
CPM User’s Manual

Jonas Oberschweiber Michael Hanus

Institut für Informatik, CAU Kiel, Germany

packages@curry-language.org

April 7, 2017

Abstract

This document describes the Curry package manager (CPM), a tool to distribute and install

Curry libraries and manage version dependencies between these libraries.

1 Installing the Curry Package Manager

To install and use CPM, a working installation of either the PAKCS1 compiler in version 1.14.1 or

greater, or the KiCS22 compiler in version 0.5.1 or greater is required. Additionally, CPM requires

Git3, curl4 and unzip to be available on the PATH during installation and operation. You also

need to ensure that your Haskell installations reads files using UTF-8 encoding by default. Haskell

uses the system locale charmap for its default encoding. You can check the current value using

System.IO.localeEncoding inside a ghci session.

To install CPM from the sources, enter the root directory of the CPM source distribution. The

main executable curry of your Curry system must be in your path (otherwise, you can also specify

the root location of your Curry system by modifying the definition of CURRYROOT in the Makefile).

Then type make to compile CPM which generates a binary called cpm in the bin subdirectory. Put

this binary somewhere on your path.

Afterwards, run cpm update to pull down a copy of the central package index to your system.

2 Package Basics

Essentially, a Curry package is nothing more than a directory structure containing a package.json

file and a src directory at its root. The package.json file is a JSON file containing package

metadata, the src directory contains the Curry modules that make up the package.

We assume familiarity with the JSON file format. A good introduction can be found at http:

//json.org. The package specification file must contain a top-level JSON object with at least

the keys name, author, version, synopsis and dependencies. More possible fields are described in

1https://www.informatik.uni-kiel.de/~pakcs/
2https://www-ps.informatik.uni-kiel.de/kics2/
3http://www.git-scm.com
4https://curl.haxx.se

1

http://json.org
http://json.org
https://www.informatik.uni-kiel.de/~pakcs/
https://www-ps.informatik.uni-kiel.de/kics2/
http://www.git-scm.com
https://curl.haxx.se

Section 8. A package’s name may contain any ASCII alphanumeric character as well as dashes (-)

and underscores (). It must start with an alphanumeric character. The author field is a free-

form field, but the suggested format is either a name (John Doe), or a name followed by an email

address in angle brackets (John Doe <john.doe@goldenstate.gov>). Separate multiple authors with

commas.

Versions must be specified in the format laid out in the semantic versioning standard:5 each

version number consists of numeric major, minor and patch versions separated by dot characters as

well as an optional pre-release specifier consisting of ASCII alphanumerics and hyphens, e.g. 1.2.3

and 1.2.3-beta5. Please note that build metadata as specified in the standard is not supported.

The synopsis should be a short summary of what the package does. Use the description field

for longer form explanations.

Dependencies are specified as a nested JSON object with package names as keys and dependency

constraints as values. A dependency constraint restricts the range of versions of the dependency that

a package is compatible to. Constraints consist of elementary comparisons that can be combined

into conjunctions, which can then be combined into one large disjunction – essentially a disjunctive

normal form. The supported comparison operators are <,≤, >,≥,= and ∼>. The first four are

interpreted according to the rules for comparing version numbers laid out in the semantic versioning

standard. ∼> is called the semantic versioning arrow. It requires that the package version be at

least as large as its argument, but still within the same minor version, i.e. ∼> 1.2.3 would match

1.2.3, 1.2.9 and 1.2.55, but not 1.2.2 or 1.3.0.

To combine multiple comparisons into a conjunction, separate them by commas, e.g. ≥ 2.0.0, <

3.0.0 would match all versions with major version 2. Note that it would not match 2.1.3-beta5

for example, since pre-release versions are only matched if the comparison is explicitly made to a

pre-release version, e.g. = 2.1.3-beta5 or ≥ 2.1.3-beta2.

