<? extends Super> v = new Vector<Sub> ();

As said before the methodcall v.addElement(new Super()); is not correct as
Super 6≤∗

?Super. But as it holds ?Super≤
∗ Super the assignment

Super sup = v.elementAt(0);

is correct.
Vice versa for

Vector<? super Super> v2 = new Vector<Super> ();

the methodcall v2.addElement(new Sub()); is correct as Sub≤∗ ?Super. But
now

48

Super sup = v2.elementAt(0); //not really correct

is not correct, as ?Super 6≤∗ Super.
Furthermore, the methodcall
v2.addElement(v.elementAt(0));

is correct, as it holds ?Super≤
∗ ?Super.

Example 9. Let the following Java 5.0 program be given:

class B<a> { ... }

class C<a> extends B<a> { ... }

class Matrix<a> extends Vector<Vector<a>> { ... }

class ExtMatrix<a> extends Matrix<a> { ... }

class Super { ... }

class Sub extends Super { ... }

Now we will give some applications, which show properties of the subtyping
ordering and explain that the type system is sound.
The first property is obvious: For all θ≤∗ θ′ holds B<θ>≤∗ B<?θ

′>.

This leads to the question, if for any class Y holds also Y <B<θ>>≤∗ Y <B<?θ
′>>?

This question can be answered considering the fourth condition of definition 5. As
B<θ> 6= B<?θ

′>, the argument type of Y would have to be a wildcard argument.
But B<?θ

′> is no wildcard argument. This means that Y <B<θ>> 6≤∗ Y <B<?θ
′>>.

If this would be correct, the following Java 5.0 fragment would also be correct

Vector<B<? extends Super>> v = new Vector<B<Sub>> (); //is not really

//correct

v.addElement(new B<Super>());

If this would be correct, the type system would be unsound, as an element of
the type B<Super> is assigned to a vector of elements of the type B<Sub>.
But for any Y holds obviously Y <B<θ>>≤∗ Y <?B<?θ

′>>.

The next question is, if it holds Matrix<θ>≤∗ Vector<Vector<?θ
′>> for θ≤∗ θ′?

As Matrix<a>≤∗ Vector<Vector<a>> for a type variable a ∈ BTV holds Matrix<θ>
≤∗ Vector<Vector<θ>>. But

Matrix<θ>≤∗ Vector<Vector<θ>> 6≤∗ Vector<Vector<?θ
′>>

(cp. Example 7). This means that Matrix<θ> 6≤∗ Vector<Vector<?θ
′>>.

We will also consider, what would happen if it would be correct:

Vector<Vector<? extends Super>> v = new Matrix<Sub>(); //is not really

//correct

v.addElement(new Vector<Super>());

In this case the type system would also be not sound, as an element of the type
Vector<Super> is assigned to a matrix of elements of the type Sub.
A further question arises if we consider again that for θ ∈ STypeTS (BTV) holds
Matrix<θ>≤∗ Vector<Vector<θ>> . The question is, if it holds also Matrix<?θ>

≤∗ Vector<Vector<?θ>>? As ?θ 6∈ STypeTS (BTV) for a ∈ BTV from Matrix<a>

≤∗ Vector<Vector<a>> does not follow Matrix<?θ>≤
∗ Vector<Vector<?θ>>.

For this we consider again an application:

49

Vector<Vector<? extends Super>> v;

Matrix<? extends Super> w = new Matrix<Sub>();

v = w; //is not really correct

v.addElement(new Vector<Super>());

This application shows again that the type system would not be sound. Therefore
Matrix<?θ> 6≤∗ Vector<Vector<?θ>> and the assignment v = w is not type
correct.
But Matrix<?θ>≤

∗ Vector<?Vector<?θ>> holds. As the capture conversions of
Matrix<?θ> is Matrix<T|θ> and T |θ ∈ STypeTS (BTV) follows, that Matrix<T|θ>
≤∗ Vector<Vector<T|θ>>. With Vector<Vector<T|θ>>≤∗ Vector<?Vector<T|

θ>>

≤∗ Vector<?Vector<?T|
θ>> ≤∗ Vector<?Vector<?θ>> follows Matrix<?θ> ≤∗

Vector<?Vector<?θ>>.

Often the properties covariance respectively contravariance of type constructors
are considered in object-oriented languages. Java 5.0 type constructors are nei-
ther covariant nor contravariant. The following corollary shows corresponding
properties in Java 5.0.

Corollary 2 (Subtyping properties). For two simple types θ �∗ θ′ and a type
constructor Cl (class name) holds

– Cl<θ> 6≤∗ Cl<θ′>
– Cl<θ′> 6≤∗ Cl<θ>
– ? extends θ≤∗ θ′, but Cl<θ>≤∗ Cl<? extends θ′>.
– (? extends) θ≤∗ ? super θ′ but CL<(? super) θ′>≤∗ CL<? super θ>.

5 Conclusion and Outlook

In this paper we presented a formalization of the Java 5.0 type system. We
defined the set of Java 5.0 simple types as type terms, which are explicitly allowed
in Java 5.0 programs. We extended this set by wildcard types, which appear
implicitly during the type checking. We defined a subtyping ordering at first on
the set of Java 5.0 simple types and extended it to wildcard types. Additionally,
we considered the soundness of the Java 5.0 type system. We showed, how the
Java 5.0 type system becomes quite flexible by introducing the wildcards without
loosing the soundness.
The Java 5.0 type system is the base for the definition of a type inference al-
gorithm. We will give a type inference algorithm for Java 5.0 type terms with
wildcards. Furthermore, we will implement this system.

References

1. Gosling, J., Joy, B., Steele, G., Bracha, G.: The JavaTM Language Specification.
3rd edn. The Java series. Addison-Wesley (2005)

2. Plümicke, M., Bäuerle, J.: Typeless Programming in Java 5.0. In Gitzel, R., Alek-
sey, M., Schader, M., Krintz, C., eds.: 4th International Conference on Principles
and Practices of Programming in Java. ACM International Conference Proceeding
Series, Mannheim University Press (August 2006) 175–181

50

Source-to-Source Transformations for WCET
Analysis:

The CoSTA Approach

Adrian Prantl?

TU Vienna, Austria
adrian@complang.tuwien.ac.at

Abstract. Worst-case execution time (WCET) analysis is concerned
with computing upper bounds of the maximum computation time of a
program. This is indispensable for the development of safety-critical real-
time systems, where missing a deadline can have disastrous consequences,
including the loss of lives. Tools for WCET analysis typically analyze the
object-code of a program since this is the code which is actually executed.
Simultaneously, they usually rely on user-provided annotations such as
loop-bounds or execution frequencies of program statements in order
to be effective. From the perspective of a programmer, it is often more
adequate to provide such information on the source code level than on the
object code level. This, however, introduces a gap between the WCET
annotation and the WCET analysis level. Within the CoSTA project
(Compiler Support for Timing Analysis) we are aiming at bridging this
gap. Fundamental to this is to provide appropriate new compiler support
allowing to transform source code annotations into equivalent object code
annotations.
In this paper we outline the approach taken in the CoSTA project to
achieve this. In this project, which has recently been started, the compi-
lation process is decomposed into a high-level machine-independent and
a low-level machine-dependent two-stage process. Here, we will focus on
the first stage of this process, the high-level source-to-source compiler
and the annotation framework.

1 Background and Motivation

For safety-critical real-time systems the timing behavior is as important as the
correctness of the calculations, since the consequences of missing a deadline
can be equally catastrophic as an incorrect calculation, causing even the loss of
lives. Before deploying such a system it is thus indispensable to ensure that the
system meets in addition to its functional constraints also its timing constraints.
Determining the worst-case execution time (WCET) of a program as precisely
as possible is essential for this.

Intuitively, the determination of the WCET of a program is equivalent to
the search for the most time-consuming path in the control flow graph of the
? This work has been supported by the Austrian Science Fund (Fonds zur Förderung

der wissenschaftlichen Forschung) under contract P18925-N13.

51

program. An early approach for WCET analysis is called timing schema [10]. In
this approach, the execution time of each basic block is assumed to be a constant
and the number of iterations of each loop construct to be bounded by an upper
limit, while branches are replaced by the max()-function.

A more sophisticated approach for supplying path information to the WCET
calculation tool is based on linear flow constraints [11]. In this approach the
program flow information - often called flow facts - is expressed as a system of
inequalities that forms the input of an integer linear programming (ILP) problem
that can be solved efficiently by a variety of tools [8]. This method is also called
implicit path enumeration technique (IPET). It is implemented by commercially
available tools like AiT [2] and Bound-T [4].

While it is often possible to automatically extract flow facts from the pro-
gram code, it is usually necessary to require the programmer to (additionally)
manually annotate the program with appropriate flow facts. On the one hand,
this is necessary because the overall problem is undecidable (such as the de-
termination of loop bounds). On the other hand, the programmer might have
additional knowledge about the input data.

State-of-the-art tools perform the WCET-calculation on the object code level,
which is as close as possible to the code that will eventually run on the target
hardware. These tools expect that any user annotations are provided in the
object code. This, however, is very demanding for a programmer and error-
prone. Moreover, it implies to reassure the correctness of the annotations after
each compiler run during the development phase.

Source
Code

Object
Code

Desired
Annotation
Level

Desired
Analysis
Level

Compiler

Annotations

Transformed
Annotations

CoSTA:
Flow Fact
Transformation Engine

Fig. 1. Bridging the gap between annotation and analysis level

The CoSTA project aims at improving this situation. By developing and
providing suitable compiler support it aims at allowing the user to add the
annotations to the source code of a program which are then – together with the
source code – transformed to the object code level when compiling the program.

In this paper we present and discuss the overall architecture of the system we
develop in the CoSTA project, highlight the essential benefits envisioned, and
discuss important features of the current state of the prototype implementation.
In particular, we highlight the important role of optimizing source-to-source
transformations for the overall approach. They are crucial for generating high-

52

performance object code and for ensuring portability especially of the first stage
of our approach.

2 The CoSTA-Architecture for Source-based Annotations

As indicated in the previous section, the CoSTA project strives for bridging
the gap between source code annotations and object code WCET calculation.
More specifically, this shall be achieved and demonstrated by developing and
implementing a safe transformation framework for flow facts [5], where we target
a subset of the C++ language as the programming language. The final framework
shall seamlessly interact with existing IPET-based calculation tools.

As discussed before, we expect that such a source-based WCET-annotation
framework makes WCET analysis more easily amenable to a programmer and
overall more effective. In particular, we perceive the following benefits to be of
particular value.

Validation. Automatically computed annotations on the source code level can
easily be verified by the user. The increased trust in the reliability of such an
analysis tool should help to reduce the amount of annotations a user makes
manually.

Refinement. The user can introduce his domain-specific knowledge to provide
additional information which is beyond the scope of the automatic analy-
sis, and which can then be integrated into a cyclic work flow of perpetual
refinement.

Visualization. With applying source-to-source transformations, the user can
conveniently follow the steps of the compiler and thus fine-tune optimization
options according to their impact on the WCET.

Figure 2 illustrates the architecture of the CoSTA approach to achieve these
goals. Fundamental is the decomposition of the system into a high-level source-
to-source transformation framework (first stage) and a low-level WCET-aware
code generation back end (second stage).

This decomposition is motivated by the fact that many optimizations can
be performed at a very high abstraction level; in our case the abstract syntax
tree (AST). This way, the optimization step is independent from the target
machine tool chain, but may still be parameterized to reflect specific machine
characteristics. Moreover, if the WCET-critical optimizations can be moved to
the source code level, it suffices to employ a relatively simple back-end compiler
to finally transform the (optimized) source code into assembly language. We
define WCET-critical optimizations as optimizations that change the control
flow, thus invalidating any annotations (which are in turn assertions about the
control flow graph (CFG)). An example of a CFG-modifying optimization is loop
unrolling, which directly modifies the iteration count of a loop.

First stage. The prototype implementation of the first stage of our system uses
the SATIrE1 framework which is being developed by Markus Schordan at TU
1 http://www.complang.tuwien.ac.at/markus/satire/

53

C++
with

Annotations

EDG
front end

AST

ROSE
LoopProcessor

C++ with
annotations

SATIrE

COSTA
Annotator

COSTA
Annotation
Processor

WCET-aware
compiler

LLVM

Binary WCET-
estimation

Assembler
with Annotations

ILP-
solver

Transform
user-made
annotations

Extract new
annotations

High-level source-
to-source compiler

Low-level
back end

Fig. 2. A schematic overview of the CoSTA architecture

Vienna [13]. Intuitively, SATIrE is a tool environment that integrates the high-
level source-to-source transformation and program analysis framework LLNL-
ROSE2 [14] with other program analysis tools, such as the Program Analysis
Generator (PAG) from AbsInt [9]. For the purpose of the CoSTA project it
is particularly important that SATIrE provides an external representation of
the abstract syntax tree (AST) of a C++ program which can be both written
to and read from. Moreover, this representation uses a syntax which can be
interpreted as terms of the Prolog language. This allows us to specify program
transformations directly in the Prolog language, using predicates to implement a
term rewriting system. In fact, this approach was chosen to implement the first
stage of our prototype.

The LLNL-ROSE framework contains a sophisticated loop optimization tool
which has its roots in the Fortran D compiler. The tool can handle generic C++
programs and outputs C++ code that is very close to the original input; even
templates are preserved. In the current CoSTA implementation, we use this tool
to gain access to high-level optimization functions.

Second stage. The second stage of our system, the code generation back end
is currently being implemented on the basis of LLVM3, a relatively new com-
piler infrastructure based on a low-level virtual machine and SSA graphs that
2 http://www.llnl.gov/CASC/rose/
3 http//www.llvm.org/

54

Original user-annotated program After loop unrolling with factor 2

int f(int a[]) {
for(int i=0; i<N; i+=1) {

if (a[i] < 0) {
// domain-spec. knowledge
Restriction M1 <= 24
Marker M1;
...

} } }

int f(int a[]) {
for(int i=0; i<N; i+=2) {

if (a[i] < 0) {
Restriction M1 <= 24/2
Marker M1;
...

}
if (a[i] < 0) {

Restriction M2 <= 24/2
Marker M2;
...

} } }

Fig. 3. Transformation of user-specified annotations

is implemented in C++ [7]. We plan to implement a WCET-aware instruction
selection mechanism for complex hardware architectures on this basis. The back
end will only use optimizations that are not WCET-critical. This means, they
will not further modify the control flow graph of the program.

In the course of implementing a safe flow facts transformation framework,
the key component is the CoSTA Annotation Processor which is currently under
implementation. The Annotation Processor takes a user-annotated program and
a sequence of optimizations as input and transforms the annotations according
to a set of rules. It then inserts the updated annotations into the optimized
program source. Figure 3 shows an example of such a transformation.

In the following section we highlight the key components of the first stage of
our system, the CoSTA Annotator and the CoSTA Annotation Processor.

3 The CoSTA Annotator and the CoSTA Annotation
Processor: Extracting and Transforming Flow Facts

The CoSTA Annotator automatically extracts flow facts information of a pro-
gram. The CoSTA Annotator thus offers an alternate route to obtain annotated
source code. In particular, it avoids bothering a user to manually annotate con-
trol flow information which can be automatically extracted from the source code
of the program. In fact, in many cases flow facts like loop bounds can be au-
tomatically found by a static analysis of the program. On the other hand, flow
facts might depend on domain-specific knowledge about input-data which is usu-
ally beyond the scope of static analyses. It is thus worth noting that the CoSTA
Annotator is orthogonal to the CoSTA Annotation Processor. The latter trans-
forms annotations alongside optimizing transformations it applies to a program.
Exemplary, we will now discuss the automatic bounding of loops:

The automatic finding of upper bounds of loop constructs is one of the tasks
of the CoSTA Annotator. Currently, the algorithm operates on counter-based
for-loops. Since C and C++ do not have a strict for-statement in the sense of
Fortran or Pascal, loops have to satisfy a few extra conditions to be analyzable.
These conditions are verified by the Annotator in advance: Each for-statement
consists of initializer, condition, increment and body. The loop has to be in-
duction variable based, i.e., initializer, condition and increment have to modify

55

and test the same variable. The loop body may not contain a write access to
the induction variable. The initializer may be empty. The loop may not contain
early exits, such as a break or return statement. To give the programmer a little
more flexibility, we provide a preprocessor that transforms while-loops into for
loops in case they satisfy these very conditions. Using the SATIrE-framework,
we were able to implement this preprocessor in very few lines of Prolog.

The implemented loop-bounding algorithm uses two strategies of varying
precision. The first approach uses symbolic evaluation of terms in the source
code to solve the equation Bound = (End − Start)/Step for the induction
variable i. In order to solve the equation, the terms are transformed according
to a set of rules that exploit algebraic properties like commutativity to reduce the
equation term to a single value (Figure 5). In order to reach a fixpoint and thus to
guarantee termination, the rules have to satisfy a monotonicity property. Here,
this means that the term has to shrink with each application of a rule. It should
be noted that this rule-based equation solver is a good example illustrating the
benefits resulting from using Prolog as implementation language. To extract the
necessary information about the possible values of the program variables, every
node in the AST is decorated with a pre- and a postcondition which hold the
possible values of all integer variables. The loop bounds that are shown in the
listing were derived by the symbolic analysis. Often the value of a variable is

1 // {empty}
2 for (int i = 0; i < 42; i += 8) {
3 // {irange ∈ [0..41]}
4 // LoopBound = 6
5 for (int j = i; j < min(42, i+8); j += 1) {
6 // {jrange ∈ [0..41], jsymbolic ∈ [i..i + 8]}
7 // LoopBound = 8
8 }
9 // {j = 42}

10 }
11 // {i = 48}

Fig. 4. Analysis information for loop bounds

known to be within a certain range, as it is the case with the induction variable in
the body of a loop. This range information is important for the second strategy
used by the analysis, which is intended as a fallback in case the first one fails
to find a precise result. Using the range information, it is often still possible
to provide a conservative estimate for many loops. As can be seen in Figure 4,
the analysis information gathered by the two strategies is of varying precision.
While the range information tends to be more pessimistic, it can unfold its whole
potential when it is combined with the equation solver. The major advantage of
the symbolic approach is its ability to cancel out subterms of the equation such
as i in line 6 of the example in Figure 4.

A More Complex Example

We conclude this section with discussing a more complex example, which is
displayed in Figure 6. The original source code of the program consists of three
nested loops that perform a multiplication of two two-dimensional arrays and

56

% (a+b)-b = a
transformation(sg_subtract_op(sg_add_op(E1 , E2 , _, _), E3, _, _),

E1) :-
term_identical(E2 , E3).

% (v+i1)-i2 = v+i’
transformation(sg_subtract_op(sg_add_op(E1 , E2 , _, _), E3, _, _),

sg_add_op(E1 , E4 , _, _)) :-
isIntVal(E2, X), isIntVal(E3, Y), Z is X-Y, isIntVal(E4 , Z).

...

