
Curry

A Tutorial Introduction

Draft of December 5, 2007

Sergio Antoy

Portland State University, U.S.A.

Email: antoy@cs.pdx.edu

Web: http://www.cs.pdx.edu/~antoy/

Michael Hanus

Christian-Albrechts-Universität Kiel, Germany

Email: mh@informatik.uni-kiel.de

Web: http://www.informatik.uni-kiel.de/~mh/

mailto:antoy@cs.pdx.edu
http://www.pdx.edu
antoy@cs.pdx.edu
http://www.cs.pdx.edu/~antoy/
mailto:mh@informatik.uni-kiel.de
http://www.uni-kiel.de
mh@informatik.uni-kiel.de
http://www.informatik.uni-kiel.de/~mh/

Contents

Preface 1

I Language Features 2

1 Introduction 3

2 Getting Started with Curry 4

3 Main Features of Curry 12
3.1 Overview . 12
3.2 Expressions . 12
3.3 Predefined Types . 14
3.4 Predefined Operations . 15
3.5 Functions . 16

3.5.1 Basic Concepts . 16
3.5.2 Pattern Matching . 17
3.5.3 Conditions . 17
3.5.4 Non-determinism . 17

3.6 User-defined Types . 18
3.7 Lists . 20
3.8 Strings . 21
3.9 Tuple . 21
3.10 Higher-Order Computations . 22
3.11 Lazy Evaluation . 23
3.12 Local Definitions . 25

3.12.1 Where Clauses . 26
3.12.2 Let Clauses . 27
3.12.3 Layout . 28

3.13 Variables . 28
3.13.1 Logic Variables . 28
3.13.2 Evaluation . 29
3.13.3 Flexible vs. Rigid Operations . 30
3.13.4 Programming . 30

3.14 Input/Output . 32

i

II Programming with Curry 36

4 Programming in Curry 37
4.1 Overview . 37
4.2 Lists . 37

4.2.1 Notation . 37
4.2.2 Inductive Definitions . 38
4.2.3 Ranges . 40
4.2.4 Comprehensions . 40
4.2.5 Basic Functions . 41
4.2.6 Higher-order Functions . 41
4.2.7 findall . 43
4.2.8 Narrowing . 44

4.3 Trees . 45

III Applications & Libraries 46

5 Web Programming 47
5.1 Overview . 47
5.2 Representing HTML Documents in Curry . 47
5.3 Server-Side Web Scripts . 51
5.4 Installing Web Programs . 53
5.5 Forms with User Input . 53
5.6 Further Examples for Web Server Programming 55

5.6.1 Interaction Sequences . 56
5.6.2 Handling Intermediate States . 57
5.6.3 Storing Information on the Server . 58
5.6.4 Ensuring Exclusive Access . 59
5.6.5 Example: A Web Questionnaire . 59

5.7 Finding Bugs . 63
5.8 Advanced Web Programming . 63

5.8.1 Cookies . 64
5.8.2 URL Parameters . 65
5.8.3 Style Sheets . 67

6 Further Libraries for Application Programming 68

Bibliography 69

Index 71

ii

Preface

This book is about programming in Curry, a general-purpose declarative programming lan-
guage that integrates functional with logic programming. Curry seamlessly combines the
key features of functional programming (nested expressions, lazy evaluation, higher-order
functions), logic programming (logical variables, partial data structures, built-in search), and
concurrent programming (concurrent evaluation of constraints with synchronization on logical
variables).

This book is best used as an introduction to Curry. Curry is a rigorously defined program-
ming language. The “Report” is a still evolving, but fairly stable, document that precisely
defines the language, in particular both its syntax and operational semantics. However, the
report is not best suited to the beginner, rather it may be consulted in conjunction with this
tutorial for the sake of a completeness that is not sought here.

There are several implementations of Curry. The most usable at the time of the writing
(June 2007) is PAKCS. The examples and exercises in this book have been developed and
executed using PAKCS.

1

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry/report.html
http://www.informatik.uni-kiel.de/~curry/implementations.html
http://www.informatik.uni-kiel.de/~pakcs

Part I

Language Features

2

Chapter 1

Introduction

Curry is a universal programming language aiming at the amalgamation of the most im-
portant declarative programming paradigms, namely functional programming and logic pro-
gramming. Curry combines in a seamless way features from functional programming (nested
expressions, lazy evaluation, higher-order functions), logic programming (logical variables,
partial data structures, built-in search), and concurrent programming (concurrent evaluation
of constraints with synchronization on logical variables). Moreover, Curry provides addi-
tional features in comparison to the pure languages (compared to functional programming:
search, computing with partial information; compared to logic programming: more efficient
evaluation due to the deterministic evaluation of functions). Moreover, it also amalgamates
the most important operational principles developed in the area of integrated functional
logic languages: “residuation” and “narrowing” (see [4, 10] for surveys on functional logic
programming).

The development of Curry is an international initiative intended to provide a common
platform for the research, teaching1 and application of integrated functional logic languages.

This document is intended to provide a tutorial introduction into the features of Curry
and their use in application programming. It is not a formal definition of Curry which can
be found in [12].

1Actually, Curry has been successfully applied to teach functional and logic programming techniques in a

single course without switching between different programming languages. More details about this aspect can

be found in [5].

3

Chapter 2

Getting Started with Curry

There are different implementations of Curry available1. As such we can not describe the use
of a Curry system in general. Some implementations are batch-oriented. In this case a Curry
program is compiled into machine code and then executed. In this introduction we prefer
an implementation that supports an interactive environment which provides faster program
development by loading and testing programs within the integrated environment.

PAKCS (Portland Aachen Kiel Curry System) [11]2 contains such an interactive envi-
ronment so that we show the use of this system here in order to get started with Curry.
When you start the interactive environment of PAKCS (e.g., by typing “pakcs” as a shell
command), you see something like the following output after the system’s initialization:

______ __ _ _ ______ _______

| __ | / \ | | / / | ____| | _____| Portland Aachen Kiel

| | | | / /\ \ | |_/ / | | | |_____ Curry System

| |__| | / /__\ \ | _ | | | |_____ |

| ____| / ______ \ | | \ \ | |____ _____| | Version 1.8.1 (7)

|_| /_/ _\ |_| _\ |______| |_______| August 2007

Curry2Prolog(sicstus) Compiler Environment (Version of 29/08/07)

(RWTH Aachen, CAU Kiel, Portland State University)

Bug reports: mh@informatik.uni-kiel.de

Type ":h" for help

Prelude>

Now the system is ready and waits for some input. By typing “:q” (quit) you can always leave
the system, but this is not what we intend to do now. The prefix of the current input line
always shows the currently loaded module or program. In this case the module Prelude is
loaded during system startup. The standard system module Prelude contains the definition

1Check the web page http://www.informatik.uni-kiel.de/~curry for details.
2http://www.informatik.uni-kiel.de/~pakcs

4

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs

of several predefined functions and data structures which are available in all Curry programs.
For instance, the standard arithmetic functions like +, * etc are predefined so that we can
use the system as a simple calculator (the input typed by the user is underlined):

Prelude> 3+5*4

Result: 23 ?

In this simple example you can already see the basic functionality of the environment: if
you type an expression, the system evaluates this expression to a value (i.e., an expression
without evaluable functions) and prints this value as the result (with a question mark, see
below). Now hit the “enter” key and you are back to input line mode where you can type
additional expressions to be evaluated. For instance, you can compare the values of two
expressions with the usual comparison operators >, <, <=, >=:

Prelude> 3+5*4 >= 3*(4+2)

Result: True ?

== and /= are the operators for equality and disequality and can be used on numbers as well
as on other datatypes:

Prelude> 4+3 == 8

Result: False ?

You may wonder why the system always puts a question mark after the result and then waits
for further input. The reason is that Curry cannot only perform functional, thus, purely
deterministic computations, which yields at most one result; Curry subsumes logic languages
which are able to search for different results. Therefore, arbitrary expressions might deliver
several solutions and PAKCS computes these solutions one after the other. Thus, it prints
the first solution followed by a question mark and, if you type “;” (followed by the “enter”
key), it computes and prints the next solution and so on. We will see later examples for this
feature but ignore it for the moment. So, just hit the “enter” key after a result in order to
ignore the computation of further solutions.

One may want to use Curry as more than a mere desk calculator. Therefore, we will
discuss how to write programs in Curry. In general, a Curry program is a set of function
definitions. The simplest sort of functions are those that do not depend on any input value,
i.e., constant functions. For instance, a definition like

nine = 3*3

(such definitions are also called rules or defining equations) defines the name nine as equal to
the value of 3*3, i.e., 9. This means that each occurrence of the name nine in an expression
is replaced by the value 9, i.e., the value of the expression “4*nine” is 36.

Of course, it is more interesting to define functions depending on some input arguments.
For instance, a function to compute the square value of a given number can be defined by

square x = x*x

5

Now it is time to make some remarks about the syntax of Curry (which is actually very similar
to Haskell [13]). The names of functions and parameters usually start with a lowercase letter
followed by letters, digits and underscores. The application of a function f to an expression e
is denoted by juxtaposition, i.e., by “f e”. An exception are the infix operators like + or * that
can be written between their arguments to enable the standard mathematical notation for
arithmetic expressions. Furthermore, these operators are defined with the usual associativity
and precedence rules so that an expression like “2+3+4*5” is interpreted as ((2+3)+(4*5)).
However, one can also enclose expressions in parenthesis to enforce the intended grouping.

If we write the definitions of nine and square with a standard text editor into a file (note
that each definition must be written on a separate line starting in the first column) named
“firstprog.curry”, we can load (and compile) the program into our environment by the
command

Prelude> :l firstprog

which reads and compiles the file “firstprog.curry” and makes all definitions in this pro-
gram visible in the environment. After the successful processing of this program, the envi-
ronment shows the prefix to the input line as

firstprog>

indicating that the program “firstprog” is currently loaded. Now we can use the definitions
in this program in the expressions to be evaluated:

firstprog> square nine

Result: 81 ?

If we change our currently loaded program, we can easily reload the new version by typing
“:r”. For instance, if we add the definition “two = 2” to our file “firstprog.curry”, we
can reload the program as follows:

firstprog> :r

...

firstprog> square (square two)

Result: 16 ?

Functions containing only a single arithmetic expression in the right-hand side of their defining
equations might be useful abstractions of complex expressions but are generally only of limited
use. More interesting functions can be written using conditional expressions. A conditional
expression has the general form “if c then e1 else e2” where c is a Boolean expression
(yielding the value True or False). A conditional expression is evaluated by evaluating the
condition c first. If its value is True, the value of the conditional is the value of e1, otherwise it
is the value of e2. For instance, the following rule defines a function to compute the absolute
value of a number:

abs x = if x>=0 then x else -x

Using recursive definitions, i.e., rules where the defined function occurs in a recursive call in
the right-hand side, we can define functions whose evaluation requires a non-constant number

6

of evaluation steps. For instance, the following rule defines the factorial of a natural number
[Program]:

fac n = if n==0 then 1

else n * fac(n-1)

Note that function definitions can be put in several lines provided that the subsequent lines
start in a column greater than the column where the left-hand side starts (this is also called
the layout or off-side rule for separating definitions).

You might have noticed that functions are defined by rules like in mathematics without
providing any type declarations. This does not mean that Curry is an untyped language. On
the contrary, Curry is a strongly typed language which means that each entity in a program
(e.g., functions, parameters) has a type and ill-typed combinations are detected by the com-
piler. For instance, expressions like “3*True” or “fac False” are rejected by the compiler.
Although type annotations need not be written by the programmer, they are automatically
inferred by the compiler using a type inference algorithm. Nevertheless, it is a good idea to
write down the types of functions in order to provide at least a minimal documentation of
the intended use of functions. For instance, the function fac maps integers into integers and
so its type can be specified by

fac :: Int -> Int

(Int denotes the predefined type of integers; similarly Bool denotes the type of Boolean
values). If one is interested in the type of a function or expression inferred by the type
inference algorithm, one can show it using the command “:t” in PAKCS:

absfac> :t fac

fac :: Int -> Int

absfac> :t abs 3

(abs 3) :: Int

A useful feature of Curry (as well as most functional and logic programming languages) is
the ability to define functions in a pattern-oriented style. This means that we can put values
like True or False in arguments of the left-hand side of a rule and define a function by using
several rules. The rule that matches the pattern of left-hand side will be called. For instance,
instead of defining the negation on Boolean values by the single rule

not x = if x==True then False

else True

we can define it by using two rules, each with a different pattern (here we also add the type
declaration):

not :: Bool -> Bool

not False = True

not True = False

The pattern-oriented notation becomes very useful in combination with more complex data
structures, as we will see later.

7

One of the distinguishing features of Curry in comparison to functional languages is its
ability to search for solutions, i.e., to compute values for the arguments of functions so that the
functions can be evaluated. For instance, consider the following definitions of some functions
on Boolean values contained in the prelude (note that Curry also allows functions defined as
infix operators, i.e., “x && y” denotes the application of function && to the arguments x and
y):

False && _ = False

True && x = x

False || x = x

True || _ = True

not False = True

not True = False

The underscore “_” occurring in the rules for && and || denotes an arbitrary value, i.e., such
an anonymous variable is used for argument variables that occur only once in a rule.

We can use these definitions to compute the value of a Boolean expression:

Prelude> True && (True || (not True))

Result: True ?

However, we can do more and use the same functions to compute Boolean values for some
(initially unknown) arguments:

Prelude> x && (y || (not x)) where x,y free

Free variables in goal: x, y

Result: True

Bindings:

x=True

y=True ?

Note that the initial expression contains the free variables x and y as arguments. To support
the detection of typos, free variables in initial expressions must be explicitly declared by a
“where...free” clause at the end of the expression. This requirement can be relaxed by
turning the free variable mode on by the command “:set +free”. In this mode, all identifiers
in the initial expression that are not defined in the currently loaded program are considered
as free variables:

Prelude> :set +free

Prelude> x && (y || (not x))

Free variables in goal: x, y

Result: True

Bindings:

x=True

y=True ?

8

Free variables denotes “unknown” values. They are instantiated (i.e., replaced by some
concrete values) so that the instantiated expression is evaluable. As we have seen above,
replacing both x and y by True makes the expression reducible to True. Therefore, the
Curry system shows the result True together with the bindings (i.e., instantiations) of the
free variables it has done to compute this value.

In general, there is more than one possibility to instantiate the arguments, e.g., the
Boolean variables x and y can be instantiated to True or False. This leads to different
solutions which can be printed one after the other by typing “;” (followed by the “enter”
key) after the question mark. Thus, we can show all solutions to the initial expression as
follows:

Prelude> x && (y || (not x)) where x,y free

Free variables in goal: x, y

Result: True

Bindings:

x=True

y=True ? ;

Result: False

Bindings:

x=True

y=False ? ;

Result: False

Bindings:

x=False

y=y ? ;

No more solutions.

