
From Communication Histories

to State Transition Machines

Walter Dosch

Institute of Software Technology and Programming Languages
University of Lübeck
Lübeck, Germany

Abstract. The black-box view of an interactive component concentrates
on the input/output behaviour based on communication histories. The
glass-box view discloses the component’s internal state with inputs ef-
fecting an update of the state. The black-box view is modelled by a
stream processing function, the glass-box view by a state transition ma-
chine. We present a formal method for transforming a stream processing
function into a state transition machine with input and output. We intro-
duce states as abstractions of the input history and derive the machine’s
transition functions using history abstractions. The state refinement is
illustrated with two applications, viz. iterator components and an inter-
active stack.

Keywords Interactive component, stream processing, state transition machine,
communication history, history abstraction, iterator component, interactive stack

1 Introduction

A distributed system consists of a network of components that communicate
asynchronously via unidirectional channels. The communication histories are
modelled by sequences of messages, called streams. Streams abstract from dis-
crete or continuous time, since they record only the succession of messages. The
input/output behaviour of a communicating component is described by a stream
processing function [9, 10] mapping input histories to output histories.

During the development of a component, the software designer employs dif-
ferent points of view. On the specification level, a component is considered as
a black box whose behaviour is determined by the relation between input and
output histories. The external view is relevant for the service provided to the
environment.

On the implementation level, the designer concentrates on the component’s
internal state where an input is processed by updating the internal state. The in-
ternal view, also called glass-box view, is described by a state transition machine
with input and output.

A crucial design step amounts to transforming the specified behaviour of a
communicating component into a state-based implementation. In our approach,



we conceive machine states as abstractions of the input history. The state stores
information about the input history that influences the component’s output on
future input. In general, there are different abstractions of the input history
which lead to state spaces of different granularity.

This paper presents a formal method, called state refinement, for transform-
ing stream processing functions into state transition machines. The transforma-
tion is grounded on history abstractions which identify subsets of input histories
as the states of the machine. The state refinement preserves the component’s
input/output behaviour, if we impose two requirements. Upon receiving fur-
ther input, a history abstraction must be compatible with the state transitions
and with the generation of the output stream. The formal method supports a
top-down design deriving the state-based implementation from a behavioural
specification in a safe way.

The paper is organized as follows. In Section 2 we summarize the basic no-
tions for the functional description of interactive components with communi-
cation histories. Section 3 introduces state transition machines with input and
output. Section 4 presents the systematic construction of a state transition ma-
chine that implements a stream processing function in a correct way. History
abstractions relate input histories to machine states. With their help, the tran-
sition functions of the machine can be derived involving the output extension of
the stream processing function. In the subsequent sections, we demonstrate the
state refinement for different types of applications. In Section 5 , the transfor-
mation of iterator components leads to state transition machines with a trivial
state space resulting from the constant history abstraction. Section 6 discusses
the state-based implementation of an interactive stack. The history abstraction
leading to a standard implementation results from combining a control state and
a data state in a suitable way.

2 Streams and Stream Processing Functions

In this section we briefly summarize the basic notions about streams and stream
processing functions to render the paper self-contained. The reader is referred
to [18] for a survey and to [19] for a comprehensive treatment.

2.1 Finite Streams

Streams model the communication history of a channel which is determined by
the sequence of data transferred via a channel. Untimed streams record only the
succession of messages and provide no further information about the timing.

Given a non-empty set A of data, the set A⋆ of finite communication histories,
for short streams, over A is the least set with respect to subset inclusion defined
by the recursion equation A⋆ = {〈〉} ∪ A × A⋆ . A stream is either the empty
stream 〈〉 or is constructed by the operation ⊳ : A × A⋆ → A⋆ attaching an
element to the front of a stream. We denote streams by capital letters and



elements of streams by small letters. A stream X = x1 ⊳ x2 ⊳ . . . ⊳ xn ⊳ 〈〉 (n ≥ 0)
is denoted by 〈x1, x2, . . . , xn〉 for short.

The concatenation X&Y of two streams X = 〈x1, x2, . . . , xk〉 and Y =
〈y1, y2, . . . , yl〉 over the same set A of data yields the stream 〈x1, x2, . . . , xk, y1,

y2, . . . , yl〉 of length k + l . The concatenation X&〈x〉 appending an element x at
the rear of a stream X is abbreviated as X ⊲ x .