Fig. 5. Excerpt from the rule base

accumulate the result into a third array. This source code is now processed by the
ROSE loop optimizer (Figure 7). First Loop Blocking is performed, using a block
size of 8, which should improve the locality of the memory accesses, then, the
innermost loop is also being unrolled by a factor of 2. This necessitates an extra
loop to be created to take care of the last element in case the total number of
iterations is odd. Note that ROSE instantiates the uses of the macro N , which is
important for the following step: Compared with the original loop, the resulting
loop conditions are quite complex, but due to their constant bounds, they are
fully analyzable. The Annotator can now traverse the AST top-down and use the
existing information to solve the bounding equations for each for-loop (Figure 8).
Consider the induction variables of the newly generated outer loops; for the loop
bodies, only a range can be found by the analysis. However, this does not affect
the precision of the analysis, since their occurrences in initializer and condition
of the inner loops cancel each other out. For the newly added remainder part
of the innermost loop, the initializer is missing. In this case the analysis has to
use the postcondition of the previous for-statement to know about possible start
values for k.

#define N 50
int i,j,k;
double a[N][N], b[N][N], c[N][N];
...
for (i = 0; i <= N-1; i+=1) {

for (j = 0; j <= N-1; j+=1) {
for (k = 0; k <= N-1; k+=1) {

c[i][j] = c[i][j] + a[i][k] * b[k][j];
} } }

Fig. 6. Phase 1: Original Code

4 Additional Benefits and Outlook

In this section we highlight some additional benefits of our overall approach and
provide an outlook to further extensions.

It is worth noting that the framework presented in the previous sections offers
two alternatives to create correctly annotated optimized code. The first one is to
manually annotate the program, and then to optimize the annotated program. In
this case the CoSTA Annotation Processor will update the annotations alongside
the program optimization transformations. The second one is to first optimize
the program and then to use the CoSTA Annotator to automatically annotate
the optimized program. Figure 9 illustrates both alternatives. This flexibility

57

int _var_2; int _var_1; int _var_0;
int i; int j; int k;
double a[50][50]; double b[50][50]; double c[50][50];
...
for (_var_1 = 0; _var_1 <= 49; _var_1 += 8) {

for (_var_2 = 0; _var_2 <= 49; _var_2 += 8) {
for (_var_0 = 0; _var_0 <= 49; _var_0 += 8) {

for (i = _var_2; i <= min2(49, _var_2 + 7); i += 1) {
for (j = _var_1; j <= min2(49, _var_1 + 7); j += 1) {

for (k = _var_0; k <= -1 + min2 (49,7 + _var_0); k += 2) {
(c[i])[j] = (((c[i])[j]) + (((a[i])[k]) * ((b[k])[j])));
(c[i])[j] = (((c[i])[j]) + (((a[i])[1 + k]) * ((b[1 + k])[j])));

}
for (; k <= min2 (49,7 + _var_0); k += 1) {

(c[i])[j] = (((c[i])[j]) + (((a[i])[k]) * ((b[k])[j])));
} } } } } }

Fig. 7. Phase 2: Cache optimized code (Loop Blocking + Unrolling)

...
for (_var_1 = 0; _var_1 <= 49; _var_1 += 8) {

#pragma WCET_LOOP_BOUND 7
for (_var_2 = 0; _var_2 <= 49; _var_2 += 8) {

#pragma WCET_LOOP_BOUND 7
for (_var_0 = 0; _var_0 <= 49; _var_0 += 8) {

#pragma WCET_LOOP_BOUND 7
for (i = _var_2; i <= min2(49, _var_2 + 7); i += 1) {

#pragma WCET_LOOP_BOUND 8
for (j = _var_1; j <= min2(49, _var_1 + 7); j += 1) {

#pragma WCET_LOOP_BOUND 8
for (k = _var_0; k <= (-1) + min2 (49,7 + _var_0); k += 2) {

#pragma WCET_LOOP_BOUND 5
c[i][j] = c[i][j] + a[i][k] * b[k][j];
c[i][j] = c[i][j] + a[i][1 + k] * b[1 + k][j];

}
for (; k <= min2 (49,7 + _var_0); k += 1) {

#pragma WCET_LOOP_BOUND 2
c[i][j] = c[i][j] + a[i][k] * b[k][j];

} } } } } }

Fig. 8. Phase 3: Automatically annotated optimized code

Source
Code

Source
Code

(Annotated)

Annotate
manually

Annotate
auto-

matically

Optimization Optimization

CoSTA
Annotation
Processor

CoSTA
Annotator

Fig. 9. Two routes to optimized annotated source code are provided in CoSTA

58

and dualism is only possible by using a high-level optimization approach as in
our framework. Note, however, that the high-level approach requires a compiler
back-end that guarantees to preserve the control flow in a way that does not
alter the worst-case timing behavior of the program. Constructing such a back
end is work-in-progress as part of the CoSTA project.

On modern processors, hardware resource allocation conflicts can trigger tim-
ing anomalies, where a locally faster execution increases the total execution time
[16, 12]. Thus, another focus of our work on the compiler back end is to research
scheduling and instruction selection algorithms for increased predictability.

In complex hardware architectures using features such as pipelines or in-
struction and data caches, the timing of an instruction depends highly on the
execution history. Currently, the majority of annotation languages do not allow
to specify explicit execution paths [6]. If these features shall be considered by a
WCET calculation, it will be necessary to undertake a deeper look at annotation
languages. While there are already approaches to integrate execution context in-
formation into the IPET calculation method [1], it will be necessary to create
adequate annotation methods for context sensitive path descriptions as well.

5 Conclusions

The CoSTA project aims at making WCET analysis more effective and more
amenable, especially by lifting the annotation level from the object code level to
the source code level. Experiences with the current prototype implementation
indicate that the chosen system architecture is well-suited to meet these goals.
In particular, our experiences with optimizing source-to-source transformations
indicate that these benefits can be achieved without sacrificing the performance
of the object code of the application programs. Currently, we work on integrating
more refined algorithms for automatic flow facts extraction and further source-
to-source transformations. Simultaneously, we work on connecting the high-level
first stage of our system with its low-level second stage, which will enable us to
link our system to existing WCET analysis tools. As another strand of research
in the CoSTA project we consider the development of advanced annotation lan-
guages which are even more suitable to reach the goals of the CoSTA project.
In fact, investigating the adequacy of the commonly used annotation languages
for this purpose, it turned out that all these languages have their own strengths
and limitations motivating us to rise the annotation language challenge [6] – a
challenge being closely related to and complementing the previously launched
WCET tool challenge [3, 15].

Acknowledgements. The author would like to thank the members of the
CoSTA-project team for discussions related to the subject of this paper. In
particular, he would like to thank Jens Knoop for helpful comments on earlier
versions of this paper.

59

References

1. J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution
time analysis. In Proceedings 21st IEEE Real-Time Systems Symposium (RTSS),
Orlando, Florida, USA, Dec. 2000.

2. C. Ferdinand. Worst case execution time prediction by static program analysis.
18th International Parallel and Distributed Processing Symposium (IPDPS 2004),
03:125a, 2004.

3. J. Gustafson. The WCET tool challenge 2006. In Preliminary Proceedings 2nd
Int. IEEE Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pages 248 – 249, Paphos, Cyprus, November 2006.

4. N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In Proceedings
Euromicro Worst-Case Execution Time Workshop 2002 (WCET 2002), 2003.

5. R. Kirner. Extending Optimising Compilation to Support Worst-Case Execution
Time Analysis. PhD thesis, Technische Universität Wien, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, May 2003.

6. R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel. WCET Analysis: The
Annotation Language Challenge. In Proceedings 7th Int’l Workshop on Worst-Case
Execution Time (WCET) Analysis, 2007. To appear.

7. C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

8. Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit
path enumeration. In Proceedings 32nd ACM/IEEE Design Automation Confer-
ence, pages 456–461, June 1995.

9. F. Martin. PAG – an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer, 2(1):46–67, 1998.

10. C. Y. Park and A. C. Shaw. Experiments with a program timing tool based on a
source-level timing schema. Computer, 24(5):48–57, May 1991.

11. P. Puschner and A. V. Schedl. Computing maximum task execution times – a
graph-based approach. Journal of Real-Time Systems, 13:67–91, 1997.

12. J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker. A definition and classification of timing anomalies. In F. Mueller,
editor, 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

13. M. Schordan. Combining tools and languages for static analysis and optimiza-
tion of high-level abstractions. In Proceedings 24. Workshop of ”GI-Fachgruppe
Programmiersprachen und Rechenkonzepte”, 2007.

14. M. Schordan and D. Quinlan. Specifying transformation sequences as computa-
tion on program fragments with an abstract attribute grammar. In Proceedings
Fifth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 97–106. IEEE Computer Society Press, 2005.

15. L. Tan and K. Echtle. The WCET tool challenge 2006: External evaluation – draft
report. In Handout at the 2nd Int. IEEE Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, Paphos, Cyprus, November 2006.
13 pages.

16. I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies
in superscalar processors. In Proceedings 5th International Conference on Quality
Software, Sep. 2005.

60

Slicing zur Modellreduktion von symbolischen
Kellersystemen

Dirk Richter
richterd@informatik.uni-halle.de

Wolf Zimmermann
zimmer@informatik.uni-halle.de

Abstract: Sowohl für die Software-Modell-Prüfung als auch für das modellbasier-
te Testen sind Größe und Komplexität von Modellen entscheidende Einflussfaktoren.
Wir haben Slicing auf Programmpunktebene als Programmanalyse für die Anwendung
auf symbolische Kellersysteme (Remopla Modelle) übertragen, um kleinere und we-
niger komplexe Modelle zu erhalten. Die Messergebnisse zeigen eine teils erhebliche
Laufzeitreduktion für den eingesetzten Modellprüfer Moped.

Schlüsselworte: Software-Modell-Prüfung (Model checking), Remopla, Moped, Slicing,
Metrik (metric), McCabe

1 Einleitung

Während der Modellprüfung werden vorgegebene Eigenschaften überprüft (z.B. dass vor
der Landung eines Flugzeugs stets das Fahrwerk ausgefahren ist). Ist die Modellprüfung
erfolgreich, so erfüllt das Modell die vorgegebenen Eigenschaften sicher (in jedem Fall)
im Gegensatz zum Testen, wo lediglich die Existenz von Fehlern festgestellt werden kann.
Bei der Software-Modell-Prüfung werden Modelle aus Softwareprogrammen gewonnen.
Modellprüfung als auch das modellbasierte Testen bzw. die Testfallgenerierung sind je-
doch sehr aufwändig. Die Verwendung von Kellersystemen bei der Software-Modell-
Prüfung ermöglicht dabei unter anderem die Berücksichtigung von rekursiven Methoden
bzw. Funktionen. Modellprüfung von Software zur Steigerung der Softwarequalität ist be-
reits im Einsatz, wie die Projekte JavaPathFinder (NASA) [KT00], SMV [McM93] oder
Moped [Jav01] zeigen. Allerdings sind die derzeit verfügbaren Werkzeuge (Tools) nicht in
der Lage mittlere oder große Softwareprojekte zu überprüfen. Vielfach werden nur Varia-
blen mit kleinem Zustandsraum unterstützt (logische/boolean Variable in Bebop [Tom00])
oder sogar vollständig auf endliches Modellprüfen beschränkt, da sonst der Suchraum für
den Modellprüfer ”explodiert“. Wir untersuchen Ansätze, die solchen Einschränkungen
möglichst nicht unterliegen.

Aufgrund der Abstraktion kann es im Modell zu Zustandsfolgen kommen, die im ur-
sprünglichen Programm nicht auftreten können (sog. False Negatives). Ist aber einmal
ein Modell hinreichend genau, um bestimmte Eigenchaften nachzuweisen, so erzeugen

61

wir durch Slicing [M. 84] auch keine weiteren False Negatives.

Wir haben Erreichbarkeitsprobleme in Java-Programmen (Version 6.0) untersucht. Dabei
transformieren wir Java-Programme mittels JMoped und javac nach Remopla. Remopla
ist eine Beschreibungssprache für symbolische Kellersysteme und sieht einer imperativen
Programmiersprache schon ähnlich. Diese Remopla-Modelle dienen dann dem Modell-
prüfer Moped als Eingabe, um Erreichbarkeitsprobleme in Kellersystemen zu lösen. Wir
haben Werkzeuge zur Automatisierung (JmBatch) und zur Modellreduktion (Optimizer)
konstruiert. Im Folgendem werden kurz grundlegende Begriffe, die Transformation von
Java-Programmen in symbolische kellersysteme und verwendete Metriken erläutert. Ab-
schließend werden Slicing auf diesen symbolischen Kellersystemen erklärt und unsere
Ergebnisse präsentiert.

2 Begriffe

M = (S,→, L) heißt Kripkestruktur, falls S und A (nicht notwendigerweise endliche)
Mengen sind, →⊆ S × S und L : S → 2A. In Abbildung 1 ist ein Beispiel einer Kipke-

b
2

a
1

a
2

a
3

b
1

b
3

...

...

...

x() x() x()

return return return

p pp

qq q

Abbildung 1: Beispiel einer Kipkestruktur

struktur zu sehen. S = {a1, b1, a2, b2 . . .} ist darin die Menge der Zustände, A = {p, q}
die Menge der Atome. Bei gegebener Kripkestruktur M ist das Erreichbarkeitsproblem
die Frage, ob es in M von einem Zustand s ∈ S einen Pfad zu einem anderen Zustand
z ∈ S gibt (s →∗ z?). Im Falle von s, z ⊂ S (anstatt s, z ∈ S) sprechen wir vom verall-
gemeinerten Erreichbarkeitsproblem. Zur Beschreibung von (unendlich) großen Krip-
kestrukturen (wie diejenige aus Abbildung 1) verwenden wir Kellersysteme (Pushdown
Systems). P = (P,Γ, ↪→) heißt Kellersystem, falls P eine Menge von Zuständen, Γ eine
Menge (das Kelleralphabet) und ↪→⊆ (P × Γ)× (P × Γ∗) eine Menge von Transitionen
ist. Informal ist ein Kellersystem ein Kellerautomat ohne Eingabe. (p, w) heißt Konfigura-
tion, falls p ∈ P,w ∈ Γ∗. Auf Konfigurationen wird die Transitionsrelation ↪→ erweitert
zu →⊆ (P × Γ∗) × (P × Γ∗) mit (p, aw) → (q, bw) :⇔ (p, a) ↪→ (q, b). Statt des
Erreichbarkeitsproblems kann auch das LTL-Modellprüfungsproblem für Kellersysteme
gelöst werden. Dabei ist eine LTL-Formel für die durch das Kellsersystem beschriebene

62

Kripkestruktur gegeben und gefragt wird nach der Gültigkeit dieser Formel für alle Pfade
beginnend bei einem Anfangszustand bzw. bei einer Menge von Anfangszuständen der
Kripkestruktur. Büchiautomaten werden dabei aus LTL-Formeln konstruiert und können
entsprechend minimiert werden [Tau03, FW05, FW02, Wol04, Jam04]. Obwohl das Mo-
dellprüfungsproblem für LTL und Linearzeit µ-Kalkül auf Kellersystemen i.A. DEXPTI-
ME-vollständig ist [A. 97], bleibt der Aufwand für symbolisches Modellprüfen auf Kel-
lersystemen mit LTL polynomiell in der Größe des konstruierten Büchiautomaten und
des Kellersystems (bei fester LTL-Formel) [Jav00]. Natürlich ist daher die Größe des
Büchiautomaten exponentiell in der Länge der LTL-Formel [Mat06].

3 Modellierung von Programmen als Kellersystem

Um die Semantik eines Programms in einem Kellersystem zu modellieren, wird jeder
Programmzustand einschließlich potenziell unendlich vieler (rekursiver) Methodenaufru-
fe (die sog. Aufrufhierarchie) als Konfiguration des Kellersystems kodiert. In unserem
Fall wird der Kontrollfluss eines Java-Programms direkt in Transitionen des Kellersystems
überführt. Für andere Programmiersprachen funktioniert dies völlig analog.

Lokale Variablen von Methoden werden als Bitvektoren über das Kelleralphabet zusam-
men mit der Aufrufhierarchie im Keller repräsentiert. Globale Variablen (in Java Klas-
senvariablen), die Halde (engl. Heap) sowie Ausnahmen (engl. Exceptions) werden mit
Hilfe der Zustände des Kellersystems beschrieben. Genaue Details zur Transformation
kann man [Jan01] entnehmen. Voraussetzung zur Verarbeitung solcher symbolischer Kel-
lersysteme ist ein symbolischer Modellprüfer wie Moped [Jav01]. Eine Beschreibung der
Eingabesprache für Moped (Remopla) ist in [Ste06] zu finden.

Ein großer Zustandsraum des Programms (z.B. viele Variablen mit vielen Variablenwer-
ten) ist ein generelles Problem, welches in der Literatur als Problem der Zustandsexplo-
sion (engl. State-Explosion-Problem) bezeichnet wird [Edm01]. Daher sind Reduktions-
techniken zur ”Verkleinerung“ des Modells wichtig. Bei endlicher Modellprüfung werden
solche Techniken bereits (wenn auch teils nur als Einzeluntersuchung von Hand) einge-
setzt: Beispiele solcher Reduktionstechniken sind Heap-Symmetry-Reduction [Rad01],
Slicing/Influence Analysis [M. 84], Stotteräquivalenz [E. 98], Partial-Order-Reduction
[St04], Shape Analysis [Rei00], Abstract Interpretation [Pat96] oder sogar eine voll-
ständige Beschränkung auf Boolsche Programme [Tom00]. Uns sind bisher keine Ver-
öffentlichungen bekannt, in denen diese Techniken auf symbolische Kellersysteme über-
tragen wurden.

4 Metriken

Um einen Zusammenhang zwischen Eigenschaften von Remopla-Modellen und der Dau-
er des Modellprüfens zu untersuchen, wurden verschiedene Metriken für Remopla im-
plementiert. Schließlich läßt sich die Zustandsraumgröße und Modellkomplexität von Re-

63

moplamodellen nur ungeeignet durch die Metrik LOC (lines of code) ausdrücken und
schon gar nicht von einander unterscheiden. Dabei ist es wichtig zu wissen, welche Ei-
genschaften eines Modells die Modellprüfung besonders beeinflussen, um gezielt diesen

”Flaschenhals“ beheben zu können. Zur Schätzung der Modellkomplexität bzw. Kontroll-
flusskomplexität verwenden wir die aus der Literatur bekannte Komplexitätsmetrik von
McCabe. Diese Metrik gibt die Anzahl der konditionellen Zweige des Kontrollflussdia-
gramms an. Wir haben diese auch zyklomatische Zahl von McCabe genannte Metrik im-
perativer Programme für Remopla-Modelle adaptiert und verwenden sie als Maß für die
Komplexität des Kontrollflusses in Remopla-Modellen.