The last solution shows that the initial expression has the value True provided that x is
instantiated to True but y can be arbitrary (i.e., y is not instantiated). The final line indicates
that there are no more solutions to the initial expression. This situation can also occur if
functions are partially defined, i.e., there is a call to which no rule is applicable. For instance,
assume that we define the function pneg by the single rule [Program]

pneg True = False

then there is no rule to evaluate the call “pneg False”:

bool> pneg False

No more solutions.

As we have seen in the Boolean example above, Curry can evaluate expressions containing free
variables by guessing values for the free variables so that the expression becomes evaluable
(the concrete strategy used by Curry will be explained later, but don’t worry: Curry is
based on an optimal evaluation strategy [3] that performs these instantiations in a goal-
oriented manner). However, we might not be interested to see all possible evaluations but
only those that lead to a required result. For instance, we might be only interested to
compute instantiations in a Boolean formula so that the formula becomes true. For this
purpose, Curry offers constraints, i.e., formulas that are intended to be solved (instead of

9

computing an overall value). One of the basic constraints supported by Curry is equality,
i.e., “e1 =:= e2” denotes an equational constraint which is solvable whenever the expressions
e1 and e2 (which must be of the same type) can be instantiated so that they are evaluable
to the same value. For instance, the constraint “1+4=:=5” is solvable, and the constraint
“2+3=:=x” is solvable if the variable x is instantiated to 5. Now we can compute positive
solutions to a Boolean expression by solving a constraint containing True on one side:

Prelude> x && (y || (not x)) =:= True where x,y free

Free variables in goal: x, y

Result: success

Bindings:

x=True

y=True ? ;

No more solutions.

Note that “success” denotes the trivial, always satisfiable constraint, i.e., a result like
“success” indicates that the constraint is satisfied with respect to the computed instantia-
tions.

Curry allows the definition of functions by several rules and is able to search for several
solutions. We can combine both features to define functions that yield more than one result
for a given input. Such functions are called non-deterministic or set-valued functions. A
simple example for a set-valued function is the following function choose which yields non-
deterministically one of its arguments as a result [Program]:

choose x y = x

choose x y = y

With this function we could have several results for a particular call:

choose> choose 1 3

Result: 1 ? ;

Result: 3 ? ;

No more solutions.

We can use choose to define other set-valued functions:

one23 = choose 1 (choose 2 3)

Thus, a call to one23 delivers one of the results 1, 2, or 3. Such a function might be useful to
specify the domain of values for which we want to solve a constraint. For instance, to search
for values x ∈ {1, 2, 3} satisfying the equation x + x = x ∗ x, we can solve this constraint
(c1 & c2 denotes the conjunction of the two constraints c1 and c2):

choose> x=:=one23 & x+x=:=x*x where x free

Free variables in goal: x

Result: success

Bindings:

x=2 ?

10

Set-valued functions are often a reasonable alternative to flexible functions in order to search
for solutions. The advantages of set-valued functions will become clear when we have dis-
cussed the (demand-driven) evaluation strategy in more detail.

This chapter is intended to provide a broad overview of the main features of Curry and
the use of an interactive programming environment so that one can easily try the subsequent
examples. In the next chapter, we will discuss the features of Curry in more detail.

11

Chapter 3

Main Features of Curry

3.1 Overview

The major elements declared in program are functions and data structures.

• A function defines a computation similar to an expression. However, the expression
computed by a function has a name and is often parameterized. These characteristics
enable you to execute the same computation, possibly with different parameters, over
and over in the same program by simply invoking the computation’s name and setting
the values of its parameters. A function also provides a procedural abstraction. Rather
than coding a computation by means of a possibly complicated expression, you can
factor out portions of this computation and abstract them by their names.

• A data structure is a way to organize data. For example, you can record the movements
of your bank account in a column in which deposits are positive numbers and with-
drawals are negative numbers. Or you can record the same movements in two columns,
one for deposits and another for withdrawals, in which all numbers are positive. With
the second option, the columns rather than the signs specialize the meaning of the
numbers. The way in which information is organized may ease some computations,
such as retrieving portions of information, and is intimately related, through pattern
matching, to the way in which functions are coded.

This section describes in some detail both of these features and a number of related concepts.
Curry has some additional features not described in this section. Since they are useful
to support particular programming tasks, we introduce them later when we discuss such
programming techniques.

3.2 Expressions

A function can be regarded as a parameterized expression with a name. Thus, we begin by
explaining what an expression is and how it is used. Most expressions are built from simpler
subexpressions, a situation that calls for a recursive, or inductive, definition.

12

An expression is either a symbol or literal value or is the application of an ex-
pression to another expression.

A symbol or literal value is referred to as an atom. For example, numbers and the Boolean
symbols “True” and “False” are examples of atoms. Atoms constitute the most elementary
expressions. These elementary expressions can be combined to create more complex expres-
sions, e.g., “2 + 3” or “not True”. The combination is referred to as a function application.
Since a function application is a very common activity, it is convenient to denote it as simply
as possible. This convenience is obtained to the extreme by writing the two expressions one
near the other as in “not True”. This notation is referred to as juxtaposition.

In the above expressions, the symbols “+” and “not” are operations. Both are prede-
fined in the standard library Prelude. Although conceptually the symbols “+” and “not”
are alike, syntactically they differ. The symbol “+” is a infix operator as in the ordinary
mathematical notation. Infix operators have a precedence and an associativity so that the ex-
pression “2 + 3 * 4” is understood as “2 + (3 * 4)” and the expression “4 - 3 - 2” is understood
as “(4 - 3) - 2”. The precedence and associativity of an infix symbol are defined in a program
by a declaration. The following declarations, from the prelude, define these parameters for
some ordinary arithmetic operations:

infixl 7 *, ‘div‘, ‘mod‘

infixl 6 +, -

infix 4 <, >, <=, >=

For example, the precedence of the addition and subtraction operators is 6 and their asso-
ciativity is left. The relational operators have precedence 4 and are not associative. Opera-
tors with a higher precedence bind stronger, i.e., the expression “4 < 2 + 3” is interpreted as
“4 < (2 + 3)”.

Infix declarations must always occur at the beginning of a program. The prece-
dence of an operator is an integer between 0 and 9 inclusive. The associativity
of an operator is either left, denoted by the keyword “infixl” or right, denoted
by the keyword “infixr”. Non-associative infix operators are declared using the
keyword “infix”.

Most often, an infix operator is any user-defined sequence of characters taken from the set
“~!@#$%^&*+-=<>?./|\:”. Alphanumeric identifiers can be defined and used as infix oper-
ators if they are surrounded by backquotes, as “‘div‘” and “‘mod‘” in the previous decla-
ration. For example, for any integer value x, the following expression evaluates to x itself.

x ‘div‘ 2 * 2 + x ‘mod‘ 2

Non-infix symbols are prefix . They are applied by prefixing them to their arguments as in
“not True”.

Exercise 1 Define a predicate, read as “factors” and denoted by the infix operator “./.”,
that tells whether an integer is a factor of another integer. The predicate should work for every

13

input and 0 should not be a factor of any integer. The operator should be non-associative
and have precedence 7. [Answer]

A symbol, whether infix or prefix, can only be applied to values of an appropriate type.
As one would expect, the Boolean negation operator can be applied only to a Boolean value.
For example, the expression “not 2” is an error. The compiler/interpreter would report that
the expression is incorrectly typed. We will discuss types in more detail after presenting data
declarations.

The application of an expression to another is a binary operation. The expression that
is being applied is referred to as the function of the application. The other expression is
referred to as the argument. Thus, in “not True”, “not” is the function and “True” is the
argument. The situation is slightly more complicated for infix operations. The reading of
“2 + 3” is that the function “+” is applied to the expression “2”. The result is a function
which is further applied to the expression “3”.

Expressions can also be conditional, i.e., depend on the value of a Boolean expression.
Such conditional expressions have the form “if b then e1 else e2”. The value of this
expression is the value of e1 if b evaluates to True, or the value of e2 if b evaluates to False.
Thus, the value of “if 3>4 then 2*2 else 3*4” is 12.

3.3 Predefined Types

A type is a set of values. Ubiquitous types, such as integers or characters, are predefined
by most programming languages. Curry makes no exception. These types are referred to
as builtin and are denoted with a familiar, somewhat special, syntax. Both the availability
of builtin types and their characteristics may depend on a specific implementation of Curry.
The following table summarizes some types available in PAKCS.

Type Declaration Examples

Integer Int ...,-2,-1,0,1,2,...

Boolean Bool False, True

Character Char ’a’,’b’,’c’,...,’\n’,...

String String "hello", "world"

List of τ [τ] [], [0,1,2], 0:1:2:[]

Success Success success

Unit () ()

The details of these types are found in the PAKCS User Manual. Below, we only outline
a few crucial characteristics of the builtin types. The integers have arbitrary precision.
Some frequently used non-printable characters are denoted, as in other popular programming
languages, by escape sequences, e.g., newline is denoted by \n. The type List represents
sequences of values. This type is polymorphic, i.e., for any type τ , the type list of τ , denoted
by “[τ]”, is a type whose instances are sequences of instances of τ . The last two examples
in the List row of the table denote a list of integers, their type denoted by “[Int]”. The
notation of lists will be further discussed later. The type Success has no visible literal values

14

http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~pakcs

and is intended to denote the result of successfully solved constraints. Hence, expressions of
type Success are also called constraints. Usually, they occur in conditions and are checked for
satisfiability. The symbol success is a predefined function that denotes an always satisfiable
constraint. The symbol “()” denotes the unit type as well as the only element of this type.
The unit type is useful in situations where the return value of a function is not important.
Another useful type available in PAKCS, the tuple, will be described later.

3.4 Predefined Operations

Many frequently-used functions and infix operators, similar to frequently-used types, are
predefined in Curry. Some of these can be found in the “Prelude”, a Curry source program
automatically loaded when the compiler/interpreter starts. A few others are so fundamental
that they are built into the language. Some of these functions and operators are shown in
the following table.

Description Ident. Fix. Prec. Type

Boolean equality == 4 a -> a -> Bool

Constrained equality =:= 4 a -> a -> Success

Boolean conjunction && R 3 Bool -> Bool -> Bool

Boolean disjunction || R 2 Bool -> Bool -> Bool

Parallel conjunction & R 0 Success -> Success -> Success

Constrained expression &> R 0 Success -> a -> a

The Boolean equality applied to expressions u and v, i.e., u == v, returns “True” if and only
if u and v can be evaluated to the same value—a precise definition will be given later. If the
evaluation of u and/or v ends in an expression that still contains functions, e.g., 1 ‘div‘ 0

the computation fails and neither “True” nor “False” is returned.

The constrained equality applied to expressions u and v, i.e., u =:= v, succeeds if and only if u
and v can be evaluated to the same value—a precise definition will be given later. Otherwise,
the computation fails and no value is returned. A key difference between the Boolean and
the constrained equalities is how they evaluate expressions containing variables. This will be
discussed in some detail in Section 3.13.1.

The Boolean conjunction applied to expressions u and v, i.e., u && v, returns “True” if and
only if u and v can be evaluated to “True”.

The Boolean disjunction applied to expressions u and v, i.e., u || v, returns “True” if and
only if u or v can be evaluated to “True”.

The parallel conjunction applied to expressions u and v, i.e., u & v, evaluates u and v

concurrently. If both succeeds, the evaluation succeeds; otherwise it fails.

The constrained expression applied to a constraint c and an expression e, i.e., c &> e, evaluates
first c and, if this evaluation succeeds, then e, otherwise it fails.

Curry predefines many more functions and operations, e.g., the standard arithmetic and
relational operators on numbers. A complete list can be found both in the Report and the

15

http://www.informatik.uni-kiel.de/~pakcs

“Prelude”.

3.5 Functions

3.5.1 Basic Concepts

A program function abstracts a function in the mathematical sense. A function is a device
that takes arguments and returns a result. The result is obtained by evaluating an expression
which generally involves the function’s arguments. The following function computes the
square of a number.

square x = x * x

The symbols “square” is the name or identifier of the function. The symbol “x” is the
function’s argument . The above declaration is referred to as a rewrite rule, or simply a rule,
defining a function. The portion of the declaration to the left of the symbol “=” is the rule’s
left-hand side. The expression “x * x” is the rule’s right-hand side.

When the “square” symbol is applied to an expression, e.g., “2 + 3”, this expression is
bound to the argument “x”. The result of the application is “(2 + 3) * (2 + 3)”, i.e., the body
in which the argument is replaced by its binding. Thus:

Prelude> square (2+3)

Result: 25 ?

Functions can be anonymous, i.e., without a name. An anonymous function is useful when
a function is referenced only once. In this case, the reference to the function can be replaced
by the expression defining the function. In the following example:

result = (\x -> x * x) (2+3)

the value of result is 25. It is obtained by applying the expression (\x -> x * x), an
anonymous function, to (2+3), its argument. An anonymous function definition has the
following structure:

\args -> left-hand side

A more motivating example of anonymous function is presented in Section 3.10
The evaluation of any expression, in particular of a function application, is lazy . This

means that the computation of any expression, including the subexpressions of a larger ex-
pression, is delayed until the expression’s value is actually needed. The exact meaning of
“actually needed” is quite technical, but the intuitive meaning suffices for our purposes.
Many programming languages, such as C and Java, adopt this evaluation strategy, under the
name of short circuit , only for Boolean expressions.

We will discuss this issue in more detail later. Although the lazy evaluation strategy
is conceptually simpler than any other strategy, many traditional programming languages
evaluate the arguments of a function call eagerly, i.e., before applying a function to its
arguments. This fact is sometimes a source of confusion for the beginner.

16

3.5.2 Pattern Matching

The definition of a function can be broken into several rules. A single rule would suffice in
many cases. However, several rules allows a definition style, called pattern matching , which
is easier to code and understand. This feature allows a function to dispatch the expression
to be returned depending on the values of its arguments. The following example shows the
definition of the Boolean negation function “not”:

not True = False

not False = True

The above definition is equivalent to the following one which does not use pattern matching
but relies on a conditional expression:

not x = if x == True then False else True

Pattern matching is particularly convenient for functions that operate on algebraic datatypes.
We will further discuss this aspect after discussing data declarations.