Conjunctions can be combined into a disjunction via the || characters, e.g. ≥ 2.0.0, < 3.0.0|| ≥
4.0.0 would match any version within major version 2 and from major version 4 onwards, but no

version within major version 3.

3 Using Packages

Curry packages can be used as dependencies of other Curry packages or to install applications

implemented with a package. In the following we describe both possibilities of using packages.

3.1 Creating New Packages

Creating a new Curry package is easy. To use a Curry package in your project, create a package.json

file in the root, fill it with the minimum amount of information discussed in the previous session,

and move your Curry code to a src directory inside your project’s directory. Alternatively, if you

are starting a new project, use the cpm new <project-name> command, which will ask you a few

questions and then create a new project directory with a package.json file for you. Declare a

dependency inside the new package.json file, e.g.:

{

5http://www.semver.org

2

http://www.semver.org

...,

"dependencies": {

"json": "~> 1.1.0"

}

}

Then run cpm install to install all dependencies of the current package and start your interactive

Curry environment with cpm curry. You will be able to load the JSON package’s modules in your

Curry session.

3.2 Installing and Updating Dependencies

To install the current package’s dependencies, run cpm install. This will install the most recent

version of all dependencies that are compatible to the package’s dependency constraints. Note

that a subsequent run of cpm install will always prefer the versions it installed on a previous run,

if they are still compatible to the package’s dependencies. If you want to explicitly install the

newest compatible version regardless of what was installed on previous runs of cpm install, you

can use the cpm upgrade command to upgrade all dependencies to their newest compatible versions,

or cpm upgrade <package> to update a specific package and all its transitive dependencies to the

newest compatible version.

Note that there is also a cpm update command, which will update your copy of the central

package index to the newest version. You can list all packages of the central package index via the

cpm list command, or you can search the central package index via the cpm search command. See

Section 7 for a reference of all commands.

If the package also contains an implementation of a complete executable, e.g., some useful tool,

which can be specifed in the package.json file (see Section 8), then the command cpm install

also compiles the application and installs the executable in the bin install directory of CPM (see

Section 5 for details). The installation of executables can be suppressed by the cpm install option

-n or --noexec.

3.3 Checking out Packages

In order to use, experiment with or modify an existing package, one can use the command

cpm checkout <package>

to install a local copy of a package. This is also useful to install some tool distributed as a package.

For instance, to install curry-genmake, a tool to generate a make file for a Curry application, one

can check out the most recent version and install the tool:

> cpm checkout makefile

. . . Package ’makefile-1.3.4’ checked out into directory ’makefile’.

> cd makefile

> cpm install

. . .

INFO Installing executable ’curry-genmake’ into ’/home/joe/.cpm/bin’

Now, the tool curry-genmake is ready to use if $HOME/.cpm/bin is in your path (see Section 5 for

details about changing the location of this default path).

3

3.4 Installing Binaries of Packages

Some packages do not contain only useful libraries but also tools. In order to install such tools

without explicitly using the source code of the package, one can use the command

cpm installbin <package>

This command checks out the package in some internal directory (default: $HOME/.cpm/bin packages,

see Section 5) and installs the binary of the tool provided by the package in $HOME/.cpm/bin (see

also Section 3.3).

For instance, the most recent version of the web framework Spicey can be installed by the

following command:

> cpm installbin spicey

. . . Package ’spicey-xxx’ checked out . . .

. . .

INFO Installing executable ’spiceup’ into ’/home/joe/.cpm/bin’

Now, the binary spiceup of Spicey can be used if $HOME/.cpm/bin is in your path (see Section 5 for

details about changing the location of this default path).

3.5 Executing the Curry Compiler

To use the dependencies of a package, the Curry compiler needs to be started via CPM so that the

compiler will know where to search for the modules provided. You can use the cpm curry command

to start the Curry compiler (which is either the compiler used to install CPM or specified with the

configuration option curry bin, see Section 5). Any parameters given to cpm curry will be passed

along verbatim to the Curry compiler, for example the following will start the Curry compiler,

print the result of evaluating the expression 39+3 and then quit.