Wie unsere Untersuchungen zeigten, sind sowohl die LOC-Metrik als auch die McCabe-
Metrik ungeeignet zur Schätzung der Größe des Zustandsraums. In der Literatur ist uns
bisher keine Metrik bekannt, welche die Größe des Zustandsraums geeignet schätzt. Dies
ist auch nicht verwunderlich, da der Zustandsraum für Kellersysteme i.A. unbeschränkt ist
(man denke z.B. an Rekursion).

Um dennoch den Zustandsraum zu schätzen, haben wir uns auf die benötigte Größe der
sog. Köpfe von Konfigurationen eingeschränkt. Köpfe sind die linken Seiten von Tran-
sitionen des Kellersystems und bestehen aus einem Zustand und oberstem Kellersymbol
des Kellersystems. Sei R ein Remopla-Modell, welches g Bits zur Repräsentation glo-
baler Variablen benötigt (einschließlich Exceptions und Halde des ursprünglichen Java-
Programms), li Bits für alle lokalen Variablen des Moduls/der Prozedur i und p Knoten
im interprozeduralen Kontrollflussdiagramm hat. Dann haben wir die ZR-Metrik zur
Schätzung des Zustandsraums wie folgt definiert:

ZR(R) := g +
∑

i

li + log2 p. (1)

Für die später in Abschnitt 5 verwendeten Beispiele ist in Abbildung 2 die Laufzeit des
Modellprüfers Moped in Abhängigkeit der ZR-Metrik zu sehen. Dabei wurden für jedes
Java-Programm 5 Modellprüfungen mit unterschiedlichen Parametern für die Bitbreite ei-
nes Integers (von 1 Bit bis 5 Bit) durchgeführt. Nicht dargestellte Punkte liegen rechts
oberhalb außerhalb der Grafik oder wurden wegen eines Zeitüberlaufs (engl. Timeout) ab-
gebrochen. Es ist ein klarer exponentieller Trend in der geschätzten Zustandsraumgröße
erkennbar. Ein solcher Trend ist bei Verwendung der LOC- oder McCabe-Metrik nicht
feststellbar. Durchgeführte Reduktionen der Remoplamodelle lassen sich damit nicht nur
über die Dauer des Modellprüfens, sondern auch anhand dieser Metriken quantifizieren.
Schließlich unterliegen Laufzeitmessungen naturgemäß diversen Schwankungen, nicht zu-
letzt, da Moped intern OBDDs (Ordered Binary Decison Diagramms) einsetzt, welche
in einer ungünstig gewählten Variablenordnung zu unerwartet langen Laufzeiten führen
können.

64

Abbildung 2: Laufzeit des Modellprüfers Moped für einige Beispielprogramme

5 Slicing und Ergebnisse

Mit Slicing- und Slicing ähnlichen Analysen lassen sich nicht ausgeführte Anweisun-
gen eines Programms finden [Mat99, H. 01, E.04, E.04, Fle05, Ped06, M. 03]. Dies
ermöglicht daher eine Reduktion der Modellgröße. Und verringert damit die Zeit und
Komplexität für Testfallgenerierungen als auch für Modellprüfungen.

Wir haben interprozedurales Slicing auf Remopla-Modelle übertragen. In unserer Umset-
zung wird ein Vorwärtsslice beginnend bei den Startkonfigurationen berechnet, welcher
alle symbolischen Remopla-Konfigurationen des Modells enthält, welche aus den Start-
konfigurationen über den Kontrollfluss erreichbar sind und reduzieren den Kontrollfluss
entsprechend. Beginnend bei den Fehlerkonfigurationen berechnen wir anschließend einen
Rückwärtsslice, um symbolische Remopla-Konfigurationen zu identifizieren, welche zu
Fehlern im Modell über den Kontrollfluss führen können. Alle nicht im Rückwärtsslice
auf dem reduzierten Kontrollflussgraph enthaltenen Konfigurationen können aus dem Mo-
dell entsprechend entfernt werden. Im Gegensatz zu anderen Reduktionstechniken bzw.
Abstraktionstechniken entstehen durch Slicing keine neuen False Negatives.

Durch diese Technik konnten wir die in Abbildung 3 zu sehenden Modellprüfzeiten wie
folgt verbessern. Als Testgrundlage dienten die 7 bereits in JMoped enthaltenen Java-
Beispiele sowie 24 Java-Beispiele aus eigenen Untersuchungen (davon 11 durch Anpas-

65

sung aus dem Coverage Eclipse-PlugIn [Fel06] gewonnen).

• In 2 der 31 Java-Beispiele wurde durch Slicing das Erreichbarkeitsproblem bereits
negativ beantwortet, was die Anwendung eines Modellprüfers erübrigt 1.

• In 5 der 155 untersuchten Modellprüfungen konnte durch Slicing ein Timeout von
15 Minuten vermieden werden. D.h. diese 5 Modellprüfungen konnten früher nicht,
jetzt aber schon abgeschlossen werden.

• In allen weiteren 30 Fällen, in denen das Modellprüfen mehr als 2 Sekunden gedau-
ert hat, konnte durch Slicing die Modellprüfdauer (einschließlich der Slicing-Zeit)
verringert werden.

Ist der Zustandsraum des Modells bereits hinreichend klein2, so benötigt das Slicing teil-
weise auch mehr Zeit als die Modellprüfung an sich.

6 Zusammenfassung

Durch Einsatz von Slicing im Kontrollflussgraph auf Konfigurationenebene haben wir
symbolische Kellersysteme (genauer: Remopla-Modelle) derartig transformiert, dass nur
noch diejenigen Remopla-Modell-Transitionen im Modell enthalten sind, welche sowohl
von den Startkonfigurationen erreichbar sind als auch zu angegebenen Fehlerkonfigura-
tionen führen können. Dies reduziert die Zeit für den Modellprüfer Moped für Modelle
mit hinreichend großem Konfigurationenraum. Analog wird damit aber auch der für Soft-
waretesten zu überdeckende Modellraum kleiner, wodurch weniger Softwaretests nötig
werden.

Es sind weitere Programmanalysen zur Integration geplant, um durch Ausnutzung wei-
terer Eigenschaften der Remopla-Modelle noch kleinere Modelle (bezüglich ZR-Metrik)
zu erzeugen. Geeignete ähnliche Ansätze finden sich in der Literatur als Cone of Influ-
ence (COI) [H. 01, E.04], Localization [E.04], Live Variables Analysis (LVA) [Fle05],
Influence Analysis (IA) [Ped06] und Lebendigkeits-Analyse (engl. live range analysis)
[M. 03]. Unser vorrangiges Ziel ist bisher entsprechend unserer Ergebnisse eine weitge-
hende Abstraktion von Daten.

Literatur

[E.04] E. M. Clarke, Fujita, P. Rajan, Reps S. Shankar. Program Slicing of Hardware Description
Languages. L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, In Conference
on Correct Hardware Design and Verification Methods, Seiten 298–313, Springer-Verlag
Berlin Heidelberg, url:citeseer.ist.psu.edu/article/clarke99program.html, 2004.

1Im Gegensatz zur Modellprüfung ist unser Slicing unabhängig von der verwendeten Bitbreite für Integer.
2Hier ließe sich mit der ZR-Metrik ein entsprechender Schwellwert bestimmen.

66

[St04] Stefan Edelkamp, StefanLeue, Alberto Lluch-Lafuente. Partial-Order Reduction and Trail
Improvement in Directed Model Checking. International Journal on Software Tools for
Technology Transfer, Band 6(4), Seiten 277–301, 2004.

[A. 97] A. Bouajjani, J. Esparza, O. Maler. Reachability Analysis of Pushdown Automata: Appli-
cation to Model-Checking. In Proceedings of CONCUR 1997, Lecture Notes in Computer
Science (LNCS) 1243, Springer-Verlag Berlin Heidelberg, 1997.

[E. 98] E. M. Clarke, O. Grumberg, M. Minea, D. Peled. State Space Reduction using Partial
Order Techniques. Carnegie Mellon University, School of Computer Science, Pittsburgh,
PA 15213–3891, USA, Dept. of Computer Science, The Technion, Haifa 32000, Israel,
Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974–2070, USA, 1998.

[Edm01] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut Veith. Progress on
the State Explosion Problem in Model Checking. Lecture Notes in Computer Science
(LNCS) 2000/2001, Seite 176, url:citeseer.ist.psu.edu/clarke00progress.html, ISSN 1611-
3349, 2001.

[Fel06] Felix Berger. A test and verifiation environment for Java programs. Diplomarbeit Nr. 2470
der Abteilung Sichere und Zuverlässige Softwaresysteme, Institut für Formale Methoden
der Informatik, Universität Stuttgart, 2006.

[Fle05] Flemming Nielson, Hanne Riis Nielson, Chris Hankin. Principles of program analysis.
Korrigierte 2. Auslage, Springer-Verlag Berlin Heidelberg New York, 2005.

[FW02] Carsten Fritz und Thomas Wilke. State Space Reductions for Alternating Büchi Automata:
Quotienting by Simulation Equivalences. In Manindra Agrawal und Anil Seth, Hrsg., FST
TCS 2002: Foundations of Software Technology and Theoretical Computer Science: 22nd
Conference, Jgg. 2556 of Lecture Notes in Computer Science, Seiten 157–168, Kanpur,
India, 2002.

[FW05] Carsten Fritz und Thomas Wilke. Simulation Relations for Alternating Büchi Auto-
mata. Theoretical Computer Science, 338(1–3):275–314, 2005. Available online at
url:http://authors.elsevier.com/sd/article/S0304397505000563.

[H. 01] H. Peng, Y. Mokhtari, S. Tahar. Syntactic Model Reduction.
url:citeseer.ist.psu.edu/peng01syntactic.html, 2001.

[Jam04] James Ezick. An Optimizing Compiler for Batches of Temporal Logic Formulas. ISS-
TA’04, Boston, Massachusetts, USA, ACM 1-58113-820-2/04/0007, 2004.

[Jan01] Jan Obdrzálek. Model Checking Java Using Pushdown Systems. LFCS, Division of In-
formatics, The University of Edinburgh, 2001.

[Jav00] Javier Esparza, David Hansel, Peter Rossmanith, Stefan Schwoon. Efficient Algorithm
for Model Checking Pushdown Systems. TUM-INFO-01-10002-0/1.-FI, Technische Uni-
versität München, Institut für Informatik, Sonderforschungsbereich (SFB) 342: Methoden
und Werkzeuge für die Nutzung paralleler Rechnerarchitekturen, 2000.

[Jav01] Javier Esparza, Stefan Schwoon. A BDD-based model checker for recursive programs.
Lecture Notes in Computer Science, Band 2102, Seiten 324–336, Springer, 2001.

[KT00] Klaus Havelund und Thomas Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal of Software Tools for Technology Transfer (STTT),
Band 2(4), Seiten 366–381, url:citeseer.ist.psu.edu/havelund98model.html, 2000.

67

[M. 84] M. Weiser, Peter Henderson, Jim Lyle, Glenn Pearson, Joan Shertz, Randall H. Trigg.
Program slicing. IEEE Transactions on Software Engineering, SE-10(4), San Diego, Ca-
lifornia, United States, Seiten 352-357, 1984.

[M. 03] M. Christodorescu, S. Jha. Static Analysis of Executables to Detect Malicious Pat-
terns. In Proceedings of the 12th USENIX Security Symposium, Seiten 169–186,
url:citeseer.ist.psu.edu/christodorescu03static.html, 2003.

[Mat99] Matthew B. Dwyer, John Hatcliff. Slicing Software for Model Construction. In Parti-
al Evaluation and Semantic-Based Program Manipulation, Seiten 105–118, Kansas State
University, 1999.

[Mat06] Matthew Hague. The use of Alternating Automata for the Efficient Model Checking of
Linear-Time Logics. TODO(unbekannt), 2006.

[McM93] K. McMillan. Symbolic Moldel Checking. Kluwer Academic Publishers, 1993.

[Pat96] Patrick Cousot. Program analysis: the abstract interpretation perspective. In ACM
Workshop on Strategic Directions in Computing Research, MIT Lab. for Comput.
Sci., Boston, Electronically available abstract in ACM Comput. Surv. 28A, 4, url:
http://citeseer.ist.psu.edu/cousot96program.html, 1996.

[Ped06] Pedro de la Cámara, Marı́a del Mar Gallardo, Pedro Merino. Abstract Matching for Soft-
ware Model Checking. in A. Valmari (Ed.): SPIN 2006, LNCS 3925, Seiten 182–200,
Springer-Verlag Berlin Heidelberg, 2006.

[Rad01] Radu Iosif, Marius Bozga, Claudio DeMartini, Claudio Demartini, Matthew B. Dwyer,
John Hatcliff, Yassine Laknech, Riccardo Sisto. Exploiting Heap Symmetries in Explicit-
State Model Checking of Software. Automated Software Engineering, Proceedings of the
16th IEEE international conference on Automated software engineering Computer Society
Washington, DC, USA, Seite 254, ISSN 1527-1366, 2001.

[Rei00] Reinhard Wilhelm, Shmuel Sagiv, Thomas W. Reps. Shape Analysis. Compiler Construc-
tion, 9th International Conference, CC 2000, European Joint Conferences on the Theory
and Practice of Software, ETAPS 2000, Berlin, Germany, 25. März - 2. April, Proceedings,
Lecture Notes in Computer Science (LNCS), Band 1781, 2000.

[Ste06] Dejvuth Suwimonteerabuth Stefan Kiefer, Stefan Schwoon. Introduction to Remopla.
Institute of Formal Methods in Computer Science, University of Stuttgart, 2006.

[Tau03] H. Tauriainen. On translating linear temporal logic into alternating and nondetermini-
stic automata. Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, Research Report A83, 2003.

[Tom00] Tom Ball, Sriram Rajamani. A symbolic model checker for Boolean programs. In SPIN
Workshop 2000, Lecture Notes in Computer Science (LNCS) 1885, Seiten 113–130,
Springer-Verlag, 2000.

[Wol04] Wolfgang Thomas, Christof Löding. Model-Checking. Vorlesung WS03/04, Rheinisch-
Westfälische Technische Hochschule (RWTH) Aachen, Lehrstuhl für Informatik 7,
http://www-i7.informatik.rwth-aachen.de/teaching/ws0304/modelchk/, 2004.

68

Abbildung 3: Reduktionsergebnis des Slicings in denen Moped mehr als 2 Sekunden benötigte.

69

Verifying Concurrent List–Manipulating

Programs by LTL Model Checking

Joost–Pieter Katoen, Thomas Noll, and Stefan Rieger

RWTH Aachen University

Software Modeling and Verification Group

52056 Aachen, Germany

{katoen,noll,rieger}@cs.rwth-aachen.de

Abstract:

Techniques for the verification of elementary properties of concurrent pointer
programs are indispensable. Programming with pointers is error–prone with po-
tential pitfalls such as dereferencing null pointers and the creation of memory
leaks. Pointer programming becomes even more vulnerable in a concurrent set-
ting where data structures such as linked lists and trees are manipulated and
inspected by several threads.

We present a model–checking approach to the verification of concurrent pro-
grams that manipulate singly–linked lists.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for pointer
manipulation, cell creation and destruction, and (guarded) atomic regions that
allow concurrency control constructs such as test–and–set primitives and moni-
tors. An operational semantics is provided in terms of labeled transition systems
in which states are equipped with a graph structure representing the current list
configuration. List abstraction exploits a variant of summary nodes [→ Sagiv et
al.] that represent more than M chained list cells where constant M is directly
obtained from the formula to be checked. Each configuration is shown to have
a canonical representation (up to isomorphism). The abstract semantics of any
concurrent program in our language is finite, obtained in a fully mechanized
manner, and keeps the minimal “distance” between program variables and sum-
mary nodes invariant. Over–approximation occurs in a very controlled manner;
only assignments may yield nondeterminism as variables may get “too close” to
summary nodes.

Properties are expressed in a first–order linear–time temporal logic (LTL)
that is enriched with assertions on singly–linked lists such as reachability of cells,
aliasing, and freshness of cells. Our logic is similar in spirit to NTL [→ Distefano
et al.] and ETL [→ Sagiv et al.]. Opposed to NTL, we avoid the use of temporal
operators inside quantification. In this way, involved mechanisms to keep track
of the identities of individual cells are not needed. As a result, standard LTL
model checking algorithms can be employed. The differences with ETL are more
of a technical nature. ETL has a three–valued interpretation, whereas our logical
interpretation is a standard binary one. Moreover, ETL–formulas are translated
in first–order logic with transitive closure for the evaluation on a trace, whereas in

70

our case traces are generated by labeled transition systems and used in standard
LTL model checking.

71

Combining Tools and Languages for

Static Analysis and Optimization of

High-Level Abstractions

Markus Schordan

Vienna University of Technology, Austria
markus@complang.tuwien.ac.at

Abstract. We present an approach for combining different analysis and
transformation tools that enables their application to popular program-
ming languages without extending existing compilers. Analysis results
are made available as annotations of a common high-level intermediate
representation and as generated source code annotations. We also sup-
port an external file format. The presented Static Analysis Integration
Engine allows the selection of an arbitrary tool chain from the pool of
integrated tools, most suitable for a certain program analysis or manip-
ulation task. The architecture is evaluated with an implementation tar-
geting full C++, considering templates, object-oriented features, as well
as low-level features. The integrated tools are the LLNL-ROSE source-
to-source infrastructure, the Program Analyzer Generator from AbsInt,
and the language Prolog for manipulating terms representing C/C++
programs.

1 Motivation

For instrumentation tools, source-to-source optimizers, slicing tools,
refactoring tools, and tools for enabling code comprehension, it is
important to keep the source-code structure available for present-
ing the results of source code manipulating operations to the user.
It is important that the results can be easily put into relation to
the original program. This aids the user of such a tool, but com-
plicates the internal handling of the source program during analysis
and transformation because the results must be mapped back to the
original program. Compilers usually translate the input programs
to a lower-level representation for reducing the number of different
language constructs, allowing to keep a program analysis more com-
pact. The presented approach aims at utilizing compiler technology

72

but without losing syntactic or semantic information about the orig-
inal input program. Therefore all tools are integrated to operate on,
or map forth and back to a high-level intermediate representation.
The goal is to permit building arbitrary tool chains from the pool of
integrated tools.
In Section 2 we present the architecture of our Static Analysis Tool
Integration Engine (SATIrE) allowing a seamless integration of pow-
erful tools. The concrete implementation is presented in Section 3,
also describing each tool and how it is integrated in SATIrE. In Sec-
tion 4 we discuss related tool-based infrastructures and in in Section
5 we provide a short overview of the perspectives that we anticipate
for the extensibility of our approach.

2 Architecture

The architecture of the Static Analysis Tool Integration Engine
(SATIrE) is shown in Fig. 1. An essential aspect is that information
gathered about an input program can be generated as annotation in
the output program, and that the output program can again serve
as input program. This allows to make analysis results persistent
as generated source-code annotations. Utilizing such annotations, it
allows to perform whole program optimization.
The architecture shown in Fig. 1 consists of the following kinds of
components

Front End. The input language, L, is translated to a high-level
intermediate representation (HL-IR).