3.5.3 Conditions

Each rule defining a function can include one or more conditions. For Boolean conditions, a
rule has the following general structure:

functId arg1 . . . argm | cond1 = expr1
| . . . = . . .

| condn = exprn

A condition is tested after binding the arguments of a call to the corresponding arguments in
the left-hand side of the rule. The function is applied to the arguments only if the condition
holds. Each condition condi is an expression of type Boolean. The conditions are tested in
their textual order. Thus, the first right-hand side with a condition evaluable to True is
taken. Furthermore, the last condition can be “otherwise” which is equivalent to True, i.e.,
it holds regardless of any value of the arguments. The following example shows a plausible
definition of the maximum of two numbers:

max x y | x < y = y

| otherwise = x

A rule can also have a constraint (i.e., an expression of type Success) as a condition. In this
case, the constraint is checked for satisfiability in order to apply the rule. Thus, the function
call reduces to the right-hand side only if the constraint is satisfied, otherwise it fails. Note
that multiple conditions as above are not allowed for constraint conditions.

3.5.4 Non-determinism

Functions can be non-deterministic. Non-deterministic functions are not functions in the
mathematical sense because they can return different values for the same input. For example,
a hospital’s information system defines which days a doctor is on-call with a non-deterministic
function:

17

oncall Joan = Monday

oncall Joan = Wednesday

oncall Richard = Monday

oncall Luc = Tuesday

...

The value of “oncall Joan” can be either “Monday” or “Wednesday”. The programmer
cannot select which of the two values will be computed. Non-deterministic functions support
a programming style similar to that of logic programs, while preserving some advantages of
functional programs such as expression nesting and lazy evaluation. In particular, some strong
properties concerning the evaluation of ordinary function hold also for non-deterministic
functions [2]. For example, suppose that “today” holds which day of the week is today. A
predicate, “available”, telling whether its argument, a doctor, is available at the current
time is coded as:

available x | oncall x == today = True

| otherwise = False

Without non-determinism, coding “oncall” would require some data structure, e.g., the
list of days in which each doctor is on-call, and defining “available” would become more
complicated.

Non-determinism is a powerful feature. In programming, as in other aspects of life,
power must be exercised with some care. A non-deterministic program is appropriate only
if all its possible outputs are equally desirable. If some outputs are more desirable than
others, the program should be (more) deterministic. In this case, non-determinism could be
conveniently used internally by the program to generate plausible results which can then be
selected according to desirability.

Exercise 2 In a manufacturing plant two specialized tasks, cut and polish, are executed
only by specialized workers, Alex, Bert and Chuck. Not every worker can execute every task.
Only Alex and Bert are able to cut, whereas only Bert and Chuck are able to polish. Code
a non-deterministic function, assign, that assigns to a task a worker that can execute it.
[Answer]

3.6 User-defined Types

A type is a set of values. Some common types, presented in Section 3.3, are built into the
language and the programmer does not declare them. All other types used in a program must
be declared by the programmer. The classification of some types as builtin vs. user-defined
is only a matter of convenience. Builtin and user-defined types are conceptually very similar.
In fact, the declaration of some builtin types could have been left to the programmer. For
example:

data Boolean = False | True

is exactly how the builtin “Boolean” type would be declared if it were not builtin. In this
declaration, the identifier “Boolean” is referred to as a type constructor , whereas the iden-

18

tifiers “False” and “True” are referred to as data constructors. The following declarations,
very similar to the previous one, define plausible types “WeekDay” and “PrimaryColor”.

data WeekDay = Monday | Tuesday | Wednesday | Thursday | Friday

data PrimaryColor = Red | Green | Blue

All these types are finite, i.e., they define a finite set of values, and resemble enumerated
types in the Pascal or C languages.

The declaration of an infinite type is similar, but as one should expect, must be (directly
or indirectly) recursive. The following declaration defines a binary tree of integers. We
recall that the typical definition of this type says that a binary tree is either a leaf or it is
a branch consisting of two binary trees. Not surprisingly, this definition is recursive which
accounts for an infinity of trees. The words “leaf” and “branch” are conventional names used
to distinguish the two kinds of trees and have no other implicit meaning. Often, branches
include a decoration, a value of some other arbitrary type. If a tree T is a branch, the two
trees in the branch are referred to as the left and right children of T . A declaration defining
binary trees where the decoration is an integer follows:

data IntTree = Leaf | Branch Int IntTree IntTree

All the following expressions are values of type “IntTree”:

Leaf

Branch 0 Leaf Leaf

Branch 7 (Branch 5 Leaf Leaf) (Branch 9 Leaf Leaf)

The first tree is a leaf and therefore it contains no decoration. The second tree contains a
single decoration, “0”, and two children both of which are leaves. The third tree contains
three decorations. Binary trees are interesting because many efficient searching and sorting
algorithms are based on them.

User-defined types can be parameterized by means of other types similar to the builtin
type list introduced in Section 3.3. These types are called polymorphic. For example, if the
type of the decoration of a binary tree is made a parameter of the type of the tree, the result
is a polymorphic binary tree. This is achieved by the following declaration [Program]:

data BinTree a = Leaf | Branch a (BinTree a) (BinTree a)

The identifier “a” is a type variable. Observe that the type variable not only defines the type
of the decoration, but also the type of the subtrees occurring in a branch. In other words, the
type that parameterizes a tree also parameterizes the children of a tree. The type variable
can be implicitly or explicitly bound to some type, e.g., “Int” or “WeekDay” defined earlier.
For example, a function that looks for the string “Curry” in a tree of strings is defined as
[Program]:

findCurry Leaf = False

findCurry (Branch x l r) = x == "Curry" || findCurry l || findCurry r

The type of the argument of function “findCurry” is “BinTree String”. The binding of
type “String” to the type variable of the definition of the polymorphic type “BinTree” is

19

automatically inferred from the definition of function “findCurry”.
A polymorphic type such as “BinTree” can be specialized by binding its variable to a

specific type by an explicit declaration as follows [Program]:

type IntTree = BinTree Int

where “type” is a reserved word of the language. This declaration defines “IntTree” as
a synonym of “BinTree Int”. The synonym can be used in type declarations to improve
readability. The following example defines a function that tallies all the decorations of a tree
of integers [Program]:

total :: IntTree -> Int

total Leaf = 0

total (Branch x l r) = x + total l + total r

Exercise 3 Pretend that list is not a builtin type, with special syntax, of the language.
Define your own type list. Define two functions on this type, one to count how many elements
are in a list, the other to find whether some element is in a list. [Answer]

3.7 Lists

The type list is builtin or predefined by the language. This type could be easily defined by
the programmer, see Exercise 3, except that the language allows the representation of lists in
a special notation which is more agile than that that would be available to the programmer.
The following statement defines important concepts of a list:

A list is either nil or it is a cons consisting of an element, referred to as the head
of the list, and another list, referred to as the tail of the list.

The nil list is denoted by “[]”, which is read “nil”. A cons list, with head h and tail t
is denoted by “h:t”. The infix operator “:”, which is read “cons”, is right associative with
precedence 5. A list can also be denoted by enumerating its elements, e.g., “[u,v,w]” is a list
containing three elements, “u”, “v” and “w”, i.e., it is just another notation for “u:v:w:[]”.
The number of elements is arbitrary. The elements are enclosed in brackets and separated
by commas.

The following functions concatenate two lists and reverse a list, respectively. The
“Prelude” defines the first one as the infix operator “++” and the second one, much more
efficiently, as the operation “reverse”.

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

rev [] = []

rev (x:xs) = conc (rev xs) [x]

Several ad hoc notations available for lists are described in Sections 4.2.3 and 4.2.4.

20

A key advantage of these special notations for lists is a reduction of the number of paren-
theses needed to represent list expressions in a program. This claim can be easily verified by
comparing the builtin notation with the ordinary notation which was the subject of Exercise 3.

3.8 Strings

Although “String” is a predefined type (see Section 3.3), there are no special operations
on strings. The reason is that “String” is just another name for “[Char]”, i.e., strings are
considered as lists of characters. In addition, Curry provides a handy notation for string
constants, i.e., the string constant

"hello world"

is identical to the character list

[’h’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’]

Thus, any operation applicable to arbitrary lists can also be applied to strings. For instance,
the prelude defines an infix operator “++” to concatenate lists and the function “reverse”
to reverse the order of all lists elements (similarly to conc and rev in Section 3.7). Thus, we
can also use them to operate on strings:

Prelude> "Hi"++"Hi"

Result: "HiHi" ?

Prelude> reverse "hello"

Result: "olleh" ?

3.9 Tuple

The word “tuple” is a generic name for a family of related types. A tuple in a program is
similar to a tuple in mathematics, i.e., a fixed length sequence of values of possibly different
types. Examples of tuples are pairs and triples. They could be defined by the programmer
as follows:

data Pair a b = Pair a b

data Triple a b c = Triple a b c

These types are polymorphic. Observe the two occurrences of the identifiers “Pair” and
“Triple” in the above declarations. The occurrence to the left names a type constructor,
whereas the occurrence to the right names a data constructor. These symbols are overloaded .
However, this kind of overloading causes no problems since type expressions are clearly sep-
arated from value expressions. The type variables “a”, “b”. . . can be bound to different
types.

For example, the information system of a “Big & Tall” shoe store declares a function that
defines the largest size and width of each model [Program]:

21

data Width = C | D | E | EE | EEE | EEEE

largest "New Balance 495" = Pair 13 EEE

largest "Adidas Comfort" = Pair 15 EE

...

The language predefines tuples and denotes them with a special notation similar to the
standard mathematical notation. Using predefined tuples, the above function is coded as:

largest "New Balance 495" = (13,EEE)

largest "Adidas Comfort" = (15,EE)

...

Tuples are denoted by a fixed-length sequence of comma-separated values between parenthe-
ses. There is no explicit data constructor identifier. The type of a tuple is represented as a
tuple as well, e.g., the type of “largest” is reported by the interpreter as:

BigTall> :t largest

largest :: String -> (Int,Width)

BigTall>

3.10 Higher-Order Computations

The arguments of a function can be functions themselves. This feature is banned or restricted
by many programming languages. E.g., in C only a pointer to a function can be passed as
a parameter to another function. For the same purpose, C++ uses templates and Java uses
interfaces. In Curry, no special construct or concept is necessary.

A function that takes an argument of function type is referred to as a higher-order func-
tion. Loosely speaking, a higher-order function is computation parameterized by another
computation. We show the power of this feature with a simple example. The function
“sort”, shown below, takes a list of numbers and sorts them in ascending order. On non-
empty arguments, the function “sort” recursively sorts the tail and inserts the head at the
right place in the sorted tail. This algorithm becomes inefficient as lists grow longer, but it
is easy to understand [Program]:

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) | x <= y = x : y : ys

| otherwise = y : insert x ys

To sort a list in descending order or to sort a list of a different type, a new function must be
coded.

An alternative is to code a sort function where the ordering criterion is an argument.
The overall structure of the function is the same. The new argument, the first one of each
function, is denoted by “f”. This argument is a function that takes two arguments and

22

returns “True” if and only if the first argument must appear before the second argument in
the output list [Program]:

sort _ [] = []

sort f (x:xs) = insert f x (sort f xs)

insert _ x [] = [x]

insert f x (y:ys) | f x y = x : y : ys

| otherwise = y : insert f x ys

For example:

HOInsertionSort> sort (<=) [3,5,1,2,6,8,9,7]

Result: [1,2,3,5,6,7,8,9] ?

HOInsertionSort> sort (>) [3,5,1,2,6,8,9,7]

Result: [9,8,7,6,5,3,2,1] ?

In the above expressions, the operators “<=” and “>” are the functional arguments. The
parentheses around them are necessary, since these functions are identified by infix operators.
Without parentheses, the expression “sort <= [3,5,1,2,6,8,9,7]” would test whether the
left argument of “<=” is smaller than the right argument, which is meaningless.

Observe that the first version of the “sort” function constrains the elements of the input
list to be numbers, since these elements are arguments of “<=”. In the second, higher-order
version, the type of the elements of the input list is unconstrained. Thus, the function can
be applied to lists of any type as long as a suitable ordering criterion for the type of the list
elements is provided.

Higher-order computations involve a functional argument. Sometimes, the corresponding
argument in a call, which is a function, is referenced only in the call itself. In this case, it is
appropriate to use an anonymous function. For example, suppose that an elementary school
information system represents classes with a grade and a section. The grade is a number in
the range 1 through 5 and the section is a letter, a, b ... The following ordering criterion
sorts the classes in a “natural” (lexicographic) order [Program]:

sortClasses l = sort lex l

where lex (x,y) (u,v) = x<u || x==u && ord y <= ord v

A more compact and informative formulation uses an anonymous function as follows [Pro-
gram]:

sortClasses l = sort (\(x,y) (u,v) -> x<u || x==u && ord y <= ord v) l

Observe that pattern matching is normally used in the definition of the above anonymous
function.

3.11 Lazy Evaluation

The evaluation of an expression t is the process of obtaining a value v from t.

A value is an expression consisting only of builtin literals and/or data constructors

23

and/or variables.

The value v is obtained from t by replacing an instance of the left-hand side of a rule with the
corresponding instance of the right-hand side. For example, referring to the function square
defined in Section 3.5.1:

square x = x * x

an instance of square x is replaced with the corresponding instance of x ∗ x. For example,
4 + square (2 + 3) is replaced by 4 + (2 + 3) ∗ (2 + 3).

The evaluation of an expression t proceeds replacement after replacement until an ex-
pression v in which no more replacements are possible is obtained. If v is not a value, the
evaluation fails, otherwise v is the result of a computation of t. For example, the following
function head computes the first element of a (non-null) list:

head (x:_) = x

An attempt to evaluate “head []” fails, since no replacement is possible and the expression
is not a value since it contains a function.

Often, an expression may contain several distinct replaceable subexpressions, e.g., from
(2 + 3) ∗ (2 + 3) we can obtain both 5 ∗ (2 + 3) and (2 + 3) ∗ 5. Even a single subexpression
may allow several distinct replacements when non-deterministic functions are involved. The
order in which different subexpressions of an expression are replaced is not determined by
a program. The choice is made by an evaluation strategy . The semantics of the language
guarantees that any value obtainable from an expression is eventually obtained. This property
is referred to as the completeness of the evaluation. To ensure this completeness, expressions
must be evaluated lazily. A lazy strategy is a strategy that evaluates a subexpression only if
its evaluation is unavoidable to obtain a result. The following example clarifies this delicate
point.

The following function computes the list of all the integers beginning with some initial
value n [Program]:

from n = n : from (n+1)

An attempt to evaluate “from 1” aborts with a memory overflow since the “result” would
be the infinite term:

[1,2,3,...

However, the function “from” is perfectly legal. The following function returns the n-th
element of a list:

nth n (x:xs) = if n==1 then x else nth (n-1) xs

The expression “nth 3 (from 1)” evaluates to 3 despite the fact that “from 1” has no
(finite) value:

lazy> nth 3 (from 1)

Result: 3 ?