2.2 Prefix Order

Operational progress in time is modelled by the prefix order. The longer stream
forms an extension of the shorter history, and, vice versa, the shorter stream is
an initial history of the longer stream.

A stream X is called a prefix of a stream Y , denoted X ⊑ Y , iff there
exists a stream R with X&R = Y . The set of finite streams together with the
prefix relation forms a partial order with the empty stream as the least element.
Monotonic functions on finite streams possess unique continuous extensions to
infinite streams [13] .

2.3 Stream Processing Functions

The history of data passing along a communication channel between components
and, possibly, their environment is mathematically captured by the notion of a
stream. Thus, a deterministic component which continuously processes data from
its input ports and emits data at its output ports can be considered as a function
mapping input histories to output histories.

A stream processing function f : A⋆ → B⋆ maps an input stream to an
output stream. The input type A and the output type B determine the syntactic
interface of the component.

We require that a stream processing function is monotonic with respect to
the prefix order: f(X) ⊑ f(X&Y ) . This property ensures that a prolongation of
the input history leads to an extension of the output history. A communicating
component cannot change the past output when receiving future input.

A stream processing function describes the (input/output) behaviour of a
component.

2.4 Output Extension

A stream processing function summarizes the behaviour of a component on en-
tire input streams. A finer view reveals the causal relationship between single
elements in the input stream and corresponding segments of the output stream.

The output extension isolates the effect of an input on the output stream
after processing a prehistory.

Definition 1 The output extension εf : A⋆ × A → B⋆ of a stream processing
function f : A⋆ → B⋆ is defined by

f(X ⊲ x) = f(X) & εf (X, x) . (1)



The output extension completely determines the behaviour of a stream pro-
cessing function apart from its result for the empty input.

3 State Transition Machines with Input and Output

The operational behaviour of distributed systems is often formalized by labelled
state transition systems specifying a transition relation between states associated
with labels [21] . The transitions denote memory updates, inputs, outputs, or
other actions. For the purposes of modelling communicating components, we
associate a state transition with receiving an element on the input channel and
sending data to the output channel.

3.1 Architecture of the Machine

A state transition machine reacts on input with an update of the internal state
generating a sequence of outputs.

Definition 2 A state transition machine with input and output, for short a
state transition machine, M = (Q,A,B,next, out , q0) consists of a non-empty
set Q of states, a non-empty set A of input data, a non-empty set B of output
data, a (single-step) state transition function next : Q×A → Q , a (single-step)
output function out : Q × A → B⋆ , and an initial state q0 ∈ Q . The types A
and B determine the interface of the state transition machine.

Given a current state and an input, the single-step state transition function
determines a unique successor state. The single-step output function yields a
finite sequence of elements, not just a single element.

The single-step functions can naturally be extended to finite input streams.

Definition 3 The multi-step state transition function next⋆ : Q → [A⋆ → Q]
yields the state reached after processing a finite input stream:

next⋆(q)(〈〉) = q (2)

next⋆(q)(x ⊳ X) = next⋆(next(q, x))(X) (3)

The multi-step output function out⋆ : Q → [A⋆ → B⋆] accumulates the output
stream for a finite input stream:

out⋆(q)(〈〉) = 〈〉 (4)

out⋆(q)(x ⊳ X) = out(q, x)& out⋆(next(q, x))(X) (5)

The multi-step output function describes the (input/output) behaviour of the
state transition machine.

For each state q ∈ Q , the multi-step output function out⋆(q) : A⋆ → B⋆ consti-
tutes a stream processing function. It abstracts from the state transitions and
offers a history-based view of the component.



3.2 Output Equivalence

We aim at transforming a state transition machine into a more compact one with
a reduced number of states without changing the behaviour. To this end, we are
interested in states which induce an equal behaviour when the state transition
machine receives further input.

Definition 4 Two states p, q ∈ Q of a state transition machine M = (Q,A,B,

next , out , q0) are called output equivalent, denoted p ≈ q , iff they generate the
same output for all input streams: out⋆(p) = out⋆(q) .

An observer of the state transition machine cannot distinguish output equivalent
states, as they produce the same output stream for every input stream.

Proposition 1 Successor states of output equivalent states are also output equiv-
alent.