Annotation Mapper. The annotations in L are translated to an-
notations of the HL-IR.

Tool IR Builder. Each tool may require its own IR. The Tool-IR
Builder creates the required Tool-IR by translating the HL-IR to
the Tool-IR.

Tool. A tool analyzes or transforms its respective Tool-IR.
Tool IR Mapper. The Tool-IR mapper either maps the Tool’s IR

back to High-Level IR or maps the computed information or re-
sults back to locations in the HL-IR.

Program Annotator. The HL-IR annotations are translated to a
representation in the source code. This can be comments, prag-
mas, or some specific language extension.

73

Front
End

Builder 1
Tool IR

Tool 1

. . .

. . .

. . .

Tool 2

Tool IRTool IR
Builder 2

Tool n

Builder n

Tool IR Tool IR Tool IR
Mapper 1 Mapper 2 Mapper n

End
BackAnnotated

Program ’
Program

Annotator

Annotation
MapperProgram

Annotated High−Level
IR

High−Level
IR ’

SATIrE

Fig. 1. Static Analysis Tool Integration Engine Architecture

Back End. From the HL-IR a program in language L is generated
(including annotations).

To allow a seamless integration of the tools, the Annotation Map-
per, Program Annotator, the Tool-IR Builders and Tool-IR Mappers
are offered by SATIrE. In Fig. 1 the solid back-edge represents an
iterative application of the tools within SATIrE.
For example, library source codes can be analyzed and the library’s
interface source code can be annotated with analysis results. When
the library is used by an application, the library annotations can
then be utilized by the application optimizer. We have demonstrated
the optimization of the use of a parallel C++ array abstraction and
achieved similar performance as with an equivalent Fortran imple-
mentation [9].

3 Integrated Tools and Languages

To date we have integrated the Program Analyzer Generator
PAG [7], which generates analyzers from high-level specifications,

74

the LLNL-ROSE infrastructure for source-to-source transformation
of C++ programs [12], and a term representation of programs suit-
able for a Prolog interpreter, into SATIrE. In the following sections
we describe each integrated tool and give a short overview of its
integrated components.

SATIrE

Annotated
Program ’

Program
Annotator

Annotation
MapperProgram

Annotated

Analyzer
PAG

ICFG
Builder

Optimizer
Loop
ROSE

Term−AST
Mapper

Builder
Term

Prolog
Term

Analysis
Results
Mapper

Manipulator

ROSE
C/C++

Back End

Front End
C/C++
EDG

AST
ROSE

Annotated

AST ’

Annotated
ROSE

Fig. 2. Static Analysis Tool Integration Engine Implementation

3.1 LLNL-ROSE Integration

The LLNL-ROSE infrastructure offers several components to build a
source-to-source translator. The ROSE components integrated into
SATIrE are

C/C++ Front End. ROSE uses the Edison Design Group C++
Front End (EDG) [3] to parse C++ programs. The EDG Front
End generates an abstract syntax tree (AST) and performs a full
type evaluation of the C++ program. The AST is represented as
a C data structure. ROSE translates this data structure into a
decorated object-oriented AST (ROSE-AST).

75

Abstract Syntax Tree (ROSE-AST). The ROSE-AST repre-
sents the structure of the input program. It holds additional infor-
mation such as the type information for every expression, exact
line and column information, instantiated templates, the class hi-
erarchy (as it can be computed from the input files), an interface
that permits querying the AST, an an attribute mechanism for
attaching user-defined information to AST nodes.

C/C++ Back End. The Back End unparses the AST and gener-
ates C++ source code. It can be specified to unparse all included
(header) files or the source file(s) specified on the command line
with include-directives. This feature is important when trans-
forming user-defined data types.

Loop Optimizer. The loop optimizer was ported by Qing Yi from
the Fortran-D compiler to directly operate on the ROSE-AST.
It supports a wide range of loop transformations such as loop
fusion, loop fission, loop skewing, loop interchange and blocking
that can be applied to a given ROSE-AST.

3.2 Program Analyzer Generator Integration

The Program Analyzer Generator (PAG) from AbsInt, takes as in-
put a specification of a program analysis and generates an analyzer
that implements the analysis. The analyzer operates on an inter-
procedural control flow graph (ICFG) and provides the computed
analysis results as C data structure as well as a visualization of
the ICFG and the analysis results. The components necessary for a
seamless integration of PAG into SATIrE are

ICFG Builder. Creates the inter-procedural control flow graph
(ICFG) for a given ROSE-AST.

PAG Analyzer. Generated by the Program Analyzer Genera-
tor (PAG) from a user-defined analysis specification using the
OPTLA language.

Analysis Results Mapper. Maps the analysis results back to lo-
cations in the ROSE-AST and makes them accessible as ROSE-
AST annotations.

Various types of ICFG attributes (for example numeric labels for
statements) and support functions are provided to the analyzer by

76

appropriate functions. Thus, the high-level analysis specification can
access any information the ROSE-AST provides, such as types of
expressions, the class hierarchy, etc.

3.3 Example

A short example output of an automatically annotated program is
shown for the post-processed results of a shape analysis [10] in Fig. 3.
The shape analysis is specified using PAG, the input program is a
C++ program implementing a list reversal (and other list opera-
tions). After translating the C++ program to the corresponding
ROSE-AST, SATIrE’s ICFG builder creates the ICFG. Then the
PAG analyzer performs the shape analysis and the Analysis Results
Mapper maps the results back to the ROSE-AST. A post-processing
of the computed shapes generates may and must alias information.
The aliasing results are attached to the ROSE-AST nodes as must/-
may alias annotations. The Program Annotator generates from the
AST the annotations as source code comments, and the ROSE Back
End generates the annotated C++ code.
The actual parameter in the call to the function reverseList is
l, and is therefore aliased with the formal parameter x. When post
analysis information (after a statement) and pre analysis information
(before a statement) is the same, it is shown in the same line and
preceded with post,pre.

3.4 Prolog Integration

The integration of Prolog allows to specify a manipulation of the
AST as term manipulation. The SATIrE components necessary for
integration are

Term builder. Creates a term representation for a given AST. The
term representation is complete, meaning that it contains all in-
formation available in the AST. The term representation is stored
in an external file.

Prolog term manipulator. The term manipulation is specified as
Prolog rules.

Term-AST Mapper. The transformed term is read in and trans-
lated to a ROSE-AST.

77

class List* reverseList(class List* x)

{

// pre must_aliases : {(l,x)}

// pre may_aliases : {(l,x)}

class List* y;

// pre,post must_aliases : {(l,x)}

// pre,post may_aliases : {(l,x)}

class List* t;

// post,pre must_aliases : {(l,x)}

// post,pre may_aliases : {(l,x)}

y = ((0));

// post must_aliases : {(l,x)}

// post may_aliases : {(l,x)}

// pre must_aliases : {}

// pre may_aliases : {(l,t),(l,x),(l,y),(l,y->next),(t,y->next)}

while(x != ((0))) {

// pre must_aliases : {}

// pre may_aliases : {(l,t),(l,x),(l,y),(l,y->next),(t,y->next)}

t = y;

// post,pre must_aliases : {(t,y)}

// post,pre may_aliases : {(l,t),(l,x),(l,y),(l,y->next),(t,y)}

y = x;

// post,pre must_aliases : {(x,y)}

// post,pre may_aliases : {(l,t),(l,x),(l,y),(x,y)}

x = (x -> next);

// post,pre must_aliases : {(x,y -> next)}

// post,pre may_aliases : {(l,t),(l,y),(x,y->next)}

y -> next = t;

// post must_aliases : {}

// post may_aliases : {(l,t),(l,y),(l,y->next),(t,y->next)}

}

// post,pre must_aliases : {}

// post,pre may_aliases : {(l,t),(l,x),(l,y),(l,y->next),(t,y->next)}

t = ((0));

// post,pre must_aliases : {}

// post,pre may_aliases : {(l,x),(l,y),(l,y->next)}

return y;

// post must_aliases : {}

// post may_aliases : {(l,x),(l,y),(l,y->next)}

}

Fig. 3. Example of a C++ program, annotated automatically with
must/may aliasing information which is computed by a post-
processing phase from the results of a shape analysis [10]. We ex-
tended the shape analysis to an inter-procedural analysis. The anal-
ysis is specified by using PAG’s specification language.

78

This approach has been successfully adopted within the COSTA
project for performing Worst-Case Execution Time Analysis for a
given C program. A detailed description can be found in [8].

4 Related Work

Glynn et al. show that support for program understanding in devel-
opment and maintenance tasks can be facilitated by program anal-
ysis techniques [4]. They outline the addition of generic program
analysis support to a generic, language-based software development
environment.
Harrold and Rothermel present a technique for separate analysis
of modules [5]. The work focuses on one particular analysis, inter-
procedural may alias analysis, but the design of the analyzer is gen-
eral and similar to our setting. For inter-procedural analysis an ICFG
is created. The separation in control flow and intermediate represen-
tation of statements and expressions is the same as in our approach.
The analysis is a modular analysis, meaning that a module is a set of
interacting procedures or a single procedure that has a single entry
point. The approach allows to reuse the analysis results after ana-
lyzing a module and thus, is applicable to large scale software and
real world applications. In our approach we can add analysis results
as annotations to source-code, allowing to reuse analysis results in a
subsequent analysis step. This can either be done on the IR-level or
the annotated source code is read in again.
For optimizing compilers the automatic generation of data flow anal-
yses and optimizations out of concise specifications has been a trend
for several years. The systems of [1,2] concentrate on “classical”
inter-procedural optimizations, whereas the system of [13] is particu-
larly well suited for local transformations based on data dependency
information. We integrated PAG because it is a tool that allows to
generate analyzers from specifications for similar analysis problems.
In our infrastructure the transformation of the program is performed
by utilizing the AST rewrite capabilities of ROSE and by using Pro-
log for term manipulation.
In [6] a technique is presented for automatically proving compiler
optimizations sound, meaning that their transformations are always
semantics-preserving. The domain specific-language Cobalt allows

79

to specify optimizations to operate on a C-like intermediate repre-
sentation. The implemented correctness checker interfaces with the
automatic theorem prover Simplify. A similar setting could be added
to our infrastructure by integrating also tools for checking and auto-
matic proving into our current PAG-ROSE environment. Addressing
the additional needs of such tools and leveraging its benefits is a
driving force in the development of SATIrE.

5 Conclusions and Perspectives

We have presented SATIrE that allows to combine tools for anal-
ysis and transformation. The Front End translates the possibly an-
notated input program to a high-level representation (HL-IR). This
HL-IR is translated to an appropriate Tool-IR for each integrated
tool. The results computed by the respective tool are always mapped
back to the common HL-IR. The HL-IR can be unparsed to anno-
tated source code.
The applicability of our approach was demonstrated by integrating
into SATIrE the program analyzer generator PAG, the LLNL-ROSE
source-to-source translator, and by generating an external represen-
tation of the ROSE-AST as Prolog term. We are using SATIrE [11]
in a lecture on optimizing compilers at TU Vienna since 2006. Cur-
rently we focus on specifying different kinds of pointer analyses for
evaluation with respect to scalability, WCET analyses, and on design
pattern detection and extraction. Other tools that we are presently
integrating are Stratego and iburg. Tools of interest to be integrated
in future are model checking tools and automatic theorem provers.
We aim at providing a platform of integrated tools for program anal-
ysis research of multi-million line applications. We hope that the use
of high-level specification languages permits a qualitative comparison
of analyses and that the analysis and transformation of real-world
application codes permits a quantitative evaluation of program anal-
yses at a broad range in future.

Acknowledgements. This work has been funded in part by the
ARTIST2 Network of Excellence (http://www.artist-embedded.org).
I wish to thank Dan Quinlan for the cooperation and fruitful joint
work on LLNL-ROSE, Florian Martin for the support in integrating

80

PAG, Adrian Prantl for his work on maintaining the Prolog term
representation, Jens Knoop for his support in integrating SATIrE
in various research projects, and all students who have contributed
in several SATIrE projects: Gergo Barany, Viktor Pavlu, Christoph
Bonitz.

References

1. U. Aßmann. How to uniformly specify program analysis and transformation with
graph rewrite systems. In Proceedings of the 6th International Conference on
Compiler Construction (CC’96) (Linköping, Sweden), Lecture Notes in Computer
Science, vol. 1060, pages 121 – 135. Springer-Verlag, Heidelberg, Germany, 1996.

2. U. Aßmann. On edge addition rewrite systems and their relevance to program
analysis. In Proceedings of the 5th International Workshop on Graph Grammars
and Their Application to Computer Science (GGTA’94) (Williamsburg), Lecture
Notes in Computer Science, vol. 1073, pages 321 – 335. Springer-Verlag, Heidelberg,
Germany, 1996.

3. Edison Design Group. http://www.edg.com.
4. E. Glynn, I. Hayes, and A. MacDonald. Integration of generic program analy-

sis tools into a software development environment. In ACSC ’05: Proceedings of
the Twenty-eighth Australasian conference on Computer Science, pages 249–257,
Darlinghurst, Australia, Australia, 2005. Australian Computer Society, Inc.

5. M. J. Harrold and G. Rothermel. Separate computation of alias information for
reuse. IEEE Trans. Softw. Eng., 22(7):442–460, 1996.

6. S. Lerner, T. Millstein, and C. Chambers. Automatically proving the correctness
of compiler optimizations. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 220–231,
New York, NY, USA, 2003. ACM Press.

7. F. Martin. PAG – an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer, 2(1):46–67, 1998.

8. A. Prantl. Source-to-source transformations for WCET analysis: The COSTA
approach. In 24. Workshop der GI-Frachgruppe Programmiersprachen und
Rechenkonzepte, 2007.

9. D. Quinlan, M. Schordan, B. Miller, and M. Kowarschik. Parallel object-oriented
framework optimization. Concurrency and Computation: Practice and Experience,
16, Issue 2-3:293–302, 2004.

10. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1–50, Jan. 1998.

11. SATIrE. http://www.complang.tuwien.ac.at/markus/satire. Static Analysis Tool
Integration Engine.

12. M. Schordan and D. Quinlan. Specifying transformation sequences as computation
on program fragments with an abstract attribute grammar. In Proceedings of the
Fifth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 97–106. IEEE Computer Society Press, 2005.

13. D. Whitfield and M. L. Soffa. An approach for exploring code-improving transfor-
mations. ACM Transactions on Programming Languages and Systems, 19(6):1053
– 1084, 1997.

81

Design-by-Contract für funktionale Sprachen mit

verzögerter Auswertung

Stefan Wehr 1

1 (in Zusammenarbeit mit Markus Degen und Peter Thiemann)
Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079,

79110 Freiburg, Germany
{degen,thiemann,wehr}@informatik.uni-freiburg.de

1 Hintergrund

Design-by-Contract [2] ist eine Methodologie, um das Erstellen von korrekten
Programmen zu erleichtern. Ein Contract ist dabei ein Prädikat, welches be-
stimmte Eigenschaften des Programms kodiert. Typischerweise wird die Gültig-
keit von Contracts durch Contract Monitoring zur Laufzeit überprüft. Dabei
sollen zwei Eigenschaft gelten: (1) Falls ein Programm keinen Contract verletzt,
soll Contract Monitoring die Bedeutung des Programms nicht ändern. (2) Con-
tracts sind idempotent, d.h. es ist egal ob ein Contract einmal oder mehrmals
angewandt wird.

2 Problemstellung

Die ursprüngliche Umsetzungen von Design-by-Contract für funktionale Spra-
chen [1] ist im Umfeld von Scheme anzusiedeln, einer Sprache mit strikter Aus-
wertung. Überträgt man nun diesen Ansatz auf eine Sprache mit verzögerter
Auswertung, ergibt sich durch Contract Monitoring das Problem, dass Con-
tracts möglicherweise auf noch unausgewertete Teile des Programms zugreifen.
Um nun die beiden oben aufgeführten Eigenschaften nachzuweisen, genügt es
daher für solche Sprachen nicht, lediglich gewisse Seitene�ekte wie etwa Nicht-
terminierung aus den Prädikaten der Contracts zu verbannen (was für strikte
Sprachen ausreichend ist), sondern es müssen zusätzlich auch die Seitene�ekte
der Argument eines Contracts (d.h. der Ausdrücke, die mit einem Contract ver-
sehen sind) eingeschränkt werden. Damit wird das Programmieren mit Contracts
starkt eingeschränkt.

3 Lösung

Ausgehend von einem Typ- und E�ektsystem für eine funktionale Sprache mit
verzögerter Auswertung und Contracts wird die ursprüngliche, problematische
Form des Contract Monitorings formalisiert und die angesprochenen Eigenschaf-
ten 1 und 2 nachgewiesen. Anhand des Beweises kann man nachvollziehen, wel-
che E�ekteinschränkungen nötig sind. Auf dieser Erfahrung aufbauend wird eine

82

neue Form des Contract Monitorungs für Sprachen mit verzögerter Auswertung
entwickelt, welche sich besser mit der Auswertungsstrategie verträgt, für prak-
tische Zwecke gut geeignet ist und für die die genannten Eigenschaften gelten.
Eine Haskell Implementierung für die neue Form des Contract Monitorings liegt
vor.

Literatur

1. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In Simon Peyton-Jones, editor, Proc. Intl. Conf. Functional Programming 2002,
pages 48�59, Pittsburgh, PA, USA, October 2002. ACM Press, New York.

2. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, second
edition, 1997.

83

Tabular Expressions and Total Functional
Programming

Baltasar Trancón y Widemann and David Lorge Parnas

Software Quality Research Laboratory (SQRL)
University of Limerick, Ireland

http://www.sqrl.ie

Abstract. Tabular expressions are a multidimensional structured nota-
tion for complex mathematical definitions of relations or functions. In or-
der to create tools to check and evaluate tabular expressions, we have in-
vestigated functional programming as an implementation paradigm that
reflects mathematical semantics faithfully. We explain why and how the
restriction to total functions improves the semantic correspondence sub-
stantially, and describe the basic design and capabilities of our total
functional programming tools for tabular expressions.

1 Introduction

1.1 Context

Our research group is developing methods of producing practical reference doc-
umentation for software products and components. Our document contents are
defined by a relational model in which each document is required to be a repre-
sentation of a specified relation. In effect, we are using mathematical descriptions
of relations to provide specifications and descriptions of programs written in con-
ventional programming languages.

Key to making these documents readable is a multidimensional form of ex-
pressions, which we call tabular expressions or just tables. These parse complex
expressions into arrays of simpler expressions allowing readers to “look up” the
information that they seek without understanding the whole expression.

Tools that check and evaluate these expressions would be very useful when
these methods are applied and we are looking for effective and efficient imple-
mentations of such tools.

1.2 This Work

This paper reports on our experiences with applying the functional program-
ming paradigm to the construction of tools for tabular expressions. Functional
programming is a natural choice because

1. The tasks of checking and evaluating tabular expressions are typical exam-
ples of side-effect-free processing and interpretation of structured data.