> cpm curry :eval "39+3" :quit

To execute other Curry commands such as curry check with the package’s dependencies available,

you can use the cpm exec command. cpm exec will set the CURRYPATH environment variable and then

execute the command it is given.

3.6 Replacing Dependencies with Local Versions

During development of your applications, situations may arise in which you want to temporarily

replace one of your package’s dependencies with a local copy, without having to publish a copy of

that dependency somewhere or increasing the dependency’s version number. One such situation

is a bug in a dependency not controlled by you: if your own package depends on package A and

A’s current version is 1.0.3 and you encounter a bug in this version, then you might be able to

investigate, find and fix the bug. Since you are not the the author of A, however, you cannot release

a new version with the bug fixed. So you send off your patch to A’s maintainer and wait for 1.0.4

to be released. In the meantime, you want to use your local, fixed copy of version 1.0.3 from your

package. The cpm link command allows you to replace a dependency with your own local copy.

cpm link takes a directory containing a copy of one of the current package’s dependencies

as its argument. It creates a symbolic link from that directory the the current package’s lo-

4

cal package cache. If you had a copy of A-1.0.3 in the /src/A-1.0.3 directory, you could use

cpm link /src/A-1.0.3 to ensure that any time A-1.0.3 is used from the current package, your

local copy is used instead of the one from the global package cache. To remove any links, use

cpm upgrade without any arguments, which will clear the local package cache. See Section 6 for

more information on the global and local package caches.

4 Authoring Packages

If you want to create packages for other people to use, you should consider filling out more metadata

fields than the bare minimum. See Section 8 for a reference of all available fields.

4.1 Semantic Versioning

The versions of published packages should adhere to the semantic versioning standard, which lays

out rules for which components of a version number must change if the public API of a package

changes. Recall that a semantic versioning version number consists of a major, minor and patch

version as well as an optional pre-release specifier. In short, semantic versioning defines the following

rules:

• If the type of any public API is changed or removed or the expected behavior of a public

API is changed, you must increase the major version number and reset the minor and patch

version numbers to 0.

• If a public API is added, you must increase at least the minor version number and reset the

patch version number to 0.

• If only bug fixes are introduced, i.e. nothing is added or removed and behavior is only changed

to removed deviations from the expected behavior, then it is sufficient to increase the patch

version number.

• Once a version is published, it must not be changed.

• For pre-releases, sticking to these rules is encouraged but not required.

• If the major version number is 0, the package is still considered under development and thus

unstable. In this case, the rules do not apply, although following them as much as possible

as still encouraged. Release 1.0.0 is considered to be the first stable version.

To aid you in following these rules, CPM provides the diff command. diff can be used to compare

the types and behavior of a package’s public API between two versions of that package. If it finds

any differences, it checks whether they are acceptable under semantic versioning for the difference

in version numbers between the two package versions. To use diff, you need to be in the directory

of one of the versions, i.e., your copy for development, and have the other version installed in CPM’s

global package cache (see the cpm install command). For example, if you are developing version

1.3.0 of the JSON package and want to make sure you have not introduced any breaking changes

when compared to the previous version 1.2.6, you can use the cpm diff 1.2.6 command while in

the directory of version 1.3.0.

5

CPM will then check the types of all public functions and data types in all exported modules of

both versions (see the exportedModules field of the package specification) and report any differences

and whether they violate semantic versioning. It will also generate a CurryCheck program that

will compare the behavior of all exported functions in all exported modules whose types have not

changed and execute that program. Note that not all functions can be compared via CurryCheck. In

particular, functions taking other functions as arguments (there are a few other minor restrictions)

can not be checked so that CPM automatically excludes them from checking.