3.3 Related models

State transition machines with input and output are closely related to a variety of
state-based computing devices used to specify, verify, and analyse the behaviour
of distributed systems, among others generalized sequential machines [7] , port
input/output automaton [11, 12] , Stream X-machines [5] and X-machines [7] ,
Harel’s statecharts [8] , µ-Charts [16] and UML state diagrams [15, 14]. A differ-
ent type of state transition systems were used in [1] for specifying the behaviour
of components and, in particular, for the verification of safety and liveness prop-
erties [3] .

4 From Stream Processing Functions to State Transition

Machines

In this section, we implement stream processing functions by state transition
machines using history abstractions. Given a stream processing function, we
construct a state transition machine with the same interface and the same be-
haviour. The crucial design decision amounts to choosing an appropriate set of
states. In our approach, the states of the machine represent sets of input histories
that have the same effect on the output for all future input streams.

4.1 History Abstractions

A history abstraction extracts from an input history certain information that
influences the component’s future behaviour.

Definition 5 For a stream processing function f : A⋆ → B⋆ and a set Q of
states, a function α : A⋆ → Q is called a history abstraction for f , if it is
output compatible (6) and transition closed (7) :

α(X) = α(Y ) =⇒ εf (X, x) = εf (Y, x) (6)

α(X) = α(Y ) =⇒ α(X ⊲ x) = α(Y ⊲ x) (7)



The output compatibility guarantees that a history abstraction identifies at most
those input histories which have the same effect on future output. The transition
closedness ensures that extensions of identified streams are identified as well:

α(X) = α(Y ) =⇒ α(X&Z) = α(Y &Z) (8)

The transition closedness constitutes a general requirement, whereas the output
compatibility refers to the particular stream processing function.

4.2 Construction of the State Transition Machine

When implementing a stream processing function with a state transition ma-
chine, the history abstraction determines the state space, the transition func-
tions, and the initial state.

Definition 6 Given a stream processing function f : A⋆ → B⋆ and a surjective
history abstraction α : A⋆ → Q for f , we construct a state transition machine
M [f, α] = (Q,A,B,next, out , q0) with the same interface as follows:

next(α(X), x) = α(X ⊲ x) (9)

out(α(X), x) = εf (X, x) (10)

q0 = α(〈〉) (11)

The state transition function and the output function are well-defined, since the
history abstraction is surjective, transition closed, and output compatible.

The following proposition establishes the correctness of the implementation
step.

Proposition 2 Under the assumptions of Def. 6 , the stream processing function
and the multi-step output function of the state transition machine agree:

f(X) = f(〈〉) & out⋆(q0)(X) (12)

In particular, for a strict stream processing function we have f = out⋆(q0) .

In general, a stream processing function possesses various history abstractions
identifying different subsets of input histories as states.

The finest history abstraction is given by the identity function α(X) = X

identifying no input histories at all. The associated state transition machine
is called the canonical state transition machine. Its states correspond to input
histories, the state transition function extends the input history input by input,
the output function is the output extension.

The coarsest history abstraction α(X) = [X ]≈ maps every input history to
the class of output equivalent input histories. The associated state transition
machine possesses a minimal state space.

We can generalize the construction of the state transition machine to history
abstraction functions that are not surjective. In this case, the state transition
functions are uniquely specified only on the subset of reachable states. The tran-
sition functions can be defined in an arbitrary way on the subset of unreachable
states; this will not influence the input/output behaviour of the machine starting
in the initial state.



4.3 State Refinement

Every stream processing function can be transformed into a state transition
machine with the same input/output behaviour using a history abstraction.

This universal construction lays the foundations for a formal method for de-
veloping a correct state-based implementation of a communicating component
from its input/output-oriented specification. We call the formal method state
refinement, since it transforms a component’s communication-oriented black-
box description into a state-based glass-box description. The history abstraction
documents the essential design decisions for the state space. The state refine-
ment complements other methods of refinement for communicating components,
among others interface refinement [2] , property refinement [4], and architecture
refinement [17] .

We presented the state refinement transformation f 7→ M [f, α] for unary
stream processing functions f only. The transformation generalizes to stream
processing functions with several arguments in a natural way [19] .

5 History Independent Components

This section applies the state refinement transformation to the class of compo-
nents whose behaviour does not dependent on the previous input history. We
uniformly describe the set of history independent stream processing functions
by a higher-order function. A constant history abstraction leads to an associated
state transition machine with a singleton set as state space.