84

2. The formal semantic model of tabular expressions, as presented to some
degree in the earlier work [1] and more generically in the forthcoming [2], is
given largely in terms of functions.

3. The intended application of these expressions is software documentation us-
ing a relational model [3] but the relations are described by their character-
istic predicate and those are always functional.

Our intent is to give a reference implementation of the formal model that is
not only executable, but also mirrors the intended semantics and the model’s
theoretical properties as faithfully as possible. We shall argue that our goals can
almost, but not quite, be achieved by using a universal functional language, and
describe an alternative.

1.3 Related Work

This is not the first time that the relation between tabular expressions and
functional programming has been noticed or exploited. In [4], Kahl presents an
inductive approach to tables of certain regular types that is compositional in
table content and semantics at the same time. He provides an implementation
of table constructors and inductive interpretation in Haskell, and correspond-
ing formal proofs in the proof system Isabelle. Because of the restricted set of
constructors, the resulting theory is compact and elegant.

In contrast, our current work is intended to implement the more generic
table model of [2], that allows all constructs of a mathematical base language
to be used freely in content and semantics of tables. This paper discusses the
requirements of such a generic view, and presents preliminary results from the
approach we have taken.

2 Example Tabular Expression

We shall use a simple tabular expression taken from [5] as the running example
for explaining the basic usage of tables and the services we expect from an
evaluation tool.

PwrCnd(Prev : bool ;Power , Kin , Kout : real) : bool =

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

false Prev true

Table 1. Power Conditioning (Specification)

85

The tabular expression depicted as table 1 is a small, but real example.1 It
specifies a family of control functions of a nuclear reactor shutdown system. As
some of the status monitoring logic is only applicable when the reactor is oper-
ating near its maximum output power level, they need to be “conditioned in”
(activated) above a certain power level, and “conditioned out” (deactivated) be-
low. To avoid jitter (many changes separated by very short intervals), hysteresis
is simulated by setting the threshold for conditioning in (Kin) slightly higher
than that for conditioning out (Kout). In between, the previous state (Prev) is
maintained. A graph illustrating some change of power over time is depicted in
figure 1. The relevant state transitions and their effects are marked.

t

Kout

Kin

Power

© effective

• suppressed

Fig. 1. Power Conditioning (Example Graph)

2.1 Meaning of a Tabular Expression

The concrete syntax for this table is deceivingly straightforward; for multidimen-
sional or irregular tables, there may not be such an obvious graphical represen-
tation. Hence the mathematical table model only represents the abstract syntax
of the content of the table as an indexed set (aka family or map) of grids. Each
grid is in turn an indexed set of cells, each of which contains a (conventional
or nested tabular) expression. A table type complements the content to make
the tabular expression semantically self-contained. The table type, that may be
shared by many similar tables, comprises

1. an evaluation term, i.e., an algorithm for evaluating the table’s content,
depending on a valuation of free variables,

2. a restriction predicate, i.e., a well-formedness condition that a table’s content
must satisfy for the evaluation algorithm to be applicable.

The table type is an integral part of the table expression. One can consider it as
an instance of dynamic typing, or as semantically rigorous meta-data.
1 Although we have chosen the simplest possible real example to illustrate these expres-

sions, many much more complex tables were used in the inspection of the Darlington
Nuclear Power Generation Station described in [5].

86

The given example table is an instance of the one-dimensional normal func-
tion table type:

1. It contains two grids of three cells each.
(a) The upper grid is a header grid that contains predicate expressions.
(b) The lower grid is a main grid that contains value expression (also of type

bool in this case).
2. To evaluate the table, choose an index to the header grid, such that

(a) the selected predicate expression evaluates to true,
(b) then evaluate only the corresponding cell of the main grid.
(For more than one dimension, one index for each header grid would be
chosen independently.)

3. The table is well-formed, if
(a) the main grid has the same indexes as the header grid (for higher dimen-

sions, the index set of the main grid must be the Cartesian product of
the index sets of the header grids), and

(b) each header grid partitions the set of possible variable valuations, i.e.,
exactly one is found to be true in any case.

See [1, 2] for more exact definitions of the normal function table type and other
types of tabular expressions.

2.2 Tool Requirements

We expect an evaluation tool to enable us to

1. evaluate a tabular expression for a given variable valuation, by applying the
evaluation term specified by the table’s type to its content,

2. check the restriction predicate, distinguishing two parts for practical reasons:
(a) clauses that do not depend on variable values (called the static restric-

tion), to be checked universally for the table’s content,
(b) clauses that do depend on variable values (called the dynamic restric-

tion), to be checked specifically for the table’s content and a given vari-
able valuation,

all with reasonable efficiency.
We do not expect an evaluation tool to support checking dynamic restric-

tions universally for all possible variable valuations. This is a task for a theo-
rem proving system, and may involve much more complex computations. In [5],
based on earlier work [6], the authors show how a flaw in the specified table
has been discovered by the automatic theorem prover PVS: the header cells are
only a partition of the valuation space, if the (intuitive, but unstated) assertion
Kout < Kin holds. Otherwise, the first and third columns overlap, and the table
does not specify a function.

87

3 The Logic Behind Tabular Expressions

If tabular expressions are to be used for describing real problems, they must
be able to deal with partial functions. Partial functions can lead to undefined
expressions, and there are many ways to handle undefinedness in logic, e.g., by
having three or more truth values.

The meaning of partial functions in tabular expressions here is the one defined
in [7]. It was chosen to give the shortest possible expressions in the table cells.
It can be summarized as follows:

1. There is a special value (∗), distinct from all proper values of interest. This
value is assigned to the application of a partial function to arguments outside
its domain.

2. The domain of partial functions never contains (∗). This implies that the
result of a partial function is (∗) whenever one of its arguments is (∗), i.e.,
functions are strict. A partial function is being treated as if it were a total
function whose range includes (∗).

3. Predicates are treated differently from functions. A predicate is simply false
if any of its arguments is (∗). Consequently, the truth value of a formula is
always true or false, but never (∗). I.e., predicates are non-strict.

Note that (=) is also a predicate, so (by the third rule) the seemingly trivially
true predicate expression f(x) = f(x) is not true if x is outside the domain of f .
On the other hand, the equation f(x) = y is logically equivalent to F (x, y) where
F is the characteristic predicate for f . It has been argued in [7] and later work
that this interpretation of partial functions is particularly concise and useful for
writing software descriptions and specifications in the tabular notation.

This semantic decision has consequences for the construction of an effective
universal evaluation algorithm for tabular expressions. The intuitively appealing
representation of (∗) by the element (⊥) of standard domain-theoretic semantics
does not work as intended: Since (⊥) is also assigned to expressions that cannot
be evaluated effectively, e.g., a nonterminating recursive function application,
writing a program that would evaluate any predicate of the formalism becomes
as hard as solving the halting problem, i.e., impossible without restrictions.

1. The pragmatic approach is to use a universal language to implement the
model, accepting some semantic deviations. It is impossible to preclude un-
determined predicate expressions in this case; so the responsibility is placed
on the programmer to find the appropriate termination arguments.

2. The rigorous approach is to use a restricted language with the “right” se-
mantics to implement the model. If we have to decide whether an expression
evaluates to (∗), it has to be an proper value in a calculus of total functions.
The advantage of this approach is that properties of the implementation are
closely related to (and not much more complex to prove than) properties of
the formal model. The price is that one has to obey the restrictions of the
implementation language.

88

4 Total Functional Programming

In [8], Turner expresses similar, albeit more fundamental concerns regarding the
relation of universal functional programming calculi and mathematical functions:

The driving idea of functional programming is to make programming
more closely related to mathematics. [. . .] The existing model of func-
tional programming [. . .] is compromised to a greater extent than is com-
monly recognized by the presence of partial functions.

He strives for a language that abolishes partial functions, but retains as much
as possible of the notational ease of Miranda or Haskell.

A quite different approach to total functions is taken by total function calculi
in the style of Martin-Löf’s type theory or Coquand’s calculus of constructions.
These are closely connected to higher-order logic (via the Curry-Howard isomor-
phism), a fact that is exploited in constructive proof systems like Coq.

We have chosen a “middle road”, employing a rigorous explicit type system
like the latter, but focusing on computation (rather than logic) like the former.
The result is FCN2, the design and implementation of a practical programming
language for pure total functions. Like other total languages, it is characterized
by the absence of general recursion: The syntax forbids recursive definitions, and
the type system forbids fixpoint operators.

5 Functional Programming Techniques Applied

Limited space prohibits the detailed description of the FCN language. The fol-
lowing subsections can provide only brief examples of how our requirements have
been mapped successfully onto features of the functional paradigm.

5.1 Partial Functions

The logical rules concerning partial functions and predicates can be implemented
in a completely explicit way using a simple error monad [9].

1. For each type A, a dubious type A? is defined to contain one additional
element:

type A? = A + ∗

Readers familiar with Haskell will easily recognize this as the Maybe functor.
2. A partial function f : A 9 B is represented as a total function f ′ : A → B?.

Consider another partial function g : B 9 C, totalized as g′ : B → C?. The
composition g′ ◦ f ′ is not type-correct, so a canonical transformation

bind : ∀B,C. (B → C?) → (B? → C?)

2 Functional Core Notation

89

is inserted. It satisfies the strictness law

bind(g′)(x) =

{
∗ x = ∗
g′(x) x 6= ∗

such that the composition of total functions bind(g′)◦f ′ correctly implements
the composition of partial functions g◦f . The operation bind can be extended
to the functorial operation of (?) to deal with total functions:

lift : ∀B,C. (B → C) → (B? → C?)

3. For predicates, a different canonical transformation

prim : ∀A. (A → bool) → (A? → bool)

is used to compose them with partial functions. It satisfies the non-strictness
law

prim(p)(x) =

{
false x = ∗
p(x) x 6= ∗

Apart from reflecting the intended semantics precisely, this approach has
several additional benefits:

1. Algebraic simplification laws that do not hold for the original implicit nota-
tion are restored. These include the aforementioned f(x) = f(x) ⇐⇒ true,
as well as general β-reduction.

2. A single boolean-valued function can be re-used to define both a partial
function and a total predicate, by exchanging lift and prim.

3. There is no ambiguity which symbols are primitive predicates and thus sub-
ject to the non-strictness rule: they are explicitly qualified with prim.

5.2 Cells and Variables

Tabular expressions are used to define functions and relations, hence they are
likely to contain (free) variables. In a language with first-order functions, the
grid structure of a table and the functionality of individual cells can be separated
cleanly by closure conversion, aka lambda lifting : The open expression in each
cell is turned into a function of the table’s variables, which can then be stored
in a data structure. In the given example table, the effect is that the phrase

λPrev : bool ;Power ,Kin ,Kout : real . · · ·

is prepended to each cell expression. A variable valuation then takes the form of
an argument vector that is applied uniformly to all cells of the table.

90

5.3 Table Interpretation

Table content is structured as grids and cells, organized in list-like collections.
All typical access operations required to define a table type, such as the nor-
mal function table type described above, are easily defined in terms of primitive
recursion, applying a recursion operator (aka fold) to a non-recursive step func-
tion. So far, we have not encountered any problem in this specific domain that
would have required recursion support from the language.

6 Tool Support

Programming in FCN is supported by tools, most notably a parser, type checker
and compiler. All of these are written in Java. The compiler produces Java code
that runs on the JVM, together with a small runtime library. Figure 2 shows a
compiled version of the running example table. It is controlled by a GUI that is
derived directly from the function signature, and will be generated automatically
by a future version of the tools.

Fig. 2. Power Conditioning (Simulation Screenshot)

A library of about 1000 lines of FCN code defines the ubiquitous basic types
and operations: booleans, natural numbers, tuples, lists monads, etc. The pow-
erful type system of the calculus of constructions allows the definition of all of
these in terms of the λ operator only; no additional primitive constructs are
needed or used.

A second level of library code, about 500 lines of FCN, defines the table
model in terms of standard functional data structures and operations, as well
as some common table types, including the multidimensional normal function
table type used in the example. This library will be extended in the future to
support other table types.

A tabular expression is simply data structured according to the model, con-
taining functions at the cell level. Evaluation and restriction checking are com-
pletely generic operations, because all semantic information is explicit in the
“type” part of the table data.

91

Tabular expressions that describe software behaviour can be “animated” with
compiled FCN code to produce simulations, test oracles or prototypes.

6.1 Total Functions and Theorem Proving

There is ongoing work [10] to represent the formal model of tabular expressions
as a theory in the proving system PVS. This would complement the services of
the evaluation tools by allowing to prove properties of tables universally for a
class of variable valuations.

Because of the close similarity between the calculi of total functions and the
higher-order logic of PVS, and because of the explicit treatment of partiality
issues in the FCN implementation, large parts of the implementation’s design
carry over to PVS directly. The FCN type checker has proved a valuable tool
for quick consistency checking in the design process, helping to keep consistency
proof obligations in the PVS theory tractable.

7 Conclusion

The work described in this paper is an experimental use of functional program-
ming in the creation of software engineering tools. The approach has provided a
formulation of the mathematical model of tabular expressions that can reflect se-
mantics precisely, but is also directly and effectively executable. The strict type
system has proven a valuable consistency check. The features of functional pro-
gramming that are supposed to support abstraction and reuse in functional pro-
gramming, namely parametric polymorphism and higher-order functions, have
found essential use, e.g., as primitive recursion operators and monadic liftings.

We have also found that the notion of total functional programming, that is
looked upon with some scepticism by most of the community, is quite feasible for
this specific application. The absence of general recursion does not impede the
construction or interpretation of tables unduly. The pervasive use of recursion
operators even encourages a point-free programming style.3

The absence of infinite evaluation branches greatly simplifies the choice of,
and encourages experiments with, evaluation strategies. This applies both at run-
time, where no semantic difference between eager and lazy evaluation exists, and
also at compile-time to program specialization by partial evaluation. Both cases
are investigated in ongoing work.

Finally, we have found that a calculus of total functions greatly reduces
the impedance mismatch between the implementation of a formalism and its
formalization in a proof system, making it attractive for projects that involve
both evaluation and verification.

3 An obvious benefit from the viewpoint of the functional programmer, but of ques-
tionable merit for the software engineer.

92

Acknowledgements

Thanks to Dennis Peters, Mark Lawford and other SQRL members for helpful
discussions.

References

1. Parnas, D.L.: Tabular representation of relations. CRL Report 260, McMaster
University (1992)

2. Balaban, A., Bane, D., Jin, Y., Parnas, D.L.: Mathematical model of tabular
expressions. SQRL draft (2007) available for review.

3. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Softw. Eng. 20(12) (1994) 948–976

4. Kahl, W.: Compositional syntax and semantics of tables. SQRL Report 15, Mc-
Master University (2003)

5. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the specifi-
cation and verification of a nuclear reactor shutdown system. Submitted to Formal
Methods in System Design (2000)

6. Jing, M.: A table checking tool. SERG Report 384, McMaster University (2000)
7. Parnas, D.L.: Predicate logic for software engineering. IEEE Trans. Softw. Eng.

19(9) (1993) 856–862
8. Turner, D.A.: Total functional programming. Universal Computer Science 10(7)

(2004) 751–768
9. Spivey, M.: A functional theory of exceptions. Sci. Comput. Program. 14(1) (1990)

25–42
10. Peters, D.K., Lawford, M., Trancón y Widemann, B.: An IDE for software devel-

opment using tabular expressions. In: CASCON 2007. (2007) to appear.

93

Monadic, Lazy Assertions in Haskell⋆

Frank Huch Olaf Chitil
CAU Kiel, Germany University of Kent, UK

fhu@informatik.uni-kiel.de oc@kent.ac.uk

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal computation of a program. We present a li-
brary for enriching Haskell programs with assertions. Expected proper-
ties can be specified in a parser-combinator like language. The assertions
are lazy: they do not force evaluation but only examine what is evaluated
by the program. They are also prompt: assertion failure is reported as
early as possible. The implementation is based on lazy observations and
continuation-based coroutines.

1 Introduction

Assertions are parts of a program that, instead of contributing to the functional-
ity of the program, express properties of run-time values the programmer expects
to hold. It has long been recognised that augmenting programs with assertions
improves software quality. An assertion both documents an expected property
(e.g. a pre-condition, a post-condition, an invariant) and tests this property at
run-time. For example, an assertion may express that the argument of a square
root function has to be positive or zero and likewise the result is positive or zero.
Assertions can be an attractive alternative to unit tests. Assertions simplify the
task of locating the cause of a program fault: in a computation faulty values
may be propagated for a long time until they cause an observable error, but
assertions can detect such faulty values much earlier.

We can easily define a combinator for attaching assertions to a Haskell ex-
pression:

assert :: Bool -> a -> a

assert b x = if b then x else error "Assertion failed."

The assertion is an identity function when the expected property holds, but raises
an exception otherwise1.

We can define normal Haskell functions for our expected properties, e.g.

ordered :: Ord a => [a] -> Bool

ordered [] = True

ordered [_] = True

ordered (x:y:ys) = x<y && ordered (y:ys)

⋆ This work has been partially supported by the German Research Council (DFG)
under grant Ha 2457/5-2 and by the United Kingdom under EPSRC grant
EP/C516605/1.

1 The Glasgow Haskell Compiler provides a variant that produces a more informative
error message that includes the source location of the failed assert call

94

and use them to assert for example a pre-condition:

checkedInsert :: Ord a => a -> [a] -> [a]

checkedInsert x xs = assert (ordered xs) (insert x xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x < y then x:y:ys else y : insert x ys

In many applications this works fine

> checkedInsert 4 [1,3,2,5]

Assertion failed.

but sometimes it does not, as the non-terminating expression shows:

> take 4 (checkedInsert 4 [1,2..])

In our example the function ordered, which expresses our expected property,
is fully strict and thus forces evaluation of the whole infinite list. Programming
with assertions as above results in strict programs and thus a loss of the ex-
pressive power of laziness, for example, the use of infinite data structures and
cyclic definitions. As long as an assertion does not fail, a program augmented
with assertions should have exactly the same input/output behaviour as the one
without assertions. Hence assertions for a lazy language should be lazy, that is, a
property should only be checked for the part of a data structure that is evaluated
during the computation anyway.

Our example above also demonstrates that using Boolean functions for spec-
ifying properties is rather limiting in expressiveness. We want to say that any
list containing two neighbouring elements in the wrong order should raise an
assertion failure, also when most of the rest of the list has not been evaluated.
However, ordered only decides on totally evaluated finite lists. We present a
parser-combinator like monadic language for expressive lazy assertions. Parser
combinators are a well-known tool for describing a set of token sequences. Simi-
larly our assertion combinators describe a set of possibly partial expected values.

Whenever a part of a value is evaluated that violates an asserted property,
the assertion immediately fails. We say our assertions are prompt. Promptness
ensures that the reported unexpected value is as unevaluated as possible and thus
smaller to read. Furthermore, a program fault usually violates many assertions,
but promptness ensures that the assertion that is closest to the fault with respect
to data flow is reported. In summary, our assertions have the following properties:

– Lazy: They do not modify the lazy behaviour of a program.