24

The reason is that only the third element of “from 1” is needed for the result. All the other
elements, in particular the infinite sequence of elements past the third one, do not need to
be evaluated.

Infinite data structures are an asset in the conjunction with lazy evaluation. Programs
that use infinite structures are often simpler than programs for the same problem that use
finite structures. E.g., a function that computes a (finite) prefix of “[1,2,3,...” is more
complicated than “from”. Furthermore, the functions of the program are less interpedendent
and consequently more reusable. E.g., the following function, initially applied to 0 and 1,
computes the (infinite) sequence of the Fibonacci numbers:

fibolist x0 x1 = x0 : fibolist x1 (x0+x1)

The function “nth” can be reused to compute the n-th Fibonacci number through the eval-
uation of the expression “nth n (fibolist 0 1)”, e.g.:

lazy> nth 5 (fibolist 0 1)

Result: 3 ?

The evaluation strategy of the PAKCS compiler/interpreter, which is used for all our exam-
ples, is lazy, but incomplete. The strategy evaluates non-deterministic choices sequentially
instead of concurrently.

All the occurrences of same variables are shared. This design decision has implications
both on the efficiency and the result of a computation. For example, consider again the
following definition:

square x = x * x

The evaluation of say square t goes through t * t. Without sharing, t would be evaluated
twice, each evaluation independent of the other. If t has only one value, the double eval-
uation would be a waste. If t has more then one value, this condition will be discussed in
Section 3.12.1, sharing produces the same value for both occurrences.

3.12 Local Definitions

The syntax of Curry implicitly associates a scope to each identifier, whether a function, a
type, a variable, etc. Roughly speaking the scope of an identifier is where in a program the
identifier can be used. For example, the scope of a variable occurring in the left-hand side of
a rule is the rule itself, which includes the right-hand side and the condition, if any. In the
following code:

square x = x * x

cube x = x * square x

the variable identified by “x” in the definition of “square” is completely separated from the
variable identified by “x” as well in the definition of “cube”. Although these variables share
the same name, they are completely independent of each other.

Curry is statically scoped , which means that the scope of an identifier is a static property

25

http://www.informatik.uni-kiel.de/~pakcs

of a program, i.e., the scope depends on the textual layout of a program rather than on an
execution of the program.

The scope of an identifier is the region of text of a program in which the identifier
can be referenced.

In most cases, the programmer has no control on the scope of an identifier—and this is
a good thing. The scope rules are designed to make the job of the programmer as easy
and safe as possible. The context in which an identifier occurs determines the identifier’s
scope. However, there are a couple of situations where the programmer can limit, by mean
of syntactical constructs provided by the language, the scope of an identifier. Limiting the
scope of an identifier is convenient in some situations. For example, it prevents potential
name clashes and/or it makes it clearer that a function is introduced only to simplify the
definition of another function. A limited scope, which is referred to as a local scope, is the
subject of this section.

Curry has two syntactic constructs for defining a local scope: the “where” clause and the
“let” clause. They are explained next.

3.12.1 Where Clauses

A “where” clause creates a scope nested within a rewrite rule. The following example defines
an infix operator, “**”, for integer exponentiation [Program]:

infixl 8 **

a ** b | b >= 0 = accum 1 a b

where accum x y z | z == 0 = x

| otherwise = accum aux (y * y) (z ‘div‘ 2)

where aux = if (z ‘mod‘ 2 == 1) then x * y else x

For example, 2 ** 5 = 25 = 32. There are several noteworthy points in the above code
fragment. The scope of the function “accum” is limited to the rewrite rule of “**”. This
is convenient since the purpose of the former is only to simplify the definition of the latter.
There would be no gain in making the function “accum” accessible from other portions of a
program. The function “accum” is nested inside the function “**”, which is nesting “accum”.

The rewrite rule defining “accum” is conditional. Pattern matching of the arguments and
non-determinism can occur as well in local scopes. Finally, there is yet another local scope
nested within the rewrite rule of the function “accum”. The identifier “aux” is defined in this
scope and can be referenced from either condition or right-hand side of the rewrite rule of
the function “accum”.

The right-hand side of the rewrite rule defining “aux” references the variables “x”, “y”
and “z” that are arguments of “accum” rather than “aux” itself. This is not surprising since
the scope of these variables is the rewrite rule of “accum” and “aux” is defined within this
rule.

The identifier “aux” takes no arguments. Because it occurs in a local scope, “aux” is
considered a local variable instead of a nullary function. The language does not make this
distiction for non-local identifiers, i.e., identifiers defined at the top level. The evaluation of
local variables differs from that of local functions. All the occurrences of a variable, whether

26

or not local, share the same value. This policy may affect both the efficiency of a program
execution and the result of computations involving non-deterministic functions. The following
example clarifies this subtle point [Program]:

coin = 0

coin = 1

g = (x,x) where x = coin

f = (coin,coin)

The values of “g” are (0,0) and (1,1) only, whereas the values of “f” also include (0,1)

and (1,0). The reason of this difference is that the two occurrences of “coin” in the rule
of “f” are evaluated independently, hence they may have different values, whereas the two
occurrences of “x” in the rule of “g” are “shared,” hence they have the same value.

There is one final important aspect of local scoping. A local scope can declare an identifier
already declared in a nesting scope—a condition referred to as shadowing . An example of
showing is shown below:

f x = x where x = 0

The variable “x” introduced in the where clause shadows the variable with the same name
introduced in the rewrite rule left-hand side. The occurrence of “x” in the right-hand side is
bound to the former. Hence, the value “f 1” is 0. This situation may be a source of confusion
for the beginner. The PAKCS compiler/interpreter detects this situation and warns the
programmer as follows [Program]:

Prelude> :l shadow

Parsing ’shadow.curry’...

generating shadow.fcy ...

Warning: "shadow.curry", line 1.15: shadowing symbol "x"

Warning: "shadow.curry", line 1.3: unreferenced variable "x"

Compiling ’./shadow.fcy’ into ’./shadow.pl’...done

The first warning reports that the identifier in line 1, column 15, the variable “x” in the
local scope, shadows some identifier(s) with the same name. The second warning reports
that the identifier in line 1, column 3, the variable “x” argument of “f”, is not used. This
is a consequence of its shadowing and gives an important clue that the occurrence of “x” in
the right-hand side of the rewrite rule of “f” is bound to the local variable rather than the
argument.

3.12.2 Let Clauses

A “let” clause creates a scope nested within an expression. The concept is very similar to
a “where” clause, but the granularity of the scope is finer. For example, the program for
integer exponentiation presented earlier can be coded using “let” clauses as well [Program]:

infixl 8 **

a ** b | b >= 0 =

27

http://www.informatik.uni-kiel.de/~pakcs

let accum x y z | z == 0 = x

| otherwise =

let aux = if (z ‘mod‘ 2 == 1) then x * y else x

in accum aux (y * y) (z ‘div‘ 2)

in accum 1 a b

Using a “let” declaration is more appropriate than a “where” declaration for the definition of
operation “aux”. With a “let” declaration, the scope of the identifier “aux” is the right-hand
side of the second conditional rule of the function “accum” instead of the whole rule.

3.12.3 Layout

By contrast to most languages, Curry programs do not use a printable character to separate
syntactic constructs, e.g., one rewrite rule from the next. Similar to Haskell, Curry programs
use a combination of an end-of-line and the indentation of the next line, if any. A Curry
construct, e.g., a “data” declaration or a rewrite rule, terminates at the end of a line, unless
the following line is more indented. For example, consider the following layout:

f = g

h...

Since “f” starts in column 1 and “h” starts in column 2, the right-hand side of the rule defining
“f” consists in the application of “g” to “h” to “...” By contrast, with the following layout:

f = g

h...

the right-hand side of the rule defining “f” consists of “g” only. Since “h” starts in the same
column as “f”, this line is intended as a new declaration.

The layout style described above goes under the name “off-side rule”. The examples of
Sections 3.12.1 and 3.12.2 shows how the off-side rule applies to “where” and “let” clauses.

3.13 Variables

Most of the programs discussed so far are functional. They declare data and/or define
functions. An execution of the program is the functional-like evaluation of an expression.
Curry is a functional logic programming language. It adds two crucial features to the model
outlined above: non-determinism, which was discussed in Section 3.5.4, and logic variables,
which are discussed in this section.

3.13.1 Logic Variables

A logic variable differs from the variables introduced by the left-hand side of a rewrite rule.
A variable introduced by the left-hand side of a rewrite rule stands for any expression (of an
appropriate type). For example, the following definition:

head (x:xs) = x

28

is read as “for all expressions x and xs the head of (the list) (x:xs) is x.” Since Curry is
strongly typed, the type of xs must be list, otherwise the program would be invalid, but no
other conditions are imposed on xs.

A logic variable either is a variable occurring in an expression typed by the user at the
interpreter prompt or it is a variable in the condition and/or right-hand side of a rewrite rule
which does not occur in the left-hand side. We show an example of both. The operation
“==”, called Boolean equality , is predefined in Curry. Hence, one can (attempt to) evaluate:

Prelude> z==2+2 where z free

Every variable in a query, such as “z” in the above example, is a logic variable that initially
is not bound to any value. We will discuss shortly why queries with variables may be useful
and how variables are handled.

The second kind of logic variable is shown in the following example:

path a z = edge a b && path b z where b free

The intuition behind the names tells that in a graph there exists a path from a node a to a
node z if there exists an edge from the node a to some node b and a path from the node b to
the node z. In the definition, both “a” and “z” are ordinary (rule) variables, whereas “b” is
a logic variable. Variables, such as “b”, which occur in the condition and/or right-hand side
of a rule, but not in the left-hand side, are also called extra variables. Extra variables must
be explicitly declared “free” in a “where” or “let” clause as shown in the example.

3.13.2 Evaluation

The evaluation of expressions containing logic variables is a delicate issue and the single most
important feature of functional logic languages. There are two approaches to deal with the
evaluation of expressions containing logic variables: residuation and narrowing .

Let e be an expression to evaluate and v a variable occurring in e. Suppose that e cannot
be evaluated because the value of v is not known. Residuation suspends the evaluation of e.
If it is possible, we will address this possibility shortly, some other expression f is evaluated
in hopes that the evaluation of f will bind a value to v. If and when this happens, the
evaluation of e resumes. If the expression f does not exists, e is said to flounder and the
evaluation of e fails. For example, this is what would happen for the query we showed earlier:

Prelude> z==2+2 where z free

Free variables in goal: z

*** Goal suspended!

By contrast to residuation, if e cannot be evaluated because the value of v is not known,
narrowing guesses a value for v. The guessed value is uninformed except that only values
that make it possible to continue the computation are chosen.

The operation “=:=”, called constrained equality , is predefined in Curry. This operation
is similar to the Boolean equality discussed earlier except for two important differences. The
first difference is the type returned by the operation. The constrained equality returns the

29

type Success. This type has no visible constructors. An expression of type Success either
succeeds or fail. There exists predefined operations, “success” and “failed”, to encode
successes and failures in a program. The second difference is that operation “=:=” narrows
instead of residuating. Thus:

Prelude> z=:=2+2 where z free

Free variables in goal: z

Result: success

Bindings:

z=4 ?

3.13.3 Flexible vs. Rigid Operations

Operations that residuate are called rigid , whereas operations that narrow are called flexible.
All defined operations are flexible whereas most primitive operations, like arithmetic opera-
tions, are rigid since guessing is not a reasonable option for them. For example, the prelude
defines a list concatenation operation as follows:

infixr 5 ++

...

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys

Since the operation “++” is flexible, we can use it to search for a list satisfying a particular
property:

Prelude> x ++ [3,4] =:= [1,2,3,4] where x free

Free variables in goal: x

Result: success

Bindings:

x=[1,2] ?

On the other hand, predefined arithmetic operations like the addition “+” are rigid. Thus, a
call to “+” with a logic variable as an argument flounders:

Prelude> x + 2 =:= 4 where x free

Free variables in goal: x

*** Goal suspended!

For ground expressions, i.e., expressions without logic variables, the flex/rigid status of a
function make no difference. In the context of concurrent/distributed object-oriented pro-
gramming, rigid user-defined functions can be useful. For this purpose, there is a primitive
operation ensureNotFree that evaluates its argument and suspends if it is a logic variable.

3.13.4 Programming

Often, programming with variables leads to conceptually simple, terse and elegant code at
the cost of an acceptable loss of efficiency. The logic variables of a program and/or a query

30

are not much different from the variables that are typically used to solve algebra or geometry
problems. In both cases, some unknown entities of the problem are related to each other by
expressions involving functions. Narrowing allows us to evaluate these expressions—and in
the process to find values for the variables. The simplest application, and the most familiar
for those used to solve algebra and geometry problems with variables, is when the expression
to evaluate is an equation.

In later chapters, we will discuss some problems that are conveniently solved if one uses
variables in computations. Here we want to present a simple, but non-trivial, motivating
example. The problem is to parse a string that represents an expression. To keep the
example small, our expressions are functional terms whose syntax is defined by:

term ::= identifier

| identifier ’(’ args ’)’

args ::= term

| term ’,’ args

identifier ::= any non-null string of alphabetic characters

For example, "f(g(a,b))" is a term described by the above syntax. When a term is rep-
resented as a string, answering questions such as how many arguments “g” has, is more
complicated and less efficient than it needs to be. A parser converts a term from its string
representation into a data structure that makes easy and efficient answering questions of that
kind. Thus, the first step to build a parser is to design a suitable type to represent a term.
Our choice is: [Program]:

data Term = Term String [Term]

Note that the occurrence of “Term” to right of the “=” character is a data constructor, whereas
the two other occurrences are type constructors. The “Term” identifier is overloaded by the
declaration.

Using this data structure, we represent a function identifier with a string and the function’s
arguments with a list of terms. For example, the term "f(g(a,b))" would be represented
as “Term "f" [Term "g" [Term "a" [],Term "b" []]]”. The following operation parses
a term [Program]:

parseTerm s | s =:= fun ++ "(" ++ args ++ ")" &

all isAlpha fun =:= True = Term fun (parseArgs args)

where fun, args free

parseTerm s | all isAlpha s =:= True = Term s []

The elements of the program most relevant to our discussion are the variables “fun” and
“args”. The first condition of the operation “parseTerm” instantiates these variables and
ensures that “fun” is an alphabetic identifier. The operation “isAlpha”, defined in the
library “Char”, ensures that its argument, a character, is alphabetic. The operation “all” is
defined in the “Prelude”. The combination “all isAlpha” ensures that all the characters
of a string are alphabetic.