5.1 Iterator Components

An iterator component repeatedly applies a basic function to all elements of the
input stream.

Iterator components are uniformly described by the higher-order function
map : [A → B⋆] → [A⋆ → B⋆] with

map(g)(〈〉) = 〈〉 (13)

map(g)(x ⊳ X) = g(x)& map(g)(X) . (14)

The higher-order function map concatenates the subsequences generated by the
single input elements to form the output stream. For every basic function g , the
function map(g) distributes over concatenation. Therefore the function map(g)
is prefix monotonic. The output extension εmap(g)(X, x) = g(x) depends only on
the current input, but not on the previous input history.

5.2 State Transition Machine of an Iterator Component

The history abstraction of an iterator component need not preserve any infor-
mation of the previous input history. Thus any transition closed function forms
a proper history abstraction, in particular, any constant function.



For constructing the state transition machine M [map(g), const ] , we choose
a singleton state space Q = {q0} and a constant history abstraction const(X) =
q0 . The resulting state transition machine is shown in Fig. 1 .

M [map(g), const ] = ({q0},A,B, next , out , q0)

next(q0, x) = q0

out(q0, x) = g(x)

Fig. 1. State transition machine of an iterator component

The history independent behaviour of an iterator component is reflected by
a “state-free” machine whose singleton state is irrelevant.

Vice versa, any state transition machine M = ({q0},A,B,next, out , q0) with
a singleton state implements the behaviour of an iterator component map(g)
where the basic function g : A → B⋆ is defined as g(x) = out(q0, x) .

Iterator components are frequently used in various application areas, among
others in transmission components, processing units, and control components.

6 Interactive Stack

As a final application we construct the implementation of an interactive stack.
The application shows how to combine a control abstraction and a data abstrac-
tion into an overall history abstraction.

6.1 Specification

An interactive stack is a communicating component that stores and retrieves
data following a last-in/first-out strategy. The component reacts on requests
outputting the last datum which has previously been stored, but was not re-
quested yet.

The interactive stack is fault-sensitive: after a pop command to the empty
stack, the component breaks and provides no further output whatsoever future
input arrives.

Let D denote the non-empty set of data to be stored in the stack. The
component’s input I = {pop} ∪ push(D) consists of pop commands or push
commands along with the datum to be stored.

The component’s behaviour forms a stream processing function stack : I⋆ →
D⋆ defined by the following equations (P ∈ push(D)⋆) :

stack(P ) = 〈〉 (15)

stack(P&〈push(d), pop〉&X) = d ⊳ stack (P&X) (16)

stack(pop ⊳ X) = 〈〉 (17)



A sequence of push commands generates no output (15) . A pop command out-
puts the datum stored most recently (16) . After an erroneous pop command,
the interactive stack breaks (17) .

The behaviour of the interactive stack leads to the output extension εstack :
I⋆ × I → D⋆ defined by (P ∈ push(D)⋆) :

εstack (X, push(d)) = 〈〉 (18)

εstack (P ⊲ push(d), pop) = 〈d〉 (19)

εstack (〈〉, pop) = 〈〉 (20)

εstack (pop ⊳ X, pop) = 〈〉 (21)

εstack (P&〈push(d), pop〉&X, pop) = εstack (P&X, pop) (22)

A push command generates no output after any input history (18) . A pop com-
mand yields the datum stored most recently which was not requested yet (19)
unless the stack contains no datum (20,21) .

6.2 Control Abstraction

The future behaviour of a fault-sensitive stack is influenced by the occurrence
of an illegal pop command in the preceding input history.

We discriminate between regular and erroneous input histories using a binary
control state Control = {reg, err} . The control abstraction control : I⋆ →
Control classifies input histories as regular or erroneous (P ∈ push(D)⋆) :

control(P ) = reg (23)

control(P&〈push(d), pop〉&X) = control(P&X) (24)

control(pop ⊳ X) = err (25)

A sequence of push commands forms a regular input history (23), whereas a pop
command without a preceding push command gives rise to an erroneous input
history (25) .

The control abstraction is neither transition closed nor output compatible,
since it identifies all regular input histories, but forgets the data stored in the
component.

6.3 Data Abstraction

The future behaviour of the interactive stack will be influenced by the collection
of data stored in the component from the previous input history.