– Prompt: The violation of an assertion is reported as early as possible, before
a faulty value is used by the surrounding computation.

– Expressive: Complex properties can be expressed using full Haskell.

– Portable: Assertions are implemented as a library and do not need any com-
piler or run-time modifications; the only extension to Haskell 98 used for the
implementation are unsafePerformIO and IORefs.

95

This papers sketches some first ideas, how such assertions can be implemented
as a Haskell library. For lack of space, the paper concentrates on the basic ideas
and does not explain how promptness can be added to the presented assertions.

2 Using the Assertion Monad

Expected properties are specified in an assertion monad Try a that combines pat-
tern matching and non-deterministic computations. The combinators are used
very similarly to standard monadic parser combinators [8].

Here is the specification of the ordered property discussed in the Introduc-
tion:

ordered :: Ord a => Lazy [a] -> Try ()

ordered xs = pNil xs

||| (do (_,ys) <- pCons xs; pNil ys)

||| (do (x,ys) <- pCons xs; (y,_) <- pCons ys;

((do rx <- pVal x; ry <- pVal y; guard (rx < ry))

&&& ordered ys))

The tested argument is wrapped within a new type constructor Lazy and the re-
sult type has to be Try (). Together these two types enable prompt and lazy eval-
uation of assertions. To specify the three different cases for lists of length zero,
one, and longer lists, the assertion monad Try a provides the non-deterministic
choice operator (|||) :: Try a -> Try a -> Try a. It provides fair evaluation,
that is, there is no fixed order in which the different cases are evaluated. Sim-
ilarly, we provide a fair, parallel conjunction operator (&&&) :: Try () -> Try

() -> Try (), which allows the test of the ordered property in every position
within the list.

For pattern matching we provide the following pattern combinators within
the assertion monad:

pNil :: Lazy [a] -> Try ()

pCons :: Lazy [a] -> Try (a,[a])

pVal :: Lazy a -> Try a

For each data constructor we provide a pattern combinator that matches only the
constructor and that yields the sub-structure as a tuple within the Try monad.
For example, for the empty list it returns the empty tuple and for (:) it returns
a pair consisting of the element and the remaining list. The combinator pVal

matches every value and directly corresponds to a variable in a Haskell pattern.
Finally, the function guard is the standard Haskell function that integrates a
Boolean test into a MonadPlus.

To attach an assertion to an expression we provide the function assert ::

String -> (Lazy a -> Try ()) -> a -> a. The first parameter is a label naming
the assertion. When an assertion fails, the computation aborts with an appro-
priate message that includes the assertion’s label. As further parameters assert
takes the property and the value on which it behaves as a partial identity.

For expected values an assertion is an identity function. For partial values
that are smaller than expected values (in the ordering where unevaluated/unde-

96

fined is less than any value) the assertion cannot be decided and hence it is also
the identity function. For any unexpected value the assertion raises an exception.

To prevent an assertion from evaluating too much, the property has to be de-
fined as a predicate on the tested data structure. The implementation of assert
ensures that only the context in which the application of assert appears deter-
mines how far the tested data structure is evaluated and only that part is passed
to the predicate.

insertWithPre :: (Ord a,Observe a) => a -> [a] -> [a]

insertWithPre x xs = insert x (assert "insert input ordered" ordered xs)

The assertion is evaluated in a prompt, lazy manner, as the following call shows:

> take 4 (insertWithPre 4 ([3,4] ++ [1,2..]))

[3,4,*** Assertion (insert input list ordered) failed: 3 :4:1: _

Beside reporting the failed assertion, we also present the wrong value to the user
and highlight that parts of the data structure that contribute to the failure. Here
these are, beside the unordered values, all (:) constructors above the unordered
values, because the assertion would not have failed if any of them was [].

Similar to this precondition, we can add a postcondition specifying that the
result of insert is ordered. However, this is not exactly what one would like
to specify as a property of insert. In case insert is called with an unordered
list, this fault should not be blamed on insert, but on the function applying
insert to an unordered list. A better specification for insert would be: if the
argument list is ordered, then the result is ordered as well. In contrast to the
first assertion, this property is defined for a function. It specifies properties for
an argument and the result. Functional assertions can be expressed by means of
function funn 2 for functions of arity n:

insertChecked :: (Ord a, Observe a) => a -> [a] -> [a]

insertChecked = assert "insert preserves ordered property"

(fun2 (\ _ ys zs -> ordered ys ==> ordered zs))

insert

To express the dependence between the two ordered properties, we can use an
implication which is simply defined by negation notAssert and disjunction (|||).
Executing insertChecked yields the following behaviour:

> insertChecked 3 [5,3,4]

[5,3,3,4]

> insertChecked 3 [2,3,4]

[2,3,*** Assertion (insert preserves ordered property) failed:

3 -> (2:3:4:[] -> 2 :3:3: 4:_)

In the second case highlighting shows that for the ordered input list [2,3,4] the
duplicate occurrence of 3 in the result list does not meet the specification. To
correct the program, we could omit duplicated elements.

2 fun2 :: (Lazy a -> Lazy b -> Lazy c -> Assert) -> Lazy (a -> b -> c)

-> Assert

97

3 The Idea of Respecting Laziness

In this section we outline how the two types Try a and Lazy a enable Haskell
computations to respect how far their argument values are evaluated. To repre-
sent which parts of a data structure are evaluated already we introduce the data
type:

data EvalTree = Eval [EvalTree] | Uneval

An EvalTree represents how far a corresponding data structure is evaluated. It
has the same tree structure as the data structure itself except that parts may be
cut of by means of the constructor Uneval; that is, if the data structure contains
an n-ary evaluated constructor, then the corresponding EvalTree contains an
Eval node with n EvalTrees in the argument list. For instance, the evaluation
of list [1,2,3] in the call of [1,2,3]!!1 is represented by the EvalTree: Eval

[Uneval,Eval [Eval [],Uneval]]. Note that in later sections we will refine the
definition of EvalTree further.

Now we can introduce the type synonym

type Lazy a = (EvalTree,a)

in which values are paired with their corresponding evaluation information. This
type enables us to define an assertion that respects the evaluation state of the
tested value, for example a function checkOrdered that checks whether a given
list is ordered with respect to its evaluated parts:

checkOrdered :: Lazy [Int] -> Maybe Bool

checkOrdered (Eval [], []) = Just True

checkOrdered (Eval [_,Eval []], [_]) = Just True

checkOrdered (Eval [eX,eYXs@(Eval [eY,eXs])], (x:yxs@(y:xs))) =

leq (eX,x) (eY,y) &|& checkOrdered (eYXs,yxs)

checkOrdered _ = Nothing

leq :: Lazy Int -> Lazy Int -> Maybe Bool

leq (Eval [],x) (Eval [],y) = Just (x <= y)

leq _ _ = Nothing

(&|&) :: Maybe Bool -> Maybe Bool -> Maybe Bool

(Just True) &|& (Just True) = Just True

(Just False) &|& _ = Just False

_ &|& (Just False) = Just False

_ &|& _ = Nothing

The result type of checkOrdered reflects that beside being ordered or not, there
is a third alternative (Nothing), namely that at this stage of evaluation it is not
possible to decide whether the list is ordered or not. For comparing two elements
of the list we use a variation of (<=), which also respects the EvalTree. Finally,
the results of each comparison of two elements is done by a modified version of
(&&). Besides using the extended type Maybe Bool this function also implements

98

a parallel version of (&&) by means of its third rule. Independent of the other
argument, (&|&) propagates Just False as a result.

How can this approach be generalised to arbitrary computations on lazy
values? Although, assertions have to return Boolean values as result, subcom-
putations may return other result types. Here we can also use the Maybe type
to express that we either obtain a result or have a suspension. But how can the
parallel evaluation in the (&|&) function be generalised? The key idea is to intro-
duce non-determinism to our framework. In principle, the function checkOrdered

can be seen as a non-deterministic predicate, which compares arbitrary succes-
sive elements within the list. Then, used as an assertion, the function only yields
Just True, if all non-deterministic checks yield Just True; it yields Just False

if one of the non-deterministic checks yields Just False and it suspends if some
checks cannot be performed, that is, yield Nothing, and all other checks yield
Just True. Hence, we define the generalised result type for computation on lazy
values as follows:

newtype Try a = Try [Maybe a]

failT = Try []

suspT = Try [Nothing]

The non-determinism is encoded by a list of possible results from which each
single result may not be computable because of insufficient evaluation. The type
constructor Try forms a monad in which functions are applied to all list elements.

instance Monad Try where

(Try as) >>= f = Try $ concatMap (applyRes (fromTry . f)) as

where fromTry (Try x) = x

applyRes :: (a -> [Maybe b]) -> Maybe a -> [Maybe b]

applyRes f (Just x) = f x

applyRes f Nothing = [Nothing]

return x = Try [Just x]

For non-deterministic branching we define a parallel disjunction operator, which
collects all possible results3:

(|||) :: Try a -> Try a -> Try a

(Try xs) ||| (Try ys) = Try (xs++ys)

Within the Try monad we can now define pattern combinators for matching lazy
values, e.g.:

pCons :: Lazy [a] -> Try (Lazy a,Lazy [a])

pCons (Eval [eX,eY],v) = case v of (x:xs) -> return ((eX,x),(eY,xs))

_ -> failT

pCons (Eval _,_) = failT

pCons (Uneval,_) = suspT

3 In fact, Try can also be made an instance of MonadPlus with mplus = (|||) and
mzero = failT.

99

pNil :: Lazy [a] -> Try ()

pNil (Eval _,v) = if null v then return () else failT

pNil (Uneval,_) = suspT

These pattern combinators respect the evaluation of a given argument. If the ar-
gument is not evaluated at all, then the result is a suspension Nothing. If the
constructor is evaluated and it is the wrong constructor, then matching fails.
Finally, if the constructor matches, then we succeed and return the sub-terms
together with their evaluation information. Similarly we define a pattern com-
binator that strictly matches any value.

pVal :: Lazy a -> Try a

pVal (et,v) = condEval et (return v)

condEval :: EvalTree -> a -> a

condEval (Eval ets) tv = foldr condEval tv ets

condEval Uneval _ = suspT

It is mostly used for flat data types such as Int or Char.
Next we define the parallel (&&) function within our framework. We start

with a more general function, which applies arbitrary result functions to Try

results:

(***) :: Try (a -> b) -> Try a -> Try b

(***) (Try fs) (Try xs) = Try [res | fRes <- fs, xRes <- xs,

let res = do f <- fRes

x <- xRes

return (f x)]

type Assert = Try ()

(&&&) :: Assert -> Assert -> Assert

t1 &&& t2 = (return (\x1 x2 -> ()) *** t1) *** t2

Whereas our old (&|&) on type Maybe Bool could produce only one of three
values, the new (&&&) may produce a value representing many successful and
suspended computations. Now it is possible to define the ordered assertion from
Section 2. For a first implementation it remains to show how the EvalTree can
be successively constructed during the computation.

4 Generating EvalTrees

To generate evaluation information for data structures we use the idea of obser-

vations, first introduced by Hood [6]. All values for which an assertion is specified
are observed, which constructs a corresponding EvalTree representing how far the
data structure has been evaluated. The key idea is that the context of a com-
putation demands head normal forms (hnf). Whenever such an hnf is computed
we extend its EvalTree by means of a side effect. This means an Uneval leaf is
replaced by Eval [Uneval,...,Uneval] where the number of Unevals within the
list is equal to the arity of the constructor of the hnf.

Because we construct and use EvalTrees in program parts that are not linked
by data-flow and for efficiency reasons we use mutable references (IORefs) in our

100

new EvalTree representation.

data EvalTree = EvalR [EvalTreeRef] | UnevalR

type EvalTreeRef = IORef EvalTree

With this representation it is not necessary to descend the whole data structure,
when extending it in a leaf position. Instead, we can directly update the leaf.

Observable data types are represented by the following class:

class Observe a where

obs :: a -> EvalTreeRef -> a

We demonstrate how an instance of this class can be defined by means of the
list data type:

instance Observe a => Observe [a] where

obs (x:xs) r = unsafePerformIO $ do [aRef,bRef] <- mkEvalTreeCons r 2

return (obs x aRef : obs xs bRef)

obs [] = unsafePerformIO $ do mkEvalTreeCons r 0

return []

Whenever the context demands the evaluation of an observed value the corre-
sponding node in the EvalTree is extended by means of the function

mkEvalTreeCons :: EvalTreeRef -> Int -> IO [EvalTreeRef]

mkEvalTreeCons r n = do refs <- sequence (replicate n emptyUnevalRef)

writeIORef r (EvalR refs)

return refs

emptyUnevalRef :: IO EvalTreeRef

emptyUnevalRef = newIORef UnevalR

Furthermore observers are added to the (not yet evaluated) arguments of the
resulting constructor. These observers on demand extend the IORefs returned by
mkEvalTree (aRef and bRef), which are also added to the new EvalR node within
the EvalTree. The initial observer can be added with the function

observe :: Observe a => a -> IO (EvalTreeRef,a)

observe x = do r <- emptyUnevalRef

return (r,obs x r)

This function is called, whenever an assertion is added to a data structure, as
discussed in the next section.

On top of these functions, it is possible to define a late (in contrast to prompt)
implementation of our lazy assertions. It stores all assertions of the program
within a global state. At the end of the execution, all checks within this state
are executed. Failed assertions are reported to the user.

5 Promptness

So far, our assertions fulfill two major goals. They respect the laziness of the
program and they provide non-determinism by means of the operators (|||),
(***), and (&&&). It remains to make them prompts. The implementation shall

101

suspend checks on unevaluated parts of data structures and directly awake them
if these parts are evaluated to hnf. For this purpose we extended the idea of the
prompt, lazy assertion logic from [1] to our monadic frame work. The key idea is
the evaluation of assertions with coroutines stored within the Uneval leaves of the
EvalTree. If the main computation replaces an Uneval leaf by some Eval node,
then suspended coroutines within the Uneval leaf are restarted and evaluated.
This may on the one hand result in new suspended coroutines for suspended
assertions and checks on already evaluated parts of the EvalTree. On the other
hand it can also result in having succeeded to check an assertion or showing the
violation of an assertion. To highlight the relevant parts for a violation of an
assertion, we collect position informations about the EvalTree while checking an
assertion. Unfortunately, for lack of space, we cannot go into further details.

6 Related Work

The first systematic approach of adding assertions to a functional language tar-
gets the strict language Scheme [5]. It provides convenient constructs for express-
ing properties of functions, including higher-order functions, and augmenting
function definitions with assertions. Laziness is irrelevant and promptness triv-
ial for strict functional languages. Instead a major concern of this work is which
program part to blame when an assertion fails. The approach to blaming can-
not directly be transferred to a lazy language, because there the run-time stack
does not reflect the call structure. Instead a cooperation with the Haskell tracer
Hat [9] may provide a solution in the future. The Scheme approach has been
transferred to Haskell [7], but without taking its lazy semantics into account.

The first paper on lazy assertions for the lazy language Haskell [2] uses normal
functions with Boolean result for expressing properties and hence the assertions
are not prompt. The paper gives several examples of where the lack of prompt-
ness renders the assertions useless. Furthermore, expressibility of properties of
functions is limited and the implementation requires concurrency language ex-
tensions as provided only by GHC.

In the first paper on lazy and prompt assertions for Haskell [1] properties
are expressed in a pattern logic. The logic provides quantifiers and context pat-
terns that allow referring to substructures of the tested value. However, most
Haskell users find this logic hard to understand and many simple properties,
such as that two lists have the same lengths, require complex descriptions. The
implementation of the pattern logic is only sketched.

QuickCheck is a library for testing Haskell functions with random data [3].
Normal Boolean functions express expected properties, for example

prop :: Int -> [Int] -> Property

prop x xs = ordered xs ==> ordered (insert x xs)

where ordered :: [Int] -> Bool states that the function insert preserves order.
Normal Boolean functions can be used, because only total, finite data structures
are tested. An extension for (finite) partial values [4] has fundamental limit
whereas our assertions fully support laziness. It can be very hard to generate

102

random test data, for example input strings for a parser that are likely to be
parseable. QuickCheck can only test top-level functions whereas an assertion
can be attached to any local definition or subexpression. So testing with random
data and testing with real data as our assertions do are two different methods
which complement each other.

7 Conclusion

We have presented a new approach for augmenting lazy functional programs such
as Haskell with assertions. The implementation is a portable library that requires
only two common extensions of Haskell 98, unsafePerformIO and IORefs, that
are supported by all Haskell compilers. The assertions are lazy and prompt.
Most importantly, the combinator language for expressing asserted properties
is easy to use, because it is similar to familiar parser combinator libraries. It
combines pattern matching and non-deterministic computations. Furthermore,
it is very expressive, allowing the formulation of any imaginable computable
property. Assertions for functional values are easy write and syntax highlighting
simplifies the identification of parts of a value that are relevant for a failure.

References

1. Olaf Chitil and Frank Huch. A pattern logic for prompt lazy assertions in Haskell.
In Andrew Butterfield Zoltan Horvath, editor, Implementation and Application of

Functional Languages: 18th International Workshop, IFL 2006, volume 4449 of
LNCS. Springer, 2007.

2. Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy assertions. In Phil Trinder,
Greg Michaelson, and Ricardo Pena, editors, Implementation of Functional Lan-

guages: 15th International Workshop, IFL 2003, LNCS 3145, pages 1–19. Springer,
November 2004.

3. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional

Programming, pages 268–279. ACM Press, 2000.
4. Nils Anders Danielsson and Patrik Jansson. Chasing bottoms, a case study in

program verification in the presence of partial and infinite values. In Dexter Kozen,
editor, Proceedings of the 7th International Conference on Mathematics of Program

Construction, MPC 2004, LNCS 3125, pages 85–109. Springer-Verlag, July 2004.
5. Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.

In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference

on Functional programming, pages 48–59. ACM Press, 2002.
6. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

7. Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional pro-
gramming. In Proceedings of the 8th International Symposium on Functional and

Logic Programming, FLOPS 2006, LNCS 3945, pages 208–225, 2006.
8. Graham Hutton and Erik Meijer. Monadic parsing in Haskell. J. Funct. Program.,

8(4):437–444, 1998.
9. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for

Haskell: a new Hat. In ACM Workshop on Haskell, 2001.

103

Towards A New Denotational Semantics For
Curry and

The Algebra of Curry?