If a term has arguments, these arguments are parsed by the operation “parseArgs”. The
overall design of this operation is very similar to that of “parseTerm”. In this case, though,

31

a string is decomposed according to different criteria [Program]:

parseArgs s | s =:= term ++ "," ++ terms &

parseTerm term =:= result = result : parseArgs terms

where term, terms, result free

parseArgs s | parseTerm s =:= result = [result]

where result free

One could code more efficient versions of this parser. This version is very simple to understand
and it is the starting point for the design of more efficient versions that will be discussed later
in this book.

3.14 Input/Output

As we have seen up to now, a Curry program is a set of datatype and function declarations.
Functions associate result values to given input arguments. However, application programs
must also interact with the “outside” world, i.e., they must read user input, files etc. Tradi-
tional programming languages addresses this problem by procedures with side effects, e.g., a
procedure read that returns a user input when it is evaluated. Such procedures are problem-
atic in the context of Curry. Firstly, the evaluation time of a function is difficult to control
due to the lazy evaluation strategy (see Section 3.11). Secondly, the meaning of functions
with side effects is unclear. For instance, if the function readFirstNum returns the first num-
ber in a particular file, the evaluation of the expression “2*readFirstNum” yields different
values at different points of time (if the contents of the file changes).

Curry solves this problem with the “monadic I/O” concept much like that seen in the
functional language Haskell [14]. In the monadic approach to I/O, a program interacting with
the outside world is considered as a sequence of actions that change the state of the outside
world. Thus, an interactive program computes actions which are applied to a given state
of the world (this application is finally done by the operating system that executes a Curry
program). As a consequence, the outside world is not directly accessible but can be only
manipulated through actions that change the world. Conceptually, the world is encapsulated
in an abstract datatype which provides actions to change the world. The type of such actions
is “IO t” which is an abbreviation for

World -> (t,World)

where “World” denotes the type of all states of the outside world. If an action of type “IO t”
is applied to a particular world, it yields a value of type t and a new (changed) world.

For instance, getChar of type “IO Char” is an action which reads a character from the
standard input whenever it is executed, i.e., applied to a world. Similarly, putChar of type
“Char -> IO ()” is an action which takes a character and returns an action which, when
applied to a world, puts this character to the standard output (and returns nothing, i.e.,
the unit type). The important point is that values of type World are not accessible to the
programmer — she/he can only create and compose actions on the world.

Actions can only be sequentially composed, i.e., one can built a new action that consists
of the sequential evaluation of two other actions. The predefined function

32

(>>) :: IO a -> IO b -> IO b

takes two actions as input and yields an action as the result. The resulting action consists of
performing the first action followed by the second action, where the produced value of the first
action is ignored. For instance, the value of the expression “putChar ’a’ >> putChar ’b’”
is an action which prints “ab” whenever it is executed. Using this composition operator, we
can define a function putStrLn (which is actually predefined in the prelude) that takes a
string and produces an action to print this string:

putStrLn [] = putChar ’\n’

putStrLn (c:cs) = putChar c >> putStrLn cs

If two actions should be composed and the value of the first action should be taken into account
before performing the second action, the actions can be also composed by the predefined
function

(>>=) :: IO a -> (a -> IO b) -> IO b

where the second argument is a function taking the value produced by the first action as
input and performs another action. For instance, the action

getChar >>= putChar

is of type “IO ()” and copies, when executed, a character from standard input to standard
output. Actually, this composition operator is the only elementary one since the operator
“>>” can be defined in terms of “>>=”:

a1 >> a2 = a1 >>= _ -> a2

There is also a primitive “empty” action

return :: a -> IO a

that only returns the argument without changing the world. The prelude also defines the
“empty” action which returns nothing (i.e., the unit type):

done :: IO ()

done = return ()

Using these primitives, we can define more complex interactive programs. For instance, an
I/O action thats copies all characters from the standard input to the standard output up to
the first period can be defined as follows [Program]:

echo = getChar >>= \c -> if c==’.’ then done else putChar c >> echo

Obviously, such a definition is not well readable. Therefore, Curry provides a special syntax
extension for writing sequences of I/O actions, called the do notation. The do notation follows
the layout style (see Section 3.12.3), i.e., a sequence of actions is vertically aligned so that

do putChar ’a’

putChar ’b’

33

is the same as “putChar ’a’ >> putChar ’b’”, and

do c <- getChar

putChar c

is just another notation for “getChar >>= \c -> putChar c”. Thus, the do notation allows
a more traditional style of writing interactive programs. For instance, the function echo

defined above can be written in the do notation as follows:

echo = do c <- getChar

if c==’.’

then done

else do putChar c

echo

As a further example, we show the definition of the I/O action getLine as defined in the
prelude. getLine as an action that reads a line from the standard input and returns it:

getLine :: IO String

getLine = do c <- getChar

if c==’\n’

then return []

else do cs <- getLine

return (c:cs)

Curry also provides predefined I/O actions for reading files and accessing other parts of the
environment. For instance, “readFile f” is an action which returns the contents of file f

and “writeFile f s” is an action writing string s into the file f. This allows us to define a
function that copies a file with transforming all letters into uppercase ones in a very concise
way (toUpper is defined in the standard character library Char and converts lowercase into
uppercase letters) [Program]:

convertFile input output =

do s <- readFile input

writeFile output (map toUpper s)

The function toUpper, defined in the library “Char”, takes a character. If the character is
lower case and alphabetic, then it returns it in upper case, otherwise it returns it unchanged.
The operation “map” is defined in the “Prelude” and discussed in detail in Section 4.2.6.
The combination “map toUpper” transforms all the characters of a string to upper case.

The monadic approach to input/output has the advantage that there are no “hidden”
side effects—any interaction with the outside world can be recognized by the IO type of
the function. Thus, functions can be evaluated in any order and the only way to combine
I/O actions is a sequential one, as one would expect also in other programming languages.
However, there is one subtle point. If a function computes non-deterministically different I/O
actions, like in the expression “putStrLn (show coin)” (see Section 3.12.1 for the definition
of the non-deterministic function coin; show is a predefined function that converts any value
into a string), then it is not clear which of the alternative actions should be applied to the
world. Therefore, Curry requires that non-determinism in I/O actions must not occur. For

34

instance, we get a runtime error if we evaluate the above expression:

localvar> putStr (show coin)

ERROR: non-determinism in I/O actions occurred!

One way to ensure the absence of such errors is the encapsulation of all search between I/O
operations, e.g., by using the function findall.

Exercise 4 Define an I/O action filelength that reads requests the name of a file from
the user and prints the length of the file, i.e., the number of characters contained in this file.
[Answer]

35

Part II

Programming with Curry

36

Chapter 4

Programming in Curry

4.1 Overview

Lists and trees are datatypes frequently used in programming.

• A list abstracts a sequence of elements. The elements of a list are implicitly ordered by
the list structure. Therefore, a list is a convenient representation for queues, stacks and
other linear structures. As list can also be used for representing collections, typically
unordered, such as a set, by ignoring or hiding the implicit order of the elements.

• A tree ...

This section describes in some detail both these datatypes and how they help solve some typ-
ical problems, e.g., sorting a collection of elements or searching for an element in a collection.

4.2 Lists

4.2.1 Notation

A List is a simple algebraic polymorphic datatype defined by two constructors conventionally
referred to as Nil and Cons. Within the Curry language, the datatype “List of a” would be
declared as:

data List a = Nil | Cons a (List a)

Because lists are one of the most frequently used types in functional, logic and functional logic
programs, many languages offer several special notations for lists. In Curry, the type “List
of a”, where a is a type variable that stands for any type, is predefined and denoted by [a].
Likewise, [] denotes the constructor Nil, the empty list, and “:” denotes the constructor
Cons, which takes an element of type a and a list of a’s. Thus, with a syntax that is not
legal in Curry, but is quite expressive, the above declaration would look like:

data [a] = [] | a : [a]

37

The expression (u:v) denotes the list with the first element u followed by the list v. The
infix operator “:”, which read “cons”, is predefined, right associative and has precedence 5.
This implies that u:v:w is parsed as u:(v:w).

A list can also be denoted by enumerating its elements, e.g., “[u,v,w]” is a list contain-
ing three elements, “u”, “v” and “w”, i.e., it is just another notation for “u:v:w:[]”. This
notation can be used with any number of elements. The elements are enclosed in brackets
and separated by commas. This notation has several advantages over the standard algebraic
notation: lists stand out in a program and references to lists are textually shorter. In par-
ticular, the number of parentheses occurring in the text is reduced. This claim can be easily
verified by comparing the builtin notation with the ordinary notation.

The type list is polymorphic, which means that different lists can have elements of different
types. However, all the elements of a particular list must have the same type. The following
annotated examples show this point [Program]:

-- list of integers

digits = [0,1,2,3,4,5,6,7,8,9]

-- list of characters, equivalent to "Pakcs", print with putStr

string = [’P’,’a’,’k’,’c’,’s’]

-- list of list of integers

matrix = [[1,0,2],[3,7,2],[2,8,1],[3,3,4]]

Other special notations available for lists are described in Sections 4.2.3 and 4.2.4.

4.2.2 Inductive Definitions

Many elementary functions on lists are defined by an induction similar to that available for
the naturals. The cases of the induction are conveniently defined by different rules using
pattern matching. For lists, the base case involves defining a function for [] whereas the
inductive case involves defining the function for a list (u:v) under the assumption that the
value of the function for v is available. In a program, this is expressed by a recursive call.
The function that counts the number of elements of a list is emblematic in this respect:

len [] = 0

len (u:v) = 1 + len v

For computing the length of a list, the value of u is irrelevant and u should be replaced by
an anonymous variable in the above definition.

Exercise 5 Code an inductively defined function that takes a list of integers and returns
the sum of all the integers in the list. Hint: the function should return 0 for an empty list.
[Answer]

The prelude defines many useful functions on lists, e.g., “++” for concatenation, “!!” for
indexing, i.e., (l!!i) is the i-th (starting from 0) element of l, etc. We will use some of these
functions, after providing a brief explanation, in this section. We might also re-define some
functions already available in the prelude or other libraries when they make good examples.

38

E.g., the function len discussed above is equivalent to the function length of the prelude.
In Section 4.2.5, we will present the most important list functions available in the prelude.

Functions inductively defined are easy to code, understand and evaluate. Sometimes they
may be inefficient. Below are two definitions of a function to reverse a list. For long lists, the
second one is much more efficient.

slowRev [] = []

slowRev (u:v) = slowRev v ++ [u]

fastRev l = aux l []

where aux [] r = r

aux (u:v) r = aux v (u:r)

A function inductively defined performs a “traversal” of its argument. During this traversal
some computation is performed on each element of the list—this is referred to visiting a
cons—and the result combined with a recursive invocation of the function. Loosely speaking,
the visit can be performed either before the recursive call, or after, or both. The following
example shows how to subtract the minimum element of a list of integers from all the elements
of the list. The function performs a single traversal of its argument. The minimum of the
list is computed (as much as feasible) before the recursive call. The subtraction is computed
after the recursive calls (otherwise the minimum could not be known) [Program]:

submin [] = []

submin (x:xs) = fst (aux (x:xs) x)

where aux [] m = ([],m)

aux (y:ys) m = let (zs,n) = aux ys (min y m)

in (y-n:zs,n)

The function fst, which returns the first element of a pair, is defined in the prelude. The
function min, which returns the minimum of two integers, is defined in the Integer library.

More complicated computations may lead to more complicated inductive definitions. A
discussion on the structure and the design of inductively defined function is in [1].

Exercise 6 Code an inductively defined function that transposes a matrix represented by a
list of lists (all of the same length). [Answer]

There are a couple of noteworthy alternatives to directly defining inductive functions. One
involves higher-order list functions. Some of these functions are presented in Section 4.2.6.
The other involves narrowing. Lists are a particularly fertile ground for narrowing. Below are
two definitions of the function that computes the last element of a list. The first definition
is inductive, whereas the second is narrowing-based.

inductLast [x] = x

inductLast (x:y:z) = inductLast (y:z)

narrowLast x | x =:= y++[e] = e where y,e free

39

4.2.3 Ranges

A special notation is available to define lists containing ranges of integers. The most com-
mon of this notation is “[e1 .. e2]” which denotes the list “[e1, e1 + 1, e1 + 2, · · · , e2]”. For
example:

Prelude> [2 .. 5]

Result: [2,3,4,5] ?

Prelude>

Similarly, the expression “[e ..]” denotes the infinite list of all the integers starting from e.
This list cannot be printed in its entirety, but it can be used in a program if only a finite
portion of the list is needed, because the evaluation strategy is lazy.

The elements in the lists defined by the above expressions are consecutive, i.e., the distance
between adjacent elements is one. The above expressions can be generalized to produce lists
where the distance between adjacent elements is a constant greater than one. This distance
is inferred from the first two elements of the expression. For example:

Prelude> [2, 6 .. 20]

Result: [2,6,10,14,18] ?

Prelude>

Likewise, “[2, 6 ..]” generates the infinite list “[2,6,10,14,. . .]”.
Ranges can be defined using ordinary functions. The prelude defines four functions whose

names start with enumFrom. These functions define in the ordinary syntax the notations for
ranges.

4.2.4 Comprehensions

Another useful notation involving lists goes under the name of list comprehension. A list
comprehension is a notation to construct a list from one or more other lists called generators.
It goes without saying that ranges are simple generators. For example, the infinite sequence
of square and triangular numbers are obtained as follows [Program]:

squares = [x * x | x <- [0 ..]]

triangles = [x * (x+1) ‘div‘ 2 | x <- [0 ..]]

A generator is an expression of the form var <- list. Generators can be nested and/or com-
bined with guards. A guard is a Boolean expression that filters the elements produced by the
generator. For example, if isPrime is a predicate telling whether an integer greater than 2 is a
prime number, the following comprehension is the sequence of the prime numbers [Program]:

primes = [x | x <- [2 ..], isPrime x]

In this example, the guard is the Boolean expression (isPrime x). The elements produced
by the generator are passed to the comprehension if and only if the guard holds.

Generators are considered to be nested from left to right. The following example shows
how to compute pairs where the second component is not greater than the first [Program]:

40

lexPairs = [(x,y) | x <- [0..3], y <- [x .. 3]]

This simple example shows that the second generator (y<-[x .. 3]) is nested within the first
one, since it references the generated elements.

Exercise 7 Compute the Fibonacci sequence using a list comprehension. Hint: compute a
list of pairs of numbers where each pair contains two consecutive Fibonacci numbers. [Answer]

4.2.5 Basic Functions

The PAKCS compiler/interpreter of Curry is distributed with the prelude, a collection of
primitive and fundamental types and functions, and with several libraries. The prelude and
some of these libraries contain useful list functions. In this section, we informally discuss some
of these functions. The currydoc documentation utility, which is distributed with PAKCS,
should be used for an exhaustive up-to-date consultation of the content of these libraries.