As a second abstraction, we explore the state Data = D⋆ storing a stack of
data. The data abstraction data : I⋆ → Data extracts from the input history
the stack of data retained in the component after processing the input stream
(n ≥ 0) :

data(〈push(d1), . . . , push(dn)〉) = 〈d1, . . . , dn〉 (26)

data(P&〈push(d), pop〉&X) = data(P&X) (27)

data(pop ⊳ X) = 〈〉 (28)



The data abstraction is neither output compatible nor transition closed. It iden-
tifies regular input histories leading to the empty stack with erroneous input
histories resulting in a broken stack.

6.4 History Abstraction

We integrate the control abstraction and the data abstraction into a joint history
abstraction.

This design decision leads to a composite state space Q = Control × Data
combining a control part and a data part. The abstraction function α : I⋆ →
Control × Data pairs the control and the data abstraction.

The abstraction function : α(X) = (control(X), data(X)) keeps all required
information from the input history which determines the component’s future
behaviour. The abstraction function is indeed a history abstraction and supports
the transition to a state-based implementation.

6.5 State Transition Machine of an Interactive Stack

The implementation of the interactive stack is derived from the input/output
behaviour using the combined history abstraction for control and data states.

The resulting state transition machine is summarized in Fig. 2 . In a regular

M [stack , α] = (Control × Data , I,D, next , out , (reg , 〈〉))

next((reg , Q),push(d)) = (reg , Q ⊲ d)
next((reg , Q ⊲ q), pop) = (reg , Q)

next((reg , 〈〉), pop) = (err , 〈〉)
next((err , 〈〉), x) = (err , 〈〉)

out((reg , Q),push(d)) = 〈〉
out((reg , Q ⊲ q), pop) = 〈q〉

out((reg , 〈〉), pop) = 〈〉
out((err , 〈〉), x) = 〈〉

Fig. 2. State transition machine of an interactive stack

state, a push command attaches an element to the stack and produces no output.
Moreover, a pop command delivers the top of a non-empty stack; for an empty
stack it leads to the error state. This state cannot be left any more by further
input which produces no output in the error state.

The subset of states reachable from the initial state (reg, 〈〉) is isomorphic to
the direct sum of the data stack and an error state:

{reg} × D⋆ ∪ {(err , 〈〉)} ≃ D⋆ + {err} (29)

The transition functions defined on the subset of reachable states can simply
be extended to the subset of unreachable states by setting next((err , Q), x) = err
and out((err , Q), x) = 〈〉 .



6.6 State Transition Table of an Interactive Stack

For practical purposes, state transition machines are often described by state
transition tables displaying the different transition rules in a clear way.

Fig. 3 describes the interactive stack by a state transition table. The four
transition rules relate current states and inputs to new states and outputs. The
transition rules tabulate the transition functions next and out . We use the no-
tational convention that the constituents of the successor state are designated
by a prime. For an empty input stream, the state transition table produces no
output which agrees with Equation (15) .

Control Data Input Control’ Data’ Output

reg Q push(d) reg Q ⊲ d 〈〉

reg Q ⊲ q pop reg Q 〈q〉

reg 〈〉 pop err 〈〉 〈〉

err 〈〉 x err 〈〉 〈〉

Fig. 3. State transition table of an interactive stack

7 Conclusion

Nowadays the specification and the systematic design of communicating com-
ponents belongs to the central challenges of modern software technology. The
software design must safely bridge component descriptions on different levels of
abstraction.

The component’s specification reflects a communication-oriented view con-
centrating on input and output histories. History-based specifications raise the
abstraction level of initial descriptions. The black-box view provides a functional
model of the component important for constructing networks in a compositional
way.

The component’s implementation decisively depends on the internal state
supporting an efficient realization of the transition functions. The glass-box view
discloses the component’s internal state which is in general composed from var-
ious control and data parts.

This paper contributes to a better understanding how to relate communication-
oriented and state-based descriptions. We presented a formal method for sys-
tematically transforming a stream processing function into a state transition
machine. The state refinement employs history abstractions to bridge the gap
between input histories and machine states. The transition functions can be
derived from the defining equations using the Lübeck Transformation System
[6] .