Note that the results of non-terminating operations, like Prelude.repeat, cannot be compared

in a finite amount of time. To avoid the execution of possibly non-terminating check programs,

CPM compares the behavior of operations only if it can prove the termination or productivity6 of

these operations. Since CPM uses simple criteria to approximate these properties, there might be

operations that are terminating or productive but CPM cannot show it. In these cases you can use

the compiler pragmas {-# TERMINATE -#} or {-# PRODUCTIVE -#} to annotate such functions.

Then CPM will trust these annotations and treat the annotated operations as terminating or

productive, respectively. For instance, CPM will check the following operation although it cannot

show its termination:

{-# TERMINATE -#}

mcCarthy :: Int → Int

mcCarthy n | n<=100 = mcCarthy (mcCarthy (n+11))

| n>100 = n-10

As another example, consider the following operation defining an infinite list:

ones :: [Int]

ones = 1 : ones

Although this operation is not terminating, it is productive since with every step a new constructor

is produced. CPM compares such operations by comparing their results up to some depth. On the

other hand, the following operation is not classified as productive by CPM (note that it would not

be productive if the filter condition is changed to (>1)):

{-# PRODUCTIVE -#}

anotherOnes :: [Int]

anotherOnes = filter (>0) ones

Due to the pragma, CPM will compare this operation as other productive operations.

There might be situations when operations should not be compared, e.g., if the previous version

of the operation was buggy. In this case, one can mark those functions with the compiler pragma

{-# NOCOMPARE -#} so that CPM will not generate tests for them.

4.2 Publishing a Package

There are three things that need to be done to publish a package: make the package accessible

somewhere, add the location to the package specification, and add the package specification to the

central package index.

6An operation is productive if it always produces outermost constructors, i.e., it cannot run forever without

producing constructors.

6

CPM supports ZIP files accessible over HTTP as well as Git repositories as package sources.

You are free to choose one of those, but a publicly accessible Git repository is preferred. To add

the location to the package specification, use the source key. For a HTTP source, use:

{

...,

"source": {

"http": "http://example.com/package-1.0.3.zip"

}

}

For a Git source, you have to specify both the repository as well as the revision that represents the

version:

{

...,

"source": {

"git": "git+ssh://git@github.com:john-doe/package.git",

"tag": "v1.2.3"

}

}

There is also a shorthand, $version, available to automatically use a tag consisting of the letter v

followed by the current version number, as in the example above. Specifying $version as the tag

and then tagging each version in the format v1.2.3 is preferred, since it does not require changing

the source location in the package.json file every time a new version is released.

After you have published the files for your new package version, you have to add the corre-

sponding package specification to the central package index. The central package index is just a

Git repository containing a directory for each package, which contain subdirectories for all versions

of that package which in turn contain the package specification files. So the specification for ver-

sion 1.0.5 of the json package would be located in json/1.0.5/package.json. If you have access to

the Git repository containing the central package index, then you can add the package specifica-

tion yourself. Otherwise, send your package specification file to packages@curry-language.org

in order to publish it.

5 Configuration

CPM can be configured via the $HOME/.cpmrc configuration file. The following list shows all con-

figuration options and their default values.

repository path The path to the index repository. Default value: $HOME/.cpm/index.

package install path The path to the global package cache. This is where all downloaded

packages are stored. Default value: $HOME/.cpm/packages

bin install path The path to the executables of packages. This is the location where the

compiled executables of packages containing full applications are stored. Hence, in order

to use such applications, one should have this path in the personal load path (environment

variable PATH). Default value: $HOME/.cpm/bin

7

packages@curry-language.org

bin package path The path to the package cache where packages are checked out if only their

binaries are installed (see Section 3.4). Default value: $HOME/.cpm/bin packages.

curry bin The name of the executable of the Curry system used to compile and test packages.

The default value is the binary of the Curry system which has been used to compile CPM.