Bernd Braßel and Jan Christiansen

Institute of Computer Science
University of Kiel, 24098 Kiel, Germany
{bbr,jac}@informatik.uni-kiel.de

Abstract. It has often been observed that a point-free style of program-
ming provides a more abstract view on programs. We aim to use the gain
in abstraction to obtain a denotational semantics for functional logic lan-
guages in a straightforward way. We propose a set of basic operations
based on which arbitrary functional logic programs can be transformed
to point-free programs. Surprisingly, the additional features of functional
logic languages do require less basic operations to obtain point-free pro-
grams than known approaches for functional languages. This effect is
mostly due to employing so called function patterns.
We interpret the basic operations in relation algebra to obtain a de-
notational semantics for the whole point-free subset of functional logic
languages. As this subset is connected to the whole language by the pro-
posed transformation this enables a purely algebraic view on the whole
language.
A final example illustrates the additional possibilities gained by this ap-
proach.

1 Introduction

This work aims at combining the results of several well researched fields. Most
notably, these are the fields of declarative programming and relation algebra.
Moreover, the importance of a point-free view on programming has been empha-
sized particularly in the applications of category theory to semantics of program-
ming languages. We expect the combination of these fields to be very fruitful.
Many results and techniques from the field of relation algebra could be used
for the analysis of functional logic programs and the knowledge about the im-
plementation of functional logic languages could be employed to concisely solve
relation-algebraic problems. As a concrete example motivating this approach in
Section 3 we use algebraic calculations to optimise an operator definition. Due
to space reasons the semantics proposed in Section 3 is strict, whereas the trans-
formation developed in Section 2 takes laziness into account. In order to cover
laziness one needs to extent the domain of values and to redefine the transposi-
tion of a relation as we want to show in future work.
? This work has been partially supported by DFG grant Ha 2457/5-1.

104

1.1 Functional Logic Languages

We consider a functional logic program as a constructor-based rewriting system,
allowing extra variables on the right hand side and so called function patterns.
This section establishes some of the involved notation, referring to [13] for func-
tional logic programming and [3] for function patterns. For our examples we
adopt the syntax of Curry [15].

For a program P , ΣP is a signature partitioned into two sets, the set of con-
structors CP and the set of defined operations OP . We denote n-ary constructor
(operation) symbols by cn (fn, gn) omitting the arity where it is apparent. For
a set of (sorted) variables X , the sets of (well-sorted) terms and constructor
terms are denoted by T (ΣP ,X) and T (CP ,X), respectively. The function var(t)
yields the set of variables occurring in term t. A term is linear if every variable
occurs at most once. Sorts and constructors are introduced by a data declara-
tion, as shown in Example (1). The “a” in the third declaration denotes that

data Success = Success

data Bool = True | False

data [a] = [] | a : [a]

(1)
[a] is a polymorphic type. We use syntac-
tic sugar for list terms, e.g., [True,False]

instead of (True : (False : [])). Operations
are defined by rewrite rules of the form

“f p1 . . . pn = e” where fn ∈ OP and p1, . . . , pn are called patterns. The
standard way to define an operation in Curry is that each pattern of the rewrite
rules is a constructor term and each variable occurs not more than once in
the whole pattern. In other words, the term (p1, . . . , pn) must be a linear con-
structor term. Such standard Curry programs are evaluated by weakly needed
narrowing [14]. A narrowing step is a rewrite step combined with substitutions
for extra variables needed to match the left-hand side of an applicable rule.
E.g., a narrowing step for Example (2) is app x [True] →{x 7→ []} [True].

app [] ys = ys

app (x:xs) ys = x : (app xs ys)
(2)

In addition to defining rules, type sig-
natures are used to declare the sorts
an operation is defined for. As an ex-

ample, app:: [a] -> [a] -> [a] declares that app is an operation which maps
two (polymorphic) lists to a list. These lists have elements of the same type.

As in Example (2) there might be more than one possible narrowing step.
Functional logic languages provide non-deterministic search to obtain values in
this situation. Non-determinism does not only stem from narrowing but also
from operator definitions with overlapping left hand sides.

coin :: Bool

coin = True

coin = False

(3)
E.g., there are two derivations coin → True and coin →
False or, for short, coin → True | False. The operation
coin is very popular because it can be used to exemplify an
important feature of functional logic languages: call-time

choice, cf. [12]. With call-time choice non-deterministic choices for arguments
are done before application, at least conceptually. In combination with laziness
call-time choice is affine to the concept of referential transparency, as illustrated
in the next example.

105

or :: Bool -> Bool -> Bool

or x y = if x then x else y
(4) For example, employing call-time choice

the expression e := or coin True is
evaluated to True only, because both occurrences of x are substi-
tuted with the same value. That is, employing call-time choice there
are the derivations e → if True then True else True → True and e →
if False then False else True→ True. In the dual conception, run-time choice,
e is reduced to if True then coin else True → coin → True | False and
if False then coin else True → True. That is, the evaluation of e yields non-
deterministically True or False. We have to make sure to capture call-time choice
accordingly in Section 3.

An important operation in functional logic languages is the strict equality
(=:=) :: a -> a -> Success. The intended meaning is that the equation e1=:=e2

is satisfied iff e1 and e2 can be reduced to the same constructor term, see [11]
for a detailed discussion. In Curry, satisfying a predicate like the above equation
is modelled by a reduction to the special type Success, cf. Program (1).

Strict equality can be employed to allow a certain type of non-standard op-
erator definitions. A non-linear left hand side of a rewrite rule l = e with x
occurring n times in l can be taken as syntactic sugar for a rule where x is
replaced by different variables x1 ...xn in l and e is extended by constraints
(x1=:=x2), . . . , (x1=:=xn). See [2, 4.1] for a discussion of this transformation.

Finally, function patterns [3] allow operator definitions with arbitrary first
order patterns.1 The intended meaning of a function pattern is that only the
pattern is evaluated to a constructor term. The argument is evaluated until a
unification is possible. Unlike extra variables unified with strict equality (=:=)

this unification may bind a pattern variable to an unevaluated term. Non-linear
patterns are still treated with (=:=) as described above.

last (app xs [x]) = x (5) The operation last yields the last element of
a given list. We apply last (5) to the list

[True,False], that is, we evaluate the term e :=last [True,False]. We get the
following reduction:

app xs [x] →{xs 7→ y : ys} y : (app ys [x])) →{ys7→[]} [y,x] (6)

[y,x] can be unified with [True,False] yielding e→{xs7→[True],x7→False} False.

1.2 Point-free Style

The term point-free originates from topology where you have points in a space
and functions that operate on these points. In functional programming spaces
are types, functions are functions and points are the arguments of a function. In
point-free style you do not explicitly access the points, that is, the arguments of a
function. The idea of the point-free programming paradigm is to build functions
by combining simpler ones. It was introduced by John Backus in his Turing

1 We will see in the Section 2.2 that the restriction imposed on function patterns in
[3] is not necessary to obtain a reasonable semantics for such patterns. Therefore,
we will omit it for simplicity.

106

Award Lecture in 1977 [4]. The counterpart of point-free is point-wise, that is,
functions that explicitly access their arguments. Here, point-free programs are
based on a couple of point-wise primitives.

1.3 Relation Algebra

In this section we present the relation-algebraic basics for Section 3. For a de-
tailed introduction to relation algebra see [18]. Relation algebras can also be
defined as a special kind of categories, first in [5].

In this paper we make use of the so called concrete relation algebra, in which
relations are represented as sets of Cartesian products. We denote the set of all
relations with domain X and range Y by [X ↔ Y]. We write R :: X ↔ Y instead
of R ∈ [X ↔ Y] and xRy instead of (x, y) ∈ R and call X ↔ Y the type of R.

Lattice For each set [X ↔ Y] the operations ∪ (intersection, meet), ∩
(union, join), and · (complement, negation) together with a greatest element L
(universal relation) and a smallest element O (empty relation) form a boolean
lattice. A lattice provides an induced order denoted by ⊆.

Union, intersection and complement of the concrete relation algebra are the
standard union, intersection and complement operations on sets. The empty
relation is the empty set and the universal relation L :: X ↔ Y is X × Y .
The lattice order is the subset relation. The relation algebra enriches the lattice
with two operations ◦ (multiplication) and ·> (inversion, transposition) and a
constant I (identity relation).

The Multiplication of relation algebra is a binary associative operation for
which the identity relation I is the neutral element. For each set X, I :: X ↔ X
is defined by xIx for all x ∈ X. The multiplication of two relations R :: X ↔ Y
and S :: Y ↔ Z is defined by x(R ◦S)z iff there exists y ∈ Y such that xRy and
ySz. It is R ◦ S :: X ↔ Z.

The Inversion of a relation R :: X ↔ Y is defined by yR>x ⇔ xRy. It is
R> :: Y ↔ X. In Section 3 we use some properties of inversion: (R>)> = R,
(R ◦ S)> = S> ◦R> and (R ∪ S)> = R> ∪ S>.

Direct Products Given a product X × Y there are two projections which
map a pair (u1, u2) to its first component u1 and second component u2, respec-
tively. We consider the corresponding projection relations π1 :: X ×Y ↔ X and
π2 :: X × Y ↔ Y such that uπ1x ⇔ x = u1 and uπ2y ⇔ y = u2 for u = (u1, u2).

The tupling [·, ·] of two relations R :: X ↔ Y and S :: X ↔ Z is defined
by x [R,S] (y, z) ⇔ xRy ∧ xSz and its type is X ↔ (Y,Z). The parallel com-
position · || · of two relations R :: X ↔ Z and S :: Y ↔ W is defined by
(x, y)(R || S)(z, w) ⇔ xRz ∧ ySw and its type is (X, Y) ↔ (Z,W). Tupling and
the projections are connected by the following properties:

S total ⇒ [R,S] ◦ π1 = R R total ⇒ [R,S] ◦ π2 = S

Direct Sums are introduced as a dual concept to direct products. Sums are
constructed by the injections ι1 and ι2 which can be used to define the semantics
of constructors.

107

2 Transformation to Point-free Style

2.1 The Set of “Primitives”

In this section we define a small set of point-wise operations which allow the
definition of arbitrary functional logic operations in a point-free style.

Composition of Operations The first such “primitive” is sequential composi-
tion, occasionally simply referred to as “composition”.

(*) :: (a -> b) -> (b -> c) -> a -> c

(f * g) x = g (f x)
(7) gf

The primitive (*) is a flipped version of (.). Whereas (f . g) reads as “f after
g”, (f * g) is more like “f before g”. This is more convenient with regard to our
aim of a relation-algebraic treatment of programming semantics. Furthermore,
the left-to-right reading provides a very descriptive graphical representation. The
composition is visualised by connecting two operations with a line, indicating
that the output of one is the input of the other. Such visualisations were also
used in connecting functional programs [16] and allegory theory with hardware
design [8] and to describe physical structures in general [19]. Simple definitions
can be made point-free by using sequential composition, cf. Example (8).

involution x = not (not x)

involution = not * not
(8) notnot

Operations with several arguments are composed by parallel composition.

(/) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f / g) (x,y) = (f x,g y)
(9)

f

g

Example (10) illustrates the use of parallel composition. The Operation (*) has
a higher precedence than (/) making the parenthesis necessary.

nor :: Bool -> Bool -> Bool

nor x y = not x && not y

nor :: (Bool,Bool) -> Bool

nor = (not / not) * and

(10) and

not

not

Discretely, we have changed the type of nor to a so called “uncurried” version.
We use curried operations only when higher order is employed, as discussed in
Paragraph “Higher Order”.

Interface Adaption So far, we can express only right linear rules. Sharing ar-

fork :: a -> (a,a)

fork x = (x,x)
(11)

guments is the first of the primitives deal-
ing with what we call “interface adap-
tion”. Interface adaption means that the

connectives of two operations have to be copied, joined or reordered in some
way. An uncurried and point-free version of the boolean operator “if and only
if” (12) can be formulated using (/) and fork.

108

(<=>) :: Bool -> Bool -> Bool

x <=> y = x && y || not x && not y

(<=>) :: (Bool,Bool) -> Bool

(<=>) = fork * ((&&)/(not/not)*(&&)) * (||)

(12)
or

and

and

not

not

There are two more primitives for interface adaption. The operator unit to “dis-
card a value” and the identity id to “pass a value on”. Both are exemplified in
the following sections.
unit :: _ -> ()

unit _ = ()
(13) id :: a -> a

id x = x
(14)

Data Structures, Inversion and Pattern Matching We do not wish to
abstract from concrete domains at this point. Later in Section 3, we treat data
structures in the standard way of sums and products. Here we define different
operations to construct data. Each constructor of the original program will be
assigned one operation.
nil :: () -> [a] true, false :: () -> Bool

nil () = [] true () = True

cons :: (a,[a]) -> [a] false () = False

cons (x,xs) = x : xs

(15)

Note that these operations are again uncurried and that the constants True,
False, and [] are extended with an argument. The reason for the latter extension
will become apparent soon.

What we have seen so far is a more or less standard treatment of expressing
functional programs in a point-free style. To concisely express pattern matching
and to combine several rules we employ two additional features of functional
logic programming, i.e., non-determinism and function patterns.
(?) :: a -> a -> a

x ? _ = x

_ ? y = y

(16) coin :: () -> Bool

coin = true ? false
(17)

As stated in the introduction, overlapping rules in functional logic languages
lead to non-deterministic search, cf. [14]. In principal, all non-determinism can
be introduced by permitting only a single operation with overlapping rules (?)

(16), cf. [2]. We use (?) to combine the rules of a function, cf. Example (17).
Note that the introduction of the argument () for constant constructors extends
to all definitions of constants.

invert :: (a -> b) -> (b -> a)

invert f = f’ where f’ (f x) = x
(18)

Function patterns can be used to in-
vert arbitrary operations. This yields
the primitive invert defined in (18).

The semantics of function patterns are described in [3] in terms of an possi-
bly infinite set of rewrite rules. We aim at giving a denotational semantics for
function patterns for the first time.

The expressive power of function patterns can be estimated by consider-
ing that all other logic features can be obtained by using function patterns.

109

E.g., invert unit :: () -> a yields a logic variable when applied to () and
invert fork :: (a,a) -> a performs unification, cf. Section 1.1. Therefore we
can define the following useful abbreviations for interface adaption.

unknown :: () -> a

unknown = invert unit
(19) join :: (a,a) -> a

join = invert fork
(20)

The operations up and down demand the discarded argument to be an empty
tuple which is important for the definition of pattern matching.
up :: (a,()) -> a

up = (id / unknown)*join
(21) fst :: (a,_) -> a

fst = (id / unit)*up
(22)

down :: ((),a) -> a

down = (unknown / id)*join
(23) snd :: (_,a) -> a

snd = (unit / id)*down
(24)

The expressive power gained by function patterns is paid with computational
overhead, cf. [3]. It is thus desirable to replace a function pattern by an equivalent
operation without such patterns. We think that our semantics gives a base on
which optimizing procedures can be developed. As a first outlook in this direction
we give a derivation of a more efficient version of last defined in (5) in Section 3.
head :: [a] -> a tail :: [a] -> [a]

head = invert cons * fst tail = invert cons * snd
(25)

In addition to (?) to combine rules, the primitive invert can be used to express
arbitrary pattern matching including function patterns. A constructor pattern
is a linear constructor term, cf. Section 1.1. In order to match such a pattern
we only have to invert the according constructors and then adapt the result
like shown in (25). From this point of view it becomes apparent why constant
constructors are extended with an argument: to make them invertible.

There is one last feature concerning pattern matching in connection with
laziness. If a value is discarded, e.g., by using unit, it is not evaluated. The
semantics of pattern matching demands that matching is ensured regardless of
whether the resulting variable bindings are used or not. The operations head and
tail defined in (25) use one of the variables bound by the matching and therefore
the pattern matching is indeed performed. In general we have to combine several
of the primitives introduced so far to achieve the desired evaluation.

null :: [a] -> Bool

null [] = True

null (_:_) = False

(26)

Example (26) shows a case in which the bind-
ings of the matching are discarded. The point-free
version has to make sure that a) the empty tu-
ple of (invert nil) and b) the pair resulting from

(invert cons) are demanded, and not more. The following definition provides
these properties.

null = invert nil * true ? invert cons * (unit/unit) * join * false (27)

The astute reader might wonder why we introduce non-determinism for a per-
fectly deterministic operation like the pattern matching of null. The reason for
this is twofold. 1) From a semantic point of view the non-deterministic branch-
ing does not matter. If the matching was indeed deterministic, for a given de-

110

terministic value all but one branch will finitely (even immediately) fail. 2) In a
functional logic language patterns are not always deterministic nor treated in a
sequential way (like in Haskell). Overlapping patterns induce non-determinism
which is easily captured by our approach.

member :: [a] -> a

member (x:_) = x

member (_:xs) = member xs

(28)

For example, the operation member defined
in (28) non-deterministically relates a list
with each of its elements. Without further
additions this behaviour is captured by the

transformation. The following definition shows a point-free version of member.

member = invert cons * fst ? invert cons * snd * member (29)

Example (28) also illustrates that recursive functions simply stay recursive.
There is no need for changes, e.g., a special recursion operator. Complex patterns
are treated like complex expressions, i.e., they are composed with (*) and (/)

before inverting the whole expressions. We treat function patterns in the very
same way. For example, the function last (5) is translated to:

last = invert ((id / (id/nil) * cons) * app) * snd * up (30)

Higher Order In order to introduce higher-order operations we need to adapt
the well known pair apply and curry to our setting. A first point to consider is

apply :: (a -> b,a) -> b

apply (f,x) = f x
(31)

that values of type a correspond to operations
of type () -> a. Because higher-order opera-
tions should be first class objects we need to

translate them in the same way. An operation of type (a -> b) must become an
object of type () -> (a -> b) when used as an argument of an operation. If we
assume this kind of translation we can define apply and curry straightforward.
curry :: (() -> (a,b) -> c) -> () -> (a -> b -> c)

curry f = \ () x y -> f () (x,y)
(32)

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

(33)

The step to obtain the first curried ver-
sion of a given function cannot be for-
mulated in an equally general way be-
cause of call-time choice. This is illus-

trated by a standard example of a higher-order operation in Example (33). We
can already translate map with the primitives introduced so far, adding apply.
map :: (a -> b,[a]) -> [b]

map = invert (id / nil) * nil

? invert (id / cons) * adapt * ((apply / map) * cons)

(34)

We assume adapt to map the tuple structure (f,(x,xs)) to ((f,x),(f,xs)). We
omit its concrete definition by means of id, unit, invert and fork. We want to
map the operation not on the list [False,True].
not = invert true * false ? invert false * true

listFalseTrue = fork * (false / fork * (true / nil) * cons) * cons

mapNot = fork * (curryNot / listFalseTrue) * map
(35)

What should curryNot :: () -> (Bool -> Bool) be defined as? A first version

111

might be curryNot = const not. But evaluating mapNot () yields no solution.
The reason is call-time choice. Because f is a variable the choice whether f is
the operation “invert true * false” or “invert false * true” is made consis-
tently for all applications of f. But this decision has to be made anew for each
application of f. This can be achieved by η-expansion.

curryNot () x = not x (36) Using definition (36) (mapNot ()) evaluates to
[True,False] as intended. The example shows

that a second version of each operation which will be applied higher order is
needed. We have now illustrated all the point-wise primitives necessary to trans-
late arbitrary Curry programs: (*) (7), (/) (9), fork (11), unit (13), id (14), (?)
(16), invert(18), apply (31) and curry (32). The next section presents a formal
definition of the transformation.