Name Description Example(s)

head First element of a list head [1,2] = 1; head [] fails
tail All the elements but the first tail [1,2] = [2]; tail [] fails
length Length length [1,2] = 2

null Tell whether it is nil null [1,2] = False

++ Concatenate two lists [1,2]++[3] = [1,2,3]

!! n-th element of a list [1,2]!!1 = [2]; [1,2]!!4 fails
reverse Reverse the order of the elements reverse [1,2] = [2,1]

concat Concatenate all the lists of a list concat [[1,2],[3]] = [1,2,3]

take List of the first n elements take 2 [1,2,3] = [1,2]

drop All elements but the first n drop 2 [1,2,3] = [3]

and Boolean conjunction and [True,False,True] = False

or Boolean disjunction or [True,False,True] = True

elem Whether a value is in a list elem 2 [1,3,5] = False

nub Remove duplicates nub [1,2,2] = [1,2]

delete Remove the first occurrence of a value delete 2 [2,1,2] = [1,2];
delete 2 [1] = [1]

Many more functions that operate on lists are defined in the libraries of the PAKCS distri-
bution (e.g., see the library List which contains the definition of nub and delete discussed
above). The above table is intended to give only a feeling of what is available.

4.2.6 Higher-order Functions

Lists are commonly used to represent collections of elements. Some computations of a list
can be expressed by repeatedly applying another, somewhat simpler, computation to all the
elements of the collection. This section discusses some frequently occurring situations of this
kind.

The simplest case is when a list, which we refer to as the result list, is obtained from
another list, which we refer to as the argument list, by applying the same function, say f, to

41

http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~pakcs

all the elements of the argument list. This is easily accomplished by defining a new function,
say flist since its analogy to f, as follows:

flist [] = []

flist (x:xs) = f x : flist xs

Although trivial, the definition of flist can be avoided altogether using the function map,
provided by the prelude. The function map is higher-order in that it takes as an argument
the function, in this example f, that is applied to all the arguments of the list. Thus, the
function flist defined above is the same as map f.

The following code, taken from the prelude, shows the type and the definition of map:

map :: (a->b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

It can be seen that the first argument of map is a function from any type a to any type
b. The second argument of map is a list whose elements must have, of course, type a.
The result is a list of type b. For example, suppose that isEven is a function telling
whether an integer is even. Then, the expression (map isEven [0,1,2,3]) evaluates to
[True,False,True,False].

A second frequently used higher-order function on lists is filter. As the name suggests,
filter is used to filter the elements of a list that satisfy some criterion expressed by a
predicate.

The following code, taken from the prelude, shows the type and the definition of filter:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs) = if p x then x : filter p xs else filter p xs

It can be seen that the first argument of filter is a function from any type a to Bool, i.e., a
predicate. The second argument of map is a list whose elements must have, of course, type a.
The result is again a list of type a. The elements of the result are the elements of the second
argument that satisfy the predicate. For example, as before, suppose that isEven is a func-
tion telling whether an integer is even. Then, the expression (filter isEven [0,1,2,3])

evaluates to [0,2].
The last higher-order function operating on lists that we describe in this section is used

to “combine together” all the elements of a list. For example, a function that adds all the
elements of a list of integers can be defined using a higher-order function and the ordinary
addition on integers. Several options should be considered, e.g., whether the elements of a list
are composed starting with the first or the last one, whether the list can be empty and thus
a default value must be supplied, etc. The prelude contains a family of functions, referred to
as folds for this purpose. The names of these functions starts with “fold”.

The following code, taken from the prelude, shows the type and the definition of foldr:

foldr :: (a->b->b) -> b -> [a] -> b

42

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

For example, functions that compute the sum, product and maximum of all the elements of
a list of integers are easily defined through foldr as follows [Program]:

sumList = foldr (+) 0

prodList = foldr (*) 1

maxList = \l -> foldr max (head l) (tail l)

The last function is more complicated than the previous two, because it is meaningful only for
non-empty lists. The function foldr1, defined in the prelude, would simplify our definition
of maxList.

4.2.7 findall

There is a predefined function, findall, that is similar to a list comprehension and generates
a list of values from an expression that generates a value. By contrast to comprehensions,
though, the generator of findall is a constraint, i.e., a function returning Success, and the
order in which the elements are generated is less deterministic. The function findall is often
used to find all the solutions of a search problem.

For example, consider the problem of computing all the subsets of a set. Let us represent
a set with a list. This representation requires some care both to avoid duplicate elements in
a list and to ensure that the order of the elements in a list cannot be observed. We ignore
these conditions since they are irrelevant to our example. The following non-deterministic
function returns a subset of a set [Program]:

subset [] = []

subset (x:xs) = x:subset xs

subset (_:xs) = subset xs

Now, using findall we can easily compute the set of all subsets of a set [Program]:

allSubsets set = findall (\x -> subset set =:= x)

The intuitive reading of the above fragment is “Find all x’s such that x is a subset of set.”
In the above example, the constraint may generate more than one value because the

function subset is non-deterministic. A second situation in which a constraint may generate
more than one value is when its evaluation involves narrowing steps. For example, the
prerequisites for the undergraduate Computer Science courses at Portland State is abstracted
by 16 rules as follows [Program]:

isPrereqOf 162 = 161

isPrereqOf 163 = 162

isPrereqOf 200 = 162

...

isPrereqOf 303 = 252

isPrereqOf 303 = 300

isPrereqOf 350 = 252

43

The meaning is that, e.g., 162 is a direct prerequisite of both 163 and 200 and that, e.g.,
both 252 and 300 are direct prerequisites of 303.

The function to compute all the direct prerequites of a course and the function to compute
all courses that a course gives access to (somewhat the inverse of the former) are shown below
[Program]:

allIsPrereqOf course = findall (\p -> isPrereqOf course =:= p)

allGivesAccessTo course = findall (\c -> isPrereqOf c =:= course)

The evaluation of findall does not instantiate the free variables, if any, in the constraint
argument unless they are local to the constraint itself, i.e., they are declared by a let block.
The reason is that this seems to be the most sensible semantics.

4.2.8 Narrowing

Narrowing is a convenient programming feature when dealing with lists. Lists are frequently
used to represent collections of elements. Sometimes the problem is to find in a list either
elements or sublists that satisfy certain relationships. The programmer can either code
functions to compute these elements or express the relationships using variables for these
elements and let narrowing compute the elements by instantiating the variables. Generally,
the latter leads to simpler and more declarative programs.

For example, consider a program that plays the game of poker. A hand is represented by
a list of 5 cards. Suppose that the problem is to find whether 4 of the 5 cards are all of the
same kind, i.e., the hand is a four-of-a-kind. A narrowing-based solution removes one card
from the hand so that the remaining 4 cards are all of the same rank. The following function
takes a hand. If the hand is a four-of-a-kind, the function returns the kind or rank of the
four cards, otherwise it fails [Program]:

fourConstraint hand | hand =:= x++y:z & map rank (x++z) =:= [r,r,r,r]

= r

where x,y,z,r free

The card removed from the hand is represented by y. This card is non-deterministically
selected by solving the constraint “hand =:= x++y:z”. The remaining cards are represented
by x and z. They are uniquely determined by the selection of y, and vice versa. Addition-
ally, the condition of the rule imposes that all the cards in x and z have the same rank,
represented by r. The rank, too, is non-deterministically selected by solving the constraint
“map rank (x++z) =:= [r,r,r,r]”. If the condition succeeds, there is obviously a unique
value for all these variables.

The advantage of the narrowing-based approach over more conventional approaches is
that no instructions need to be coded both to isolate the card that does not contribute to
the four-of-a-kind nor to find the kind of the four.

As we said, when a hand is not a four-of-a-kind the above function fails. In general, failures
are undesirable for normal conditions such as not having a four-of-a-kind hand. The function
findall described in Section 4.2.7 is used to construct a list of all the results produced by
fourConstraint when applied to a hand. Obviously, this list can contain either zero or one

44

value only. The following function prints whether a hand is a four-of-a-kind without ever
failing [Program]:

isFour hand = putStrLn (if sorry then "Sorry" else "Four "++(show rank))

where score = findall (\r -> fourConstraint hand =:= r)

sorry = score == []

rank = head score

The above example is typical of situations in which a collection contains elements that must
satisfy a certain conditions. Since lists are implicitly ordered, conditions involving the position
of elements in a collection can also be conveniently expressed using narrowing. We will see
an example of this kind in a program to solve the n-queens puzzle.

Exercise 8 Similar to the example just discussed, code a function that tells whether a hand
in a game of poker is a full house. Hint: Cards.curry defines suits, ranks, etc. [Answer].

4.3 Trees

...

45

Part III

Applications & Libraries

46

Chapter 5

Web Programming

5.1 Overview

Due to the ubiquity of the world wide web (WWW or “web” for short), many applications
offer web-based interfaces in order to support convenient access to them. This chapter de-
scribes how one can implement web-based interfaces in Curry. We will see that the functional
and logic programming features of Curry are quite useful in providing a high-level program-
ming interface for such applications so that Curry can also be used as a language for “web
scripting,” i.e., for writing web interfaces in a concise manner.

This chapter requires some basic knowledge about the structure of HTML, the “Hypertext
Markup Language” for describing the general form and layout of documents presented by
web browsers. Up-to-date information about HTML is available from the World Wide Web
Consortium (W3C).

The approach to web programming described in this chapter is based on the library “HTML”
contained in the PAKCS distribution. Details about the ideas and the implementation of
this library can also be found in [8].

5.2 Representing HTML Documents in Curry

HTML is a language for specifying the structure and layout of web documents. We also say
“HTML document” for a text written in the syntax of HTML. Basically, an HTML document
consists of the following elements:

• elementary text

• tags with other HTML elements as contents, like headers (h1, h2,. . .), lists (ul, ol,. . .),
etc.

• tags without contents, like line breaks (br), images (img), etc.

The plain syntax of HTML, which is interpreted by a web browser when displaying HTML
documents, requires tags be enclosed in pointed brackets (<· · ·>). The contents of a tag is
written between an opening and a closing tag where the closing tag has the same name as
the opening tag but is preceded by a slash. Tags can also contain attributes to attach specific

47

http://www.w3c.org
http://www.informatik.uni-kiel.de/~pakcs

information to tags. If present, attributes are written in the form “name=value” after the
opening tag’s name and before its right bracket.

For instance, “i” and “b” are tags to specify that their contents should be set using an
italic and bold font, respectively. Thus, the HTML text

This is the <i>italic</i> and the bold font.

would be displayed by a web browser as this:

This is the italic and the bold font.

Tags without contents have no closing tag. An example is the tag for including images in
web documents, where the attribute “src” specifies the file containing the picture and “alt”
specifies a text to be displayed as an alternative to the picture:

A program with a web interface must generate HTML documents that are displayed in the
client’s browser. In principle, we can do this in Curry by printing the text of the HTML
document directly, as in:

writeHTML = do

putStrLn "This is the "

putStrLn "<i>italic</i> and the "

putStrLn "bold font."

If the program becomes more complex and generates the HTML text by various functions,
there is the risk that the generated HTML text is syntactically not correct. For instance,
the tags with contents must be properly nested, i.e., the following text is not valid in HTML
(although browser can display it but may become confused by illegal HTML documents):

This is bold and also <i>italic</i>.

To avoid such problems in applications programs, one can introduce an abstraction layer
where HTML documents are modeled as terms of a specific datatype. Thus, a web application
program generates such abstract HTML documents instead of the concrete HTML text.
This has the advantage that ill-formed web documents correspond to ill-formed expressions
in Curry which would immediately be rejected by the compiler. The actual printing of
the concrete HTML text is done by a wrapper function that translates an abstract HTML
document into a string.

For representing abstract HTML documents in Curry, we define the following datatype
of HTML expressions:

data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

The constructor HtmlText corresponds to elementary text in an HTML document, whereas
the constructor HtmlStruct correspond to HTML elements with a tag and attributes. Thus,
the parameter of type “[(String,String)]” is the list of attributes, i.e., name/value pairs.

48

For instance, our first HTML document above is represented with this datatype as the
following list of HTML expressions:

[HtmlText "This is the ",

HtmlStruct "i" [] [HtmlText "italic"],

HtmlText " and the ",

HtmlStruct "b" [] [HtmlText "bold"],

HtmlText " font."]

Similarly, the image tag above is represented as follows:

HtmlStruct "img" [("src","picture.jpg"),("alt","Picture")] []

Obviously, we can specify any HTML document in this form but this becomes very tedious for
a programmer. To avoid this, we define several functions as useful abbreviations of common
HTML tags:

h1 hexps = HtmlStruct "h1" [] hexps -- header 1

h2 hexps = HtmlStruct "h2" [] hexps -- header 2
...

bold hexps = HtmlStruct "b" [] hexps -- bold font

italic hexps = HtmlStruct "i" [] hexps -- italic font

hrule = HtmlStruct "hr" [] [] -- horizontal rule

breakline = HtmlStruct "br" [] [] -- line break

image src alt = HtmlStruct "img" [("src",src),("alt",alt)] [] -- image

...

Characters that have a special meaning in HTML, like “<”, “>”, “&”, “"”, should be quoted
in elementary HTML texts to avoid ill-formed HTML documents. Thus, we define a function
“htxt” for writing strings as elementary HTML texts where the special characters are quoted
by the function “htmlQuote”:

htxt :: String -> HtmlExp

htxt s = HtmlText (htmlQuote s)

htmlQuote :: String -> String

htmlQuote [] = []

htmlQuote (c:cs) | c==’<’ = "<" ++ htmlQuote cs

| c==’>’ = ">" ++ htmlQuote cs

| c==’&’ = "&" ++ htmlQuote cs

| c==’"’ = """ ++ htmlQuote cs

| otherwise = c : htmlQuote cs

Now we can represent our first HTML document above as follows:

[htxt "This is the ", italic [htxt "italic"],

htxt " and the ", bold [htxt "bold"], htxt " font."]

All the definitions we have introduced so far are contained in the library “HTML” of the
PAKCS distribution. Thus, to define abstract HTML documents in a program, one has to

49

http://www.informatik.uni-kiel.de/~pakcs

write the import declaration

import HTML

in the header of the Curry program. The HTML library defines also a wrapper function
showHtmlExps to generate the concrete textual representation of an abstract HTML expres-
sion. For instance, the value of

showHtmlExps [h1 [htxt "Hello World"], italic [htxt "Hello"], htxt " world!"]

is the string

<h1>Hello World</h1>

<i>Hello</i> world!