Note that one can override the values of these configuration options by the CPM options -d or

--define. For instance, to install the binary of the package spicey in the directory $HOME/bin, one

can execute the command

> cpm --define bin_install_path=$HOME/bin installbin spicey

6 Some CPM Internals

CPM’s central package index is a Git repository containing package specification files. A copy

of this Git repository is stored on your local system in the $HOME/.cpm/index directory, unless

you changed the location using the repository path setting. CPM uses the package index when

searching for and installing packages and during dependency resolution.

When a package is installed on the system, it is stored in the global package cache. By default,

the global package cache is located in $HOME/.cpm/packages. When a package foo, stored in directory

foo, depends on a package bar, a link to bar’s directory in the global package cache is added to

foo’s local package cache when dependencies are resolved for foo. The local package cache is stored

in foo/.cpm/package cache. Whenever dependencies are resolved, package versions already in the

local package cache are preferred over those from the central package index or the global package

cache.

When a module inside a package is compiled, packages are first copied from the local package

cache to the run-time cache, which is stored in foo/.cpm/packages. Ultimately, the Curry compiler

only sees the package copies in the run-time cache, and never those from the local or global package

caches.

7 Command Reference

This section gives a short description of all available CPM commands. In addition to the commands

listed here, there is a global parameter --verbosity which defaults to info but can be increased

to debug for more output. Furthermore, there is a global parameter --define to override the

configuration options of CPM, see Section 5.

info Gives information on the current package, e.g. the package’s name, author, synopsis and its

dependency specifications.

info package [--all] Prints information on the newest known version of the given package. The

option --all shows more information.

info package version [--all] Prints basic information on the given package version. The option

--all shows more information.

8

list [--all] [--csv] List the names and synopses of all packages of the central package index.

The option --all shows also all package versions. The option --csv shows the information

in CSV format.

list --category [--csv] List the category names together with the packages belonging to this

category (see Section 8) of the central package index. The option --csv shows the information

in CSV format.

search query Searches the names and synopses of all packages in the central package index for a

term.

update Updates the local copy of the central package index to the newest available version.

install Installs all dependencies of the current package. Furthermore, if the current package

contains an executable application, the application is compiled and the executable is installed

(unless the option -n or --noexec is set).

install package [--pre] Installs the newest version of a package to the global package cache.

--pre enables the installation of pre-release versions.

install package version Installs a specific version of a package to the global package cache.

install package.zip Installs a package from a ZIP file to the global package cache. The ZIP

file must contain at least the package description file package.json and the directory src

containing the Curry source files.

uninstall Uninstall the executable installed for this package.

uninstall package version Uninstalls a specific version of a package from the global package

cache.

checkout package [--pre] Checks out the newest version of a package into the local directory

package in order to test its operations or install a binary of the package. --pre enables the

installation of pre-release versions.

checkout package version Checks out a specific version of a package into the local directory

package in order to test its operations or install a binary of the package..

installbin package [--pre] Install the binary provided by the newest version of a package. The

binary is installed into the directory $HOME/.cpm/bin (this location can be changed via the

$HOME/.cpmrc configuration file or by the CPM option --define, see Section 5). --pre enables

the installation of pre-release versions.

installbin package version Install the binary provided by a specific version of a package. The

binary is installed into the directory $HOME/.cpm/bin (this location can be changed via the

$HOME/.cpmrc configuration file or by the CPM option --define, see Section 5).

upgrade Upgrades all dependencies of the current package to the newest compatible version.

9

upgrade package Upgrades a specific dependency of the current package and all its transitive

dependencies to their newest compatible versions.

deps Does a dependency resolution run for the current package and prints out the results. The

result is either a list of all package versions chosen or a description of the conflict encountered

during dependency resolution.

test Tests the current package with CurryCheck. If the package specification contains a definition

of a test suite (entry testsuite, see Section 8), then the modules defined there are tested. If

there is no test suite defined, the list of exported modules are tested, if they are explicitly

specified (field exportedModules of the package specification), otherwise all modules in the

directory src (including hierarchical modules stored in its subdirectories) are tested. Using

the option --modules, one can also specify a comma-separated list of module names to be

tested.

diff [version] Compares the API and behavior of the current package to another version of the

same package. If the version option is missing, the latest version of the current package

found in the repository is used for comparison. If the options --api-only or --behavior-only

are added, then only the API or the behavior are compared, respectively. Using the option

--modules, one can also specify a comma-separated list of module names to be compared.