2.2 Obtaining Point-free Style in General

Modern functional logic languages provide syntactic sugar to formulate very con-
cise and readable code, e.g., the if · then · else used in Example (4). In the
following, we will consider the core language defined in Figure 1. We distinguish-
ing partial and full applications in order to model higher order. For example,
the Curry expression map not [] is represented as (map (PC not) []). For our
programs, we assume sort correctness. Furthermore, we assume that the source
program contains no unary operations nor unary constructors in order to avoid
the concept of an “unary tuple”. Figure 2 shows how expressions are trans-

P ::= R∗ {program}
R ::= fn p1 . . . pn = e f ∈ OP {rule}
p ::= x x ∈ X {(pattern) variable}

| (sn p1 . . . pn) s ∈ ΣP {complex pattern}
e ::= x x ∈ X {variable}

| (sn e1 . . . en) s ∈ ΣP {full application}
| (PC sn) s ∈ ΣP {partial application}
| (AP e1 e2) {higher order application}

Fig. 1. The Core Language

exp(x) = (PC id)
exp((s0)) = (PC s1)
exp((sn e1 . . . en)) = (exp(e1)/ . . . /exp(en))*(PC sn) n > 1
exp((PC sn)) = curry(. . . (curry| {z }

n−1

cs) . . .)

exp((AP e1 e2)) = (exp(e1)/exp(e2))*(PC apply)

Fig. 2. Transforming Expressions and Patterns

lated. Note that constants are replaced by unary symbols of the same name, cf.
the discussion of Examples (15) and (25) in the previous section. Furthermore,
the partial application of s is replaced by an application of a new symbol cs as
motivated in paragraph “Higher Order” above. The operation cs is defined in

112

Figure 7. Because patterns are effectively a subset of expressions, the rules of
Figure 2 are also used to translate patterns.

int(x) = x
int((s e1 e2 . . . en)) = (int(e1), (int(e2), (. . . , int(en)) . . .))
int((PC sn)) = ()
int((AP e1 e2)) = (int(e1), int(e2))

Fig. 3. Obtaining Interfaces

Next we present the general approach to “Interface Adaption”, cf. the paragraph
of the same name above. An interface is an abstraction from the actual structure
of an expression. That is, it is a tree with the same branching structure as the
original expression which contains variables that occur in the expression. The
simple mapping from expressions to interfaces is depicted in Figure 3. We denote
complex interfaces, i.e, those not in X ∪ {()} by i, i1, i2 . . . and by var(i) the set
of all variables occurring in i.

sel(x, ()) = (PC id)

sel(x, y) =

(PC id) , if x = y
(PC unit) , otherwise

sel(x, (i, i′)) = (sel(x, i)/sel(x, i′))*

8<:
((PC id)/u)* , if x ∈ var(i) ∧ x 6∈ var(i′)
(u/(PC id))* , if x 6∈ var(i) ∧ x ∈ var(i′)

, otherwise

9=; j.

u = (invert (PC unit)) j = (invert (PC fork))

adapt(i, ()) = sel(y, i) where y 6∈ var(i)
adapt(i, x) = sel(x, i)
adapt(i, (i1, i2)) = (PC fork) ∗ (adapt(i, i1)/adapt(i, i2))

Fig. 4. Variable Selection and Interface Adaption

Selecting variables from a given interface and adapting two interfaces is defined
in Figure 4. Each occurrence of the selected variable is passed on by id, while all
other variables are discarded by unit. The remaining operations introduced by
sel(·, ·) ensure that the whole interface structure is matched. This is important
in order to demand the whole pattern matching as discussed in connection with
Example (26). The effect of mapping adapt(·, ·) is twofold. First, an application
of the mapping sel(·, ·) is introduced for all leaves of the interface adapted to.
Second, the incoming argument is copied as often as needed by employing the
primitive fork. The examples given in the previous section often contain a more
simple interface adaption. In the appendix, which will not be part of the final
version of this paper but will be made available online as a technical report, we
provide a set of simplification rules along with detailed examples. As these rules
do not provide any additional insights we omit them here.
Extra variables on the right-hand side are added by the mapping addfree(·, ·),
defined in Figure 5. For each variable a call to unknown alias invert unit is in-
troduced as explained in Section 2.1. The rules of a defined operation are trans-

113

addfree(i1, i2) = (free × . . .× (free| {z }
n

×id) . . .)*adapt(i′1, i2)

where free = (unit * (invert unit))

i′1 = (x1, . . . , (xn, i1) . . .)
{x1, . . . , xn} = var(i2) \ var(i1)
e× e′ = fork*(e/e′)

Fig. 5. Adding Logic Variables

rule(f p1 . . . pn = e) = (invert (exp(p1)/ . . . /exp(pn)))*adp*exp(e)
where adp = addfree(int((p1, . . . , pn)), int(e))

Fig. 6. Transforming Rules

formed according to Figure 6. The general technique is: invert the transformed
pattern then apply interface adaption and finally transform the body of the rule.

cons(c0) = c () = c′

cons(cn>1) = c ((x1,x2),...,xn) = c′ x1 ... xn

cOp(f) = cf () x = f x

op(fi) = f = rule(ri1) ? . . . ? rule(rini)
prog(P) = prims op(f1) . . . op(fn) cOp(f1) . . . cOp(fn) cons(c1) . . . cons(cm)

Fig. 7. Transforming Programs

Finally, the definitions of Figure 7 are employed to transform an entire program
P where prims are the definitions of (*) (7), (/) (9), fork (11), unit (13), id

(14), (?) (16), invert(18), apply (31) and curry (32). In Figure 7 we assume that
OP = {f1, . . . , fn} and CP = {c1, . . . , cm} and that for each fi ∈ OP , ri1 . . . rini

to be the rules defining fi in P . As discussed with Example (15), a new function
is introduced for each constructor in CP in the first mapping of Figure 7. For
simplicity, a new constructor symbol is introduced rather than a new function
symbol. cOp in Figure 7 introduces the new functions needed to realize higher
order, cf. Examples (33) and (36). op combines the rules defining an operation
by (?), cf. Example (17). In the last equation all three mappings are combined
along with the definitions of the primitive operations to obtain the whole result.
The resulting program P ′ is a program with the following signatures, where rc
replaces constants by unary symbols, i.e., rc(M) = {s1 | s0 ∈ M}.

OP ′ = rc(OP ∪ {cf | f ∈ OP } ∪ CP) ∪ Prim
CP ′ = rc({c′ | c ∈ CP })
Prim = {(*)3, (/)3, (?)2, fork1, id1, unit1, invert1, apply1, curry1}

Of course the question arises, how to give an account of the correctness of the
transformation. Although the translation using (*) and (/) is standard [10], our
use of function patterns is a new technique. For future work, we therefore plan to
give a stronger formalisation of the operational behaviour of function patterns

114

than [3] and prove the correctness in the framework of an operational semantics
like the one introduced in [1].

3 Obtaining Semantics

We define a denotational semantics for Curry by defining a semantics for all
point-wise primitives where assocr = [π1 ◦ π1, [π1 ◦ π2, π2]].

[[f * g]] = [[f]] ◦ [[g]] [[f / g]] = [[f]] || [[g]]
[[f ? g]] = [[f]] ∪ [[g]]

[[fork]] = [I, I] [[invert f]] = [[f]]>

[[id]] = I [[unit]] = L

[[apply]] = (I || [I, L]) ◦ [I, I]> ◦ π2 [[curry f]] = L ◦ [I, [[f]]] ◦ assocr

There is no one-to-one relation between the semantics of apply and curry and
the corresponding point-wise primitives. Higher order is essentially modelled by
manipulating a relational representation of the graph of an operation. We only
define the semantics of apply and curry here to show that we can provide seman-
tics for the full set of primitives. Constructors are represented by injections. That
is, if a data type has n constructors and C is the k-th constructor we define the
semantics of C by an injection to the k-th position of an n-ary sum. For example,
the constructors true and false defined in (15) are represented as tt := I + O
and ff := O + I, respectively. In consequence, for the non-deterministic operation
coin, cf. (17), holds: [[coin]] = [[true]]∪ [[false]] = tt∪ff = I + I. In the model
of the concrete relation algebra, cf. Section 1.3, this can be represented by the
set {((), tt), ((), ff)}.

Although the name might suggest thus, call-time choice does not coincide
with strictness. It is the way that direct products are defined in relation algebra
which implies that the proposed semantics indeed models call-time choice. For
example, the semantics of a shared coin, i.e., [[coin * fork]] is {((), tt), ((), ff)}◦
[I, I]. By definition of ◦, I and [·, ·] this denotes the set {((), (tt, tt)), ((), (ff, ff))}.

In general all sharing is introduced by fork. The semantics would be run-time
choice iff the two expressions f * fork and fork * (f / f) are equal regardless
of f. In contrast, in our semantics the following two properties hold.

R ◦ [I, I] ⊆ [I, I] ◦ (R || R) R univalent ⇔ R ◦ [I, I] = [I, I] ◦ (R || R)

Note that the given semantics is strict. The conceptual work on extending
the given framework to provide a lazy semantics is advanced but not finished
yet. The main reason to present a strict semantics is to show the promising new
possibilities gained by giving an algebraic derivation of an optimised version of
the definition of last introduced in (30).

For readability we will use fonts to distinguish between syntax and semantics
instead of adding brackets. Names written in italic are the semantics of the same
term written in typewriter, e.g., “cons” denotes the semantics of cons. First, we

115

provide the semantics of last defined in (30) and app defined in (2). Note that
fst = π1 and snd = π2.

last = ((I || (I || nil) ◦ cons) ◦ app)> ◦ snd ◦ up

app = (nil || I)> ◦ down ∪ (cons || I)> ◦ assocr ◦ (I || app) ◦ cons

We want to calculate an operation called last’, that has the same semantics as
last but does not use a function pattern. On the right hand side of each step,
we state the relation-algebraic law that is applied.

last = (I || (I || nil) ◦ cons ◦ app)> ◦ snd ◦ up (R ◦ S)> = S> ◦R>

= app> ◦ (I || (I || nil) ◦ cons)> ◦ snd ◦ up (R || S)> = R> || S>

= app> ◦ (I> || ((I || nil) ◦ cons)>) ◦ snd ◦ up (R || S) ◦ snd = snd ◦ S

= app> ◦ snd ◦ ((I || nil) ◦ cons)> ◦ up

Now we invert the semantics of the operation app. We split app in two parts,
app1 and app2. These are the semantics of the two rules of app. We simplify each
rule of app separately. We use the abbreviation assocl = [[π1, π2 ◦ π1] , π2 ◦ π2].

app> = (app1 ∪ app2)
> (R ∪ S)> = R> ∪ S>

= app1
> ∪ app2

>

app1
> = ((nil || I)> ◦ down)

>
(R ◦ S)> = S> ◦R>

= down> ◦ (nil || I)>
>

R>>
= R

= down> ◦ (nil || I)

app2
> = ((cons || I)> ◦ assocr ◦ (I || app) ◦ cons)

>
(R ◦ S)> = S> ◦R>

= cons> ◦ (I || app)> ◦ assocr> ◦ (cons || I)>
>

R>>
= R

= cons> ◦ (I || app)> ◦ assocr> ◦ (cons || I) (R || S)> = R> || S>

= cons> ◦ (I> || app>) ◦ assocr> ◦ (cons || I) I> = I

= cons> ◦ (I || app>) ◦ assocr> ◦ (cons || I) assocr> = assocl

= cons> ◦ (I || app>) ◦ assocl ◦ (cons || I)

In the next step we substitute the expression app> in last by its definition. Again,
we can treat the two arguments of the union separately.

last = app> ◦ snd ◦ ((I ||nil) ◦ cons)>◦up def. of app>

= (app>1 ∪ app>2) ◦ snd ◦ ((I ||nil) ◦ cons)>◦up (R ∪ S)◦T = R ◦ T ∪ S ◦ T

= (app>1 ◦ snd ◦ ((I ||nil) ◦ cons)>◦up)

∪ (app>2 ◦ snd ◦ ((I ||nil) ◦ cons)>◦up)
= last1 ∪ last2

116

last1 = app>1 ◦ snd ◦ ((I || nil) ◦ cons)>◦up def. of app>1
= down> ◦ (nil || I) ◦ snd ◦ ((I || nil) ◦ cons)>◦up (R || S) ◦ snd = snd ◦ S

= down> ◦ snd ◦ I ◦ ((I || nil) ◦ cons)>◦up down> ◦ snd = I

= I ◦ I ◦ ((I || nil) ◦ cons)>◦up I ◦R = R

= ((I || nil) ◦ cons)>◦up

By applying the transformation in the other direction we get the following rule.

last’ (x:[]) = x

Now we substitute the right hand side of app>2 in the definition of last2 and
transform the resulting term.

last2 = app>2 ◦ snd ◦ ((I || nil) ◦ cons)> ◦ up

def of app>2
= cons> ◦ (I || app>) ◦ assocl ◦ (cons || I) ◦ snd ◦ ((I || nil) ◦ cons)> ◦ up

(R || S) ◦ snd = snd ◦ S

= cons> ◦ (I || app>) ◦ assocl ◦ snd ◦ I ◦ ((I || nil) ◦ cons)> ◦ up
assocl ◦ snd = snd ◦ snd

= cons> ◦ (I || app>) ◦ snd ◦ snd ◦ I ◦ ((I || nil) ◦ cons)> ◦ up
(R || S) ◦ snd = snd ◦ S

= cons> ◦ snd ◦ app> ◦ snd ◦ I ◦ ((I || nil) ◦ cons)> ◦ up
I ◦R = R

= cons> ◦ snd ◦ app> ◦ snd ◦ ((I || nil) ◦ cons)> ◦ up︸ ︷︷ ︸
last

By applying the inverse transformation we get a second rule for last’ that
contains a recursive call. Now we unite the results for last1 and last2 and get a
definition of last that does not use a function pattern.

last’ [x] = x

last’ (_:xs) = last’ xs

4 Related and Future Work

We are aware that many works on all three topics connected in this paper exist,
i.e., on the semantics of functional logic programming languages, the point-free
programming style and relation algebra. Here, we can only relate our work to a
small selection.

Cunha, Pinto and Proença [10, 9] present a framework for transformations
into point-free style. They present a library for point-free programming in Haskell

117

which is similar to our primitives. Furthermore, they have developed a program
that transforms arbitrary Haskell programs into point-free style and they present
a tool for manipulating point-free programs. Although their focus is different
from ours, especially [9] provided valuable insights, e.g., that the opportunities
for automatic reasoning about programs is not as straightforward as the formal-
ism might suggest. Therefore we aim to use our approach for program analysis
like [7] and to prove (with only half automatic tool support) the correctness of
optimisations for functional logic languages.

The book “Algebra of Programming” by Bird and de Moor [6] has been very
influential for this work. They present a calculus for the algebraic manipulation
of functional programs. We hope that we could give an idea that the framework
of functional logic languages is an even more natural and promising field for this
style of reasoning about programs. The elementary difference is the existence
of non-determinism. Whereas in [6] every inversion and every non-deterministic
definition resulting from inversion must be eliminated, the framework of func-
tional logic languages allows much less restricted use of algebraic methods. The
same is true a fortiori for approaches like [17] that aim on deriving a functional
definition to compute the inversion of a given function definition.

Regarding the denotational semantics of functional (logic) languages, we want
to relate our approach especially with two papers as future work. [20] proposes a
denotational semantics for a functional language employing relation algebra. [12]
provides a denotational semantics for functional logic languages based on cones.
There are many interesting extensions to the framework of [12] which we want
to investigate. However, our work presents a promising step towards covering
function patterns for the first time.

Apart from relating with the existing approaches, we plan to extend our
approach to cover laziness. Conceptual work for this extension already exists.
Naturally, we want to work on the correctness of the proposed transformation,
most suitably by using a framework like [1]. Furthermore, a formal relation to
the semantics of [12] would further ensure the validity of the approach. In the
long term we would like to use algebraic methods like demonstrated in Section 3
for program analysis and optimisation.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. S. Antoy. Evaluation strategies for functional logic programming. Journal of
Symbolic Computation, 40(1):875–903, 2005.

3. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

4. J. Backus. Can programming be liberated from the von neumann style?: a func-
tional style and its algebra of programs. Commun. ACM, 21(8):613–641, August
1978.

118

5. R. Berghammer and G. Schmidt. A relational view on gotos and dynamic logic.
In Herbert Göttler and Hans Jürgen Schneider, editors, Proceedings of the 8th
Conference on Graphtheoretic Concepts in Computer Science (WG 82), pages 13–
24. Hanser, 1982.

6. R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

7. B. Braßel and M. Hanus. Nondeterminism analysis of functional logic programs. In
Proceedings of the International Conference on Logic Programming (ICLP 2005),
pages 265–279. Springer LNCS 3668, 2005.

8. Carolyn Brown and Graham Hutton. Categories, Allegories, and Circuit Design.
In Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, Los Alamitos, California, July 1994.

9. A. Cunha. Point-free program calculation. PhD thesis, Universidade do Minho,
Departamento de Informática, 2005.

10. A. Cunha, J. Sousa Pinto, and J. Proença. A Framework for Point-free Program
Transformation. In Andrew Butterfield, editor, Revised Papers of the 17th Inter-
national Workshop on Implementation and Application of Functional Languages
(IFL’05), number 4015 in Lecture Notes in Computer Science. Springer-Verlag,
2005.

11. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel leaf: A logic plus
functional language. Journal of Computer and System Sciences, 42(2):139–185,
1991.

12. J. C. González-Moreno, Maria Teresa Hortalá-González, Francisco Javier López-
Fraguas, and Mario Rodŕıguez-Artalejo. An approach to declarative programming
based on a rewriting logic. J. Log. Program., 40(1):47–87, 1999.

13. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

14. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

15. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, 2006.

16. Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement in
Ruby. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, Mathematics
of Program Construction, volume 669. Springer Verlag, 1993.

17. Shin-Cheng Mu. A Calculational Approach to Program Inversion. PhD thesis,
Oxford University Computing Laboratory, 2003.

18. Gunther Schmidt and Thomas Ströhlein. Relations and Graphs - Discrete Math-
ematics for Computer Scientists. EATCS Monographs on Theoretical Computer
Science. Springer, 1993.

19. Hermann von Issendorff. Algebraic description of physical systems. In Roberto
Moreno-Dı́az, Bruno Buchberger, and José Luis Freire, editors, EUROCAST, vol-
ume 2178 of Lecture Notes in Computer Science, pages 110–124. Springer, 2001.

20. Hans Zierer. Programmierung mit Funktionsobjekten: Konstruktive Erzeugung se-
mantischer Bereiche und Anwendung auf die partielle Auswertung. PhD thesis,
Technische Universität München, Fakultät für Informatik, 1988.

119