In order to generate a complete HTML page with header information, the HTML library
contains the following definition of HTML pages:

data HtmlPage = HtmlPage String [PageParam] [HtmlExp]

The first argument is the title of the page and the third argument is the contents of the page.
The second argument is a list of optional parameters, like encoding scheme, style sheets etc.
Since they are seldom used in standard pages, the HTML library contains also the following
function to specify HTML pages without optional parameters:

page :: String -> [HtmlExp] -> HtmlForm

page title hexps = HtmlPage title [] hexps

Furthermore, the HTML library defines a wrapper function

showHtmlPage :: HtmlPage -> String

to generate the concrete textual representation of a complete HTML page with head and
body parts. For instance, the value of

showHtmlPage (page "Hello" [h1 [htxt "Hello World"],

italic [htxt "Hello"], htxt " world!"])

is the string

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Hello</title>

</head>

<body bgcolor="#ffffff">

<h1>Hello World</h1>

<i>Hello</i> world!

</body>

</html>

50

We can use these functions to write Curry programs that generate HTML documents. For
instance, consider the generation of an HTML document that contains a list of all multipli-
cations of digits, i.e., a line in this document should look as follows:

The product of 7 and 6 is 42

First, we define a list of all triples containing such multiplications by the use of list compre-
hensions (compare Section 4.2.4):

multiplications = [(x,y,x*y) | x <- [1..10], y <- [1..x]]

Each triple is translated into a list of HTML expressions specifying the layout of a line:

mult2html :: (Int,Int,Int) -> [HtmlExp]

mult2html (x,y,z) =

[htxt "The product of ", bold [htxt (show x)],

htxt " and ", bold [htxt (show y)],

htxt " is ", bold [htxt (show z)], breakline]

Now can use these definitions to define the complete HTML document (the prelude func-
tion concatMap applies a function that maps elements to lists to each element of a list and
concatenates the result into a single list) [Program]:

htmlMultiplications =

[h1 [htxt "Multiplication of Digits"]] ++ concatMap mult2html multiplications

For instance, we can use the latter function to store the HTML page in a file named
“multtable.html” by evaluating the expression:

writeFile "multtable.html"

(showHtmlPage (page "Multiplication" htmlMultiplications))

Exercise 9 Define a function boldItalic to translate text files into HTML documents. The
function has two arguments: the name of the input text file and the name of the file where
the HTML page should be stored. The HTML document should have the same line structure
as the input but the lines should be formatted in bold and italic, i.e, first line in bold, second
in italic, third in bold, fourth in italic, etc. Hint: use the prelude function lines to split a
string into a list of lines. [Answer]

5.3 Server-Side Web Scripts

We have seen so far how to write programs that create HTML documents. Such programs
could be useful to transform existing data into a static set of HTML pages. However, this
is not sufficient to create dynamic web pages, i.e., web pages whose contents is computed at
the time they are requested by a client. The creation of dynamic web pages is supported by
most web servers by so-called CGI (Common Gateway Interface) programs. If a web server is
asked for a document with the suffix “.cgi” instead of “.html” (the exact behavior is defined

51

in the configuration of the web server; see also Section 5.4 below), then the server does not
return the contents of the corresponding file but executes the file (the “CGI program”) and
returns the standard output produced by this program. Thus, a CGI program must write an
HTML document on its standard output. The CGI program can also take user input in an
HTML form into account; this is described in Section 5.5.

To support the creation of dynamic HTML documents, the HTML library has a definition
for HTML forms as follows:

data HtmlForm = HtmlForm String [FormParam] [HtmlExp]

The first argument is the title of the form (as in HTML documents) and the third argument
is the contents of the form which can also contain elements for user input, as we will see
later (see Section 5.5). The second argument is a list of optional parameters to extend the
functionality of forms, like cookies, style sheets etc (see Section 5.8). Since they are seldom
used in standard forms, the HTML library contains also the following function to specify forms
without optional parameters:

form :: String -> [HtmlExp] -> HtmlForm

form title hexps = HtmlForm title [] hexps

Usually, the contents of dynamic HTML documents depend on the environment of the web
server, e.g., information stored in the file system or databases. Thus, a dynamic web page
is allowed to perform some I/O operations in order to compute the requested HTML doc-
ument. As a consequence, a function to compute a dynamic web page must have the type
“IO HtmlForm”. For instance, if we want to write a CGI program that computes the above
multiplications of digits on demand, we define the following function multForm (the right-
associate operator “$” is defined with a low precedence in the prelude and denotes function
application; it is often used to avoid brackets, e.g., the expression “f $ g $ 3+4” is equivalent
to “f (g (3+4))”) [Program]:

multForm :: IO HtmlForm

multForm = return $ form "Multiplication of Digits" htmlMultiplications

To see an application of accessing the server environment, we define a form that shows the
current date and time of the server (the IO action “getLocalTime”, defined in the standard
library Time, returns the local date and time in some internal representation which can be
converted into a readable string by the function “calendarTimeToString”) [Program]:

timeForm :: IO HtmlForm

timeForm = do

time <- getLocalTime

return $ form "Current Server Time"

[h1 [htxt $ "Current date and time: " ++ calendarTimeToString time]]

The installation of such web programs on a web server is described in the following section.

52

5.4 Installing Web Programs

Although the installation of CGI programs highly depends on the web server, in this section
we will provide some hints so that you can execute the programs described in this chapter
on your web server. Clearly, your web server must be configured to enable the execution of
CGI programs. Fortunately, most web servers support CGI programs, though they will likely
require special configuring by the system administrator. A web server can be configured
to interpret any file ending with “.cgi” and execute it when requested, or it can be also
configured to execute only CGI programs stored in a particular directory, e.g., “cgi-bin”.
Ask your system administrator for the instructions on CGI execution that are specific to your
system.

If you have installed PAKCS on your system (i.e., the web server), the installation of a
CGI program is quite simple. Assume you have written a Curry program “myscript.curry”
containing a definition of a form function “main” of type “IO HtmlForm” (see previous sec-
tion). Then you can compile it into an executable CGI program by the shell command

makecurrycgi myscript

(makecurrycgi is a shell script stored in the “bin” directory of PAKCS). This creates (after
successful compilation) an executable program “myscript.cgi”. If your main form function
has a name different from the default main, you can provide it with option “-m”. For instance,
the command

makecurrycgi -m myForm myscript

creates a CGI program with form function “myForm”. In general, the parameter following
“-m” can be any Curry expression of type “IO HtmlForm”.1

Similarly, the option “-o” can be used to install the CGI program under a different name.
For instance, the command

makecurrycgi -o ~/cgi-bin/myscript.cgi myscript

installs the executable CGI program in the file “~/cgi-bin/myscript.cgi”. Depending on
the configuration of your web server, you can execute the CGI program by requesting the
document with a URL like “http://your.server.name/cgi-bin/myscript.cgi” in your
web browser.

5.5 Forms with User Input

In many applications, dynamic web pages should not only depend on the environment of the
web server but also on the input provided by the client (i.e., the user contacting the server via
its browser). In principle, this is possible since HTML includes also elements for user input
(text fields, buttons, etc) which is sent to the web server when requesting a document. How
can we access the user input in to a CGI program running on the server? The whole purpose

1Since this expression is executed as the main program, all symbols of this expression must be exported

from the Curry program.

53

http://www.informatik.uni-kiel.de/~pakcs
http://www.informatik.uni-kiel.de/~pakcs

of the Common Gateway Interface is to create a way to send information to the server and
from the browswer, hence the name Common Gateway. Fortunately, it is not necessary to
know all the details of CGI since the HTML library defines an abstraction layer to provide a
comfortable access to user inputs. This abstraction layer exploits the functional and logic
features of Curry and will be explained in this section.

The HTML library contains definitions of various input elements for HTML forms. For
instance, the element “textfield” defines an HTML input element where the user can type
a line of text:

textfield :: CgiRef -> String -> HtmlExp

The second argument is the initial contents and the first argument is the reference to this
element (CGI reference). The reference is used in the CGI program to access the user’s actual
input when computing an answer to this form. Now, how is the type CgiRef defined? The
surprising answer is: the type is abstract (i.e., its constructors are not exported by the HTML

library) since it is not necessary to know any constructor! It is sufficient to use a logic variable
when using a text field in an HTML form. For instance, we can define a form containing a
string and an input field as follows:

rdForm = return $ form "Question"

[htxt "Enter a string: ", textfield tref ""]

where tref free

A CgiRef variable serves as a reference to the corresponding input field to access the user’s
input. Raw CGI requires concrete strings as references (attribute “name” of “input” tags)
which is error-prone (since typos in these strings lead to run-time errors). However, the con-
crete strings are not important, and so the logic variables are sufficient. It is only important
to use them when computing the answer to the client. For this purpose, the HTML library
defines a CGI environment as a mapping from CGI references to strings:

type CgiEnv = CgiRef -> String

A CGI environment is used to collect the input of the user when computing the response.
The computation of the response is done by an event handler that is attached to each button
for submitting a form to the web server. For this purpose, the HTML library defines the type
of event handlers as

type HtmlHandler = CgiEnv -> IO HtmlForm

i.e., an event handler is called with the current CGI environment and yields an I/O action
that returns a form to be sent back to the client. Thus, the HTML library contains the following
type definition for a button to submit forms:

button :: String -> HtmlHandler -> HtmlExp

The first argument is the text shown on the button and the second argument is the event
handler called when the user clicks this submit button.

The actual event handlers can simply be defined as local functions attached to forms so

54

Figure 5.1: A simple string reverse/duplication form

that the CgiRef variables are in scope and need not be passed. To see a simple but complete
example, we show the specification of a form where the user can enter a string and choose
between two actions (reverse or duplicate the string) by two submit buttons (see Figure 5.1)
[Program]:

rdForm :: IO HtmlForm

rdForm = return $ form "Question"

[htxt "Enter a string: ", textfield tref "", hrule,

button "Reverse string" revhandler,

button "Duplicate string" duphandler]

where

tref free

revhandler env = return $ form "Answer"

[h1 [htxt $ "Reversed input: " ++ reverse (env tref)]]

duphandler env = return $ form "Answer"

[h1 [htxt $ "Duplicated input: " ++ env tref ++ env tref]]

Note the simplicity of retrieving values entered into the form: since the event handlers are
called with the appropriate environment containing these values (parameter “env”), they can
easily access these values by applying the environment to the appropriate CGI reference, like
“(env tref)”.

5.6 Further Examples for Web Server Programming

Now we have seen all elements for writing CGI programs in Curry. In this section we will
show by various examples how to use this programming interface. We will see that this pro-

55

gramming model (i.e., logic variables for CGI references, associated event handlers depending
on CGI environments) is sufficient to solve typical problems in web server programming in
an appropriate way, like handling sequences of interactions or holding intermediate states
between interactions.

5.6.1 Interaction Sequences

In the previous example, the interaction between the client and the web server is quite simple:
the client sends a request by filling a form which is answered by the server with an HTML
document containing the requested information. In realistic applications, it is often the case
that the interaction is not finished by sending back the requested information but the client
requests further (e.g., more detailed) information based on the received results. Thus, one
has to deal with sequences of longer interactions between the client and the server.

Our programming model provides a direct support for interaction sequences. Since the
answer provided by the event handler is an HTML form rather than an HTML expression, this
answer can also contain further input elements and associated event handlers. By nesting
event handlers, it is straightforward to implement bounded sequences of interactions. An
example for this technique is shown in the next section.

A more interesting question is how to implement other control abstractions like arbitrary
loops. For this purpose, we show the implementation of a simple number guessing game: the
client has to guess a number known by the server (here: 42), and for each number entered by
the client the server responds whether this number is right, smaller or larger than the number
to be guessed. If the guess is not right, the answer form contains an input field where the
client can enter the next guess. Moreover, the number of guesses should also be counted and
shown at the end.

As the typical approach in declarative languages, we implement looping constructs by
recursion. Thus, the event handler computing the answer for the client contains a recursive
call to the initial form which implements the interaction loop. The entire implementation of
this number guessing game is as follows [Program]:

guessForm :: IO HtmlForm

guessForm = return $ form "Number Guessing" (guessInput 1)

guessInput :: Int -> [HtmlExp]

guessInput n =

[htxt "Guess a natural number: ", textfield nref "",

button "Check" (guessHandler n nref)] where nref free

guessHandler :: Int -> CgiRef -> (CgiRef -> String) -> IO HtmlForm

guessHandler n nref env =

let nr = readInt (env nref) in

return $ form "Answer"

(if nr==42

then [h1 [htxt $ "Right! You needed "++show n++" guesses!"]]

else [h1 [htxt $ if nr<42 then "Too small!"

else "Too large!"],

56

hrule] ++ guessInput (n+1))

“guessInput n” is an HTML expression corresponding to the initial form which contains an
input field for entering the client’s guess. “guessHandler” is the associated event handler
where the number of guesses and the CGI reference to the input field are the first and the
second argument of the handler, respectively. It checks the number entered by the client
(readInt is defined in the standard library Read and converts a string into a number) and
returns the different answers depending on the client’s guess. If the guess is not right, the
guessInput is appended to the answer which implements the recursive call.

5.6.2 Handling Intermediate States

A nasty problem in many CGI applications is the handling of intermediate states due to the
fact that HTTP is a stateless protocol. For instance, in electronic commerce applications, the
clients have shopping baskets where the already selected items are stored, and the contents of
these baskets must be kept between the interactions. Storing this information on the server
side has several drawbacks. For instance, the client wants to identify himself only after he
really orders the items, i.e., during the selection phase the server cannot uniquely associate
the selections to a client. Furthermore, the client might not proceed with his selections so that
the server does not know whether the basket information can be deleted (which is necessary
at some point to avoid a memory overflow). Therefore, it is often better to store such client-
dependent information on the client side. For this purpose, one can have HTML forms with
input elements of type “hidden” which have no visual representation but can be used to pass
client-dependent information between interactions. “Raw” HTML/CGI programmers must
explicitly handle these fields which is awkward and a source of many programming problems.

Our programming model offers a much simpler solution to this problem. By nesting event
handlers (which is allowed in languages with lexical scoping like Curry), one can directly refer
to input elements in previous forms. As a concrete example, we consider a sequence of HTML
forms where the client enters his first name in the first form and his last name in the second
form. The complete name is returned in the third form. This example can be implemented
as follows [Program]:

nameForm = return $ form "First Name Form"

[htxt "Enter your first name: ", textfield firstref "",

button "Continue" fhandler]

where

firstref free

fhandler _ = return $ form "Last Name Form"

[htxt "Enter your last name: ", textfield lastref "",

button "Continue" lhandler]

where

lastref free

lhandler env = return $ form "Answer"

[htxt $ "Hi, " ++ env firstref ++ " " ++ env lastref]

57

Due to lexical scoping, the variable “firstref” is visible in the event handler “lhandler”
without explicitly passing it as an argument.