Without this option, all exported modules are compared.

As described in Section 4.1, CPM uses property tests to compare the behavior of different

package versions. In order to avoid infinite loops durings these tests, CPM analyzes the

termination behavior of the involved operations. Using the operation --unsafe, CPM omits

this program analysis but then you have to ensure that all operations are terminating (or you

can annotate them by pragmas, see Section 4.1).

exec command Executes an arbitrary command with the CURRYPATH environment variable set to

the paths of all dependencies of the current package. For example, it can be used to execute

“curry check” or “curry analyze” with correct dependencies available.

curry args Executes the Curry compiler with the dependencies of the current package available.

Any arguments are passed verbatim to the compiler.

link source Can be used to replace a dependency of the current package using a local copy, see

Section 3.6 for details.

clean Cleans the current package from the generated auxiliariy files, e.g., intermediate Curry files,

installed dependent packages, etc. Note that a binary installed in the CPM bin directory (by

the install command) will not be removed. Hence, this command can be used to clean an

application package after installing the application.

new Asks a few questions and creates a new package.

10

8 Package Specification Reference

This section describes all metadata fields available in a CPM package specification. Mandatory

fields are marked with a * character.

name* The name of the package. Must only contain ASCII letters, digits, hyphens and underscores.

Must start with a letter.

version* The version of the package. Must follow the format for semantic versioning version

numbers.

author* The package’s author. This is a free-form field, the suggested format is either a name

or a name followed by an email address in angle brackets – e.g. John Doe <john@doe.com>.

Multiple authors should be separated by commas.

maintainer The current maintainers of the package, if different from the original authors. This

field allows the current maintainers to indicate the best person or persons to contact about

the package while attributing the original authors.

synopsis* A short form summary of the package’s purpose. It should be kept as short as possible

(ideally, less than 100 characters).

description A longer form description of what the package does.

category A list of keywords that characterize the main area where the package can be used, e.g.,

Data, Numeric, GUI, Web, etc.

license The license under which the package is distributed. This is a free-form field. In case of

a well-known license such as the GNU General Public License7, the SPDX license identifier8

should be specified. If a custom license is used, this field should be left blank in favor of the

license file field.

licenseFile The name of a file in the root directory of the package containing explanations

regarding the license of the package or the full text of the license. The suggested name for

this file is LICENSE.

copyright Copyright information regarding the package.

homepage The package’s web site. This field should contain a valid URL.

bugReports A place to report bugs found int he package. The suggested formats are either a valid

URL to a bug tracker or an email address.

repository The location of a SCM repository containing the package’s source code. Should be a

valid URL to either a repository (e.g. a Git URL), or a website representing the repository.

dependencies* The package’s dependencies. This must be JSON object where the keys are pack-

age names and the values are version constraints. See Section 2.

7https://www.gnu.org/licenses/gpl-3.0.en.html
8https://spdx.org/licenses/

11

https://www.gnu.org/licenses/gpl-3.0.en.html
https://spdx.org/licenses/

compilerCompatibility The package’s compatibility to different Curry compilers. Expects a

JSON object where the keys are compiler names and the values are version constraints.