Yet, the crucial design decision consists in discovering a suitable history ab-
straction which determines the state space. In general, the state of a component



must store at least the information which is needed to process further inputs in
a correct way. The particular information depends on the area of application.
For example, the state of a counter records the sum of all elements which passed
the component; so it depends on the entire prehistory. The state of a memory
cell remembers the datum of the last write command which is the only decisive
event in the prehistory. The state of a shift register stores a final segment of the
input stream that is withheld from the output stream. The state of a transmis-
sion component may record the active channel, the successful transmission or
the failure of acknowledge.

The state refinement presents a standard transformation from a denotational
to an operational description of interactive components [20] . The refinement step
can be prepared by calculating the output extension of the stream processing
function. This step localizes the component’s reaction in response to a single
input wrt. a previous input history.

Among the candidates for an implementation, we identified the canonical
state transition machine whose state records the complete input history. State
transition machines with a reduced state space originate from the canonical ma-
chine by identifying states as input histories under history abstractions. By con-
struction, all resulting state transition machines correctly implement the speci-
fied behaviour.

The history-oriented and the state-based description of software or hardware
components allow complementary insights. Both formalisms shows advantages
and shortcomings with respect to compositionality, abstractness, verification,
synthesis, and tool support. In long term, proven design methods must flexibly
bridge the gap between functional behaviour and internal realization following
sound refinement rules.

Origin of this Summary

This summary is an excerpt of the forthcoming paper Transforming Stream
Processing Functions into State Transition Machines by W. Dosch and A.

Stümpel to appear in the Journal of Computational Methods in Sciences and

Engineering.

References

1. M. Breitling and J. Philipps. Diagrams for dataflow. In J. Grabowski and
S. Heymer, editors, Formale Beschreibungstechniken für verteilte Systeme, pages
101–110. Shaker Verlag, 2000.

2. M. Broy. (Inter-)action refinement: The easy way. In M. Broy, editor, Program
Design Calculi, volume 118 of NATO ASI Series F, pages 121–158. Springer, 1993.

3. M. Broy. From states to histories: Relating state and history views onto systems. In
T. Hoare, M. Broy, and R. Steinbrüggen, editors, Engineering Theories of Software
Construction, volume 180 of Series III: Computer and System Sciences, pages 149–
186. IOS Press, 2001.



4. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Monographs in Computer Science.
Springer, 2001.

5. T. Bălănescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and
C. Vertan. Communicating stream X-machines systems are no more than X-
machines. Journal of Universal Computer Science, 5(9):494–507, 1999.

6. W. Dosch and S. Magnussen. The Lübeck Transformation System: A transforma-
tion system for equational higher order algebraic specifications. In M. Cerioli and
G. Reggio, editors, Recent Trends in Algebraic Development Techniques (WADT
2001), number 2267 in Lecture Notes in Computer Science, pages 85–108. Springer,
2002.

7. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press,
1974.

8. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231–274, 1987.

9. G. Kahn. The semantics of a simple language for parallel programming. In
J. Rosenfeld, editor, Information Processing 74, pages 471–475. North–Holland,
1974.

10. G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes.
In B. Gilchrist, editor, Information Processing 77, pages 993–998. North–Holland,
1977.

11. N. Lynch and M. R. Tuttle. An introduction to input/output automata. Centrum
voor Wiskunde en Informatica, Amsterdam, CWI-Quarterly, 2(3):219–246, Sept.
1989.

12. N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output
automata. Information and Computation, 82:81–92, 1989.

13. B. Möller. Ideal stream algebra. In B. Möller and J. Tucker, editors, Prospects for
Hardware Foundations, number 1546 in Lecture Notes in Computer Science, pages
69–116. Springer, 1998.

14. Object Management Group (OMG). OMG Unified Modeling Language Specifica-
tion, 3. UML Notation Guide, Part 9: Statechart Diagrams, Mar. 2003.

15. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley Object Technology Series. Addison-Wesley, 1998.

16. P. Scholz. Design of reactive systems and their distributed implementation with
statecharts. PhD Thesis, TUM-I9821, Technische Universität München, Aug. 1998.

17. G. Ştefănescu. Network Algebra. Discrete Mathematics and Theoretical Computer
Science. Springer, 2000.

18. R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541,
1997.

19. A. Stümpel. Stream Based Design of Distributed Systems through Refinement.
Logos Verlag Berlin, 2003.

20. P. Wegner. Why interaction is more powerful than algorithms. Communications
of the ACM, 40(5):80–91, May 1997.

21. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in
Computer Science, pages 1–148. Oxford University Press, 1995.