Currently, the supported compiler names are pakcs and kics2. If this field is missing or con-

tains an empty JSON object, the package is assumed to be compatible to all compilers in all

versions.

source A JSON object specifying where the version of the package described in the specification

can be obtained. See Section 4.2 for details.

sourceDirs A list of directories inside this package where the source code is located. When the

package is compiled, these directories are put at the front of the Curry load path. If this field

is not specified, src is used as the single source directory.

exportedModules A list of modules intended for use by consumers of the package. These are the

modules compared by the cpm diff command (and tested by the cpm test command if a list

of test modules is not provided). Note that modules not in this list are still accessible to

consumers of the package.

configModule A module name into which some information about the package configuration (loca-

tion of the package directory, name of the executable, see below) is written when the package

is installed. This could be useful if the package needs some data files stored in this package

during run time. For instance, a possible specification could be as follows:

{

...,

"configModule": "CPM.PackageConfig",

...

}

In this case, the package configuration is written into the Curry file src/CPM/PackageConfig.curry.

executable A JSON object specifying the name of the executable and the main module if this

package contains also an executable application. The name of the executable must be defined

(with key name) whereas the name of the main module (key main) is optional. If the latter is

missing, CPM assumes that the main module is Main. For instance, a possible specification

could be as follows:

{

...,

"executable": {

"name": "cpm",

"main": "CPM.Main"

}

}

If a package contains an executable specification, the command cpm install compiles the

main module and installs the executable in the bin install directory of CPM (see Section 5

for details).

12

testsuite A JSON object specifying a test suite for this package. This object contains a directory

(with key src-dir) in which the tests are executed. Furthermore, the test suite must also

define a list of modules to be tested (with key modules). For instance, a possible test suite

specification could be as follows:

{

...,

"testsuite": {

"src-dir": "test",

"modules": ["testDataConversion", "testIO"]

}

}

All these modules are tested with CurryCheck by the command cpm test. If no test suite is

defined, all (exported) modules are tested in the directory src. A test suite can also contain

a field options which defines a string of options passed to the call to CurryCheck.

If a test suite contains a specific test script instead modules to be tested with CurryCheck,

then one can specify the name of this test script in the field script. In this case, this script

is executed in the test directory (with the possible options value added). The script should

return the exit code 0 if the test is successful, otherwise a non-zero exit code. Note that one

has to specify either a (non-empty) list of modules or a test script name in a test suite, but

not both.

One can also specify several test suites for a package. In this case, the testsuite value is an

array of JSON objects as described above. For instance, a test suite specification for tests in

the directories test and examples could be as follows:

{

...,

"testsuite": [

{ "src-dir": "test",

"options": "-v",

"script": ["test.sh"]

},

{ "src-dir": "examples",

"options": "-m80",

"modules": ["Nats", "Ints"]

}

]

}

9 Error Recovery

There might occur situations when your package or repository is in an inconsistent state, e.g., when

you manually changed some internal files or such files have been inadvertently changed or deleted,

or a package is broken due to an incomplete download. Since CPM checks these files, CPM might

exit with an error message that something is wrong. In such cases, it might be a good idea to clean

13

up your package file system. Here are some suggestions how to do this:

cpm clean

This command cleans the current package from generated auxiliariy files (see Section 7).

Then you can re-install the package and packages on which it depends by the command

cpm install.

rm -rf $HOME/.cpm/packages

This cleans all packages which have been previously installed in the global package cache

(see Section 6). Such an action might be reasonable in case of some download failure. After

clearing the global package cache, all necessary packages are downloaded again when they are

needed.

rm -rf $HOME/.cpm/index

This removes the central package index of CPM (see Section 6). You can simply re-install

the newest version of this index by the command cpm update.

14

	Installing the Curry Package Manager
	Package Basics
	Using Packages
	Creating New Packages
	Installing and Updating Dependencies
	Checking out Packages
	Installing Binaries of Packages
	Executing the Curry Compiler
	Replacing Dependencies with Local Versions

	Authoring Packages
	Semantic Versioning
	Publishing a Package

	Configuration
	Some CPM Internals
	Command Reference
	Package Specification Reference
	Error Recovery