5.6.3 Storing Information on the Server

We have seen how we can retrieve information from the server by CGI programs. This is
possible by performing I/O actions on the server before computing the HTML form as the
response to the client. In many applications, clients also want to store or update information
on the server, e.g., by putting orders for books, flight tickets, etc. In this section we will see a
small example that demonstrates how this can be done using the already known techniques.

Consider the implementation of a web form that counts and shows the number of visitors.
Thus, each visitor updates the current visitor counter on the server. This can be easily
implemented by storing the current visitor number in a file. For this purpose, we define an
I/O action “incVisitNumber” that reads the number stored in this file, increments it, stores
the incremented number in the file, and returns the incremented number (doesFileExist is
an action defined in the library Directory that checks the existence of a file):

incVisitNumber :: IO Int

incVisitNumber = do

existnumfile <- doesFileExist visitFile

if existnumfile

then do vfcont <- readFile visitFile

writeVisitFile (readInt vfcont +1)

else writeVisitFile 1

writeVisitFile n =

do writeFile (visitFile++".new") (show n)

system ("mv "++visitFile++".new "++visitFile)

return n

visitFile = "numvisit" -- file to store the current visitor number

Note the definition of writeVisitFile: it does not directly write the incremented number into
the visitFile but it writes it into another file that is subsequently moved to the visitFile.
This is necessary to avoid the overlapping of reading and writing actions on the same file due
to the lazy evaluation of readFile.

Now the visitor form is simply obtained by calling incVisitNumber before generating the
form [Program]:

visitorForm = do

visitnum <- incVisitNumber

return $ form "Access Count Form"

[h1 [htxt $ "You are the " ++ show visitnum ++ ". visitor!"]]

58

5.6.4 Ensuring Exclusive Access

Since CGI programs are executed whenever a client accesses them, one has not much control
on the order of their execution. In particular, the same CGI program can be executed in
parallel if two clients accessing them simultaneously. This can cause a problem if both update
the same information. For instance, an access to the visitor form above reads the current
visitor number from the global visitFile and write the incremented number back. If the
script is simultaneously executed by two clients, it may be the case that one update is lost
(if both read the same number and write the same incremented number).

Multiple simultaneous accesses or updates can be avoided by ensuring the exclusive access
to a resource on the web server between different processes running on the server. Although
Curry has no direct features to support this,2 it can be implemented by the use of the under-
lying operating system. For instance, Unix/Linux systems offer the command “lockfile”
to ensure an exclusive access to a resource of the system. lockfile tries to create a given
file (the argument to lockfile). If the file cannot be created (since it has been already
created by another process), the lockfile command waits and retries after some time. Us-
ing lockfile, we can implement a generic function “exclusiveIO” that takes a name for a
global lock file and exclusively executes an I/O action (the second parameter), i.e., it ensures
that two processes using the same lock file do not execute the action at the same time:

exclusiveIO :: String -> IO a -> IO a

exclusiveIO lockfile action =

do system ("lockfile "++lockfile)

actionResult <- action

system ("rm -f "++lockfile)

return actionResult

Now it is straightforward to extend our visitor form in order to ensure the exclusive update of
the visitor counter. This is done by replacing the expression incVisitNumber in the definition
of visitorForm by the following expression [Complete program]:

exclusiveIO (visitFile++".lock") incVisitNumber

5.6.5 Example: A Web Questionnaire

This section shows an example for web programming where the formerly discussed techniques
are applied. Consider the implementation of a web-based questionnaire which allows the
clients to vote on a particular topic. Figure 5.2 shows an example of such a questionnaire.
The votes are stored on the web server. The current votings are shown after a client submits
a vote (see Figure 5.3).

In order to provide an implementation that is easy to maintain, we define the main
question and the choices for the answers as constants in our program so that they can be
easily adapted to other questionnaires:

2It could be implemented in Curry by the use of ports but this will be discussed later.

59

Figure 5.2: A web questionnaire

question = "Who is your favorite actress?"

choices = ["Doris Day","Jodie Foster","Marilyn Monroe",

"Julia Roberts","Sharon Stone","Meryl Streep"]

The current votes are stored in a file on the web server. We define the name of this file as a
constant in our program:

voteFile = "votes.data"

For the sake of simplicity, this file is a simple text file. If there are n choices for voting, the
file has n lines where each line contains the textual representation of the number of votes for
the corresponding choice. Thus, the following function defines an action that reads the vote
file and returns the list of numbers in this file (the prelude function lines breaks a string
into a list of lines where lines are separated by newline characters; readNat is defined in the
standard library Read and interprets a string as a natural number):

readVoteFile :: IO [Int]

readVoteFile = do

vfcont <- readFile voteFile

return (map readNat (lines vfcont))

60

Figure 5.3: Answer to the web questionnaire

Similarly, writeVoteFile is an action that write a list of numbers into the vote file. Similarly
to the definition of writeVisitFile in Section 5.6.3, the numbers are written into a new file
that is moved to the vote file in order to avoid an overlapping between reading and writing
the same file.

writeVoteFile :: [Int] -> IO ()

writeVoteFile nums = do

writeFile (voteFile++".new") (concatMap (\n->show n++"\n") nums)

system ("mv "++voteFile++".new "++voteFile)

done

Using writeVoteFile, we define an action initVoteFile that initializes the vote file with n

zeros if it does not exist:

initVoteFile :: Int -> IO ()

initVoteFile n = do

existnumfile <- doesFileExist voteFile

if existnumfile then done

else writeVoteFile (take n (repeat 0))

When a client submits a vote, we have to increment to corresponding number in the vote file.
This can be easily done by a sequence of actions that initialize the vote file (if necessary),

61

read the current votes and write the votes that are incremented by the function incNth:

incNumberInFile :: Int -> IO ()

incNumberInFile n = do

initVoteFile (length choices)

nums <- readVoteFile

writeVoteFile (incNth nums n)

incNth :: [Int] -> Int -> [Int]

incNth [] _ = []

incNth (x:xs) n = if n==0 then (x+1):xs else x:incNth xs (n-1)

Now we have all auxiliary definitions that are necessary to define the web scripts. First,
we show the definition of the HTML form “evalForm” that shows the current votes (which
produces the result shown in Figure 5.3). Note that we ensure the exclusive access to the vote
file by the use of the function “exclusiveIO” defined in Section 5.6.4 (the prelude function
“zip” joins two lists into one list of pairs of corresponding elements):

evalForm :: IO HtmlForm

evalForm = do

votes <- exclusiveIO (voteFile++".lock") readVoteFile

return $ form "Evaluation"

[h1 [htxt "Current votes:"],

table (map (\(s,v)->[[htxt s],[htxt $ show v]])

(zip choices votes))]

Now we can define our main form that allows the user to submit a vote (see Figure 5.2).
It uses radio buttons as input elements. Radio buttons are lists of buttons where exactly
one button can be turned on. Thus, all buttons have the same CGI reference but different
values. When a form is submitted, the CGI environment maps the CGI reference to the value
of the selected radio button. A complete radio button suite consists always of a main button
(radio_main) which is initially on and some further buttons with the same CGI reference as
the main button (radio_others) that are initially off. In our example, we associate to each
button the index of the corresponding choice as a value. The event handler questHandler

increments he appropriate vote number and returns the current votes with the form evalForm

[Complete program]:

questForm = return $ form "Vote Form"

([h1 [htxt question],

radio_main vref "0", htxt (’ ’:head choices), breakline] ++

concatMap (\(i,s)->[radio_other vref (show i), htxt (’ ’:s), breakline])

(zip [1..] (tail choices)) ++

[hrule, button "submit" questHandler])

where

vref free

questHandler env = do

exclusiveIO (voteFile++".lock") (incNumberInFile (readNat (env vref)))

evalForm

62

5.7 Finding Bugs

Since debugging of CGI programs can be quite tedious, here are some hints on how to debug
CGI programs.

If the execution of the CGI program produces some run-time error (e.g., access to a non-
existing files), the error messages are shown in the error log file of the web browser (ask your
system administrator for the actual location of this file). Each execution of a Curry CGI
program is also logged in this file. If you want to suppress the writing in the error log, you
can generate the CGI program with “makecurrycgi” with the option “-noerror”.

If the execution of the CGI program does not produce a run-time error but simply fails
(e.g., because of an incompletely defined function are a unification failure), you will probably
see the message “No more solutions” in the web browser instead of the expected HTML
document. For the purpose of debugging, it is often useful to see the subexpressions where
a reduction was not possible but failed. In this case, you can generate the CGI program by
“makecurrycgi” with the option “-debug”. This has the effect that some debugging code
is inserted in the CGI program so that you can see the trace of all failed subexpressions in
the browser (not formatted with HTML so that you should better view the source with your
browser). Note that the debug option produces less efficient CGI programs so that it is better
to use this option only when necessary.

The use of logic variables as references to input elements in HTML forms ensures that
typos in the name of references can be detected by the compiler (e.g., resulting in an “unde-
clared identifier” error message), in contrast to traditional approaches to CGI programming
using plain strings as references. However, if we use the same logic variable for two different
input elements, this is not detected by the compiler (which is not worse than traditional
approaches where this is also not detected) but results in a run-time error that is not easy
to understand due to the implementation of the HTML library in Curry. If the web script
fails, i.e., the execution produces the message “No more solutions”, compile it again with
the option “-debug” as described above. If the new execution shows a failure of an expres-
sion like “’1’=:=’2’” resulting in the subsequent failure of an equational constraint like
("FIELD_1" =:= . . .), then you have probably used the same logic variable as references to
two different input elements. Thus, you should check your source program for these possible
errors.

5.8 Advanced Web Programming

This section discusses some further features which are useful for writing web applications in
Curry. Cookies are useful to store information about the client between different web scripts.
URL parameters can be exploited to write generic web scripts. Style sheets can be used to
modify and add new presentation styles for web documents.

63

5.8.1 Cookies

Cookies are small pieces of information (represented by strings) that are stored on the client’s
machine when a client communicates to a web server via his browser. The web server can
sent cookies to the client together with a requested web document. If the client wants to
retrieve the same or another document from the web server, the client’s browser sends the
stored cookies together with the request for a document to the browser. Thus, cookies can
be used to identify the client during a longer interaction with the web server (also across
various web scripts stored on the same web browser). Cookies are another approach to
handle intermediate state in web applications. The technique presented in Section 5.6.2 is
only useful inside the same web script whereas cookies can be used as a link between different
web scripts. However, cookies need special support on the browser’s side and the client must
enable cookies in his web browser. Fortunately, most web browsers support cookies since
they are used in many web sites.

Basically, a cookie has a name and a value. Both parameters are of type string. Cookies
can also have additional parameters to control their lifetime, validity for different web servers
or regions on a web server etc (see definition of datatype “CookieParam” in the HTML library)
which we will not describe here. As the default, a cookie is a valid during the client’s browser
session for all documents in the same directory or a subdirectory in which the cookie was set.

The HTML library provides two functions to set and retrieve cookies. As described above,
a cookie is set by sending it with some web document. For doing so, there is the function

cookieForm :: String -> [(String,String)] -> [HtmlExp] -> HtmlForm

which behaves similarly to the function “form” but takes an additional parameter: a list of
cookies, i.e., name/value pairs. These cookies are submitted with the form to the client’s
browser. To retrieve cookies (that are previously sent with a “cookieForm”), there is an I/O
action

getCookies :: IO [(String,String)]

that returns the list of all cookies (i.e., name/value pairs) sent from the browser for the
current CGI script.

As a simple example, we want to use cookies to write a web application where a user
must identify himself and this identification is used in another independent script. The
identification is done by setting a cookie of the form ("LOGINNAME",<name>) where <name>

is the user’s name. We implement a “login form” that sets this cookie as follows [Program]:

loginForm = return $ form "Login"

[htxt "Enter your name: ", textfield tref "", hrule,

button "Login" handler

]

where

tref free

handler env =

return $ cookieForm "Logged In" [("LOGINNAME",env tref)]

64

[h2 [htxt $ env tref ++ ": thank you for visiting us"]]

The first form asks the user for his name. The cookie is set together with the acknowledgment
form (function “handler”).

Now we can write another web script that uses this cookie. This script shows the user’s
name or the string "Not yet logged in" if the user has not used the login form to set
the cookie. Using the function getCookies, the implementation is quite simple (the function
lookup, defined in the prelude, searches for a name in a name/value list; it returns “Nothing”
of the name was not found and “Just v” if the first occurrence of the name in the list has
the associated value v; the prelude function maybe processes these two cases) [Program]:

getNameForm =

do cookies <- getCookies

return $ form "Hello" $

maybe [h1 [htxt "Not yet logged in"]]

(\n->[h1 [htxt $ "Hello, " ++ n]])

(lookup "LOGINNAME" cookies)

As mentioned above, cookies need special support on the client’s side, i.e., the web browser of
the client must support cookies. If cookies are essential for an application, one should check
whether the client allows the setting of cookies. This can be done by trying to set a cookie
and by checking whether this was successful. For instance, one can modify the above login
script as folllows. The first form immediately sets a cookie with name “SETCOOKIE”. Then
the handler checks whether this cookie has been sent by the client’s browser. If this cookie
is not received, it returns a form with the message “Sorry, can’t set cookies.” instead of the
acknowledgment form which sets the cookie “LOGINNAME” [Program]:

loginForm = return $ cookieForm "Login" [("SETCOOKIE","")]

[htxt "Enter your name: ", textfield tref "", hrule,

button "Login" handler

]

where

tref free

handler env = do

cookies <- getCookies

return $

if lookup "SETCOOKIE" cookies == Nothing

then form "No cookies" [h2 [htxt "Sorry, can’t set cookies."]]

else cookieForm "Logged In" [("LOGINNAME",env tref)]

[h2 [htxt $ env tref ++ ": thank you for visiting us"]]

5.8.2 URL Parameters

In some situations it is preferable to have generic web scripts that can be applied in vari-
ous situations described by parameters. For instance, if we want to write a web application

65

that allows the navigation through a hierarchical structure, one does not want to write a
different script for each different level of the structure but it is preferable to write a sin-
gle script that can be applied to different points in the structure. This is possible by at-
taching a parameter (a string) to the URL of a script. For instance, a URL can have the
form “http://myhost/script.cgi?parameter” where “http://myhost/script.cgi” is the
URL of the web script and “parameter” is an optional parameter that is passed to the script.
A URL parameter can be retrieved inside a script by the I/O action

getUrlParameter :: IO String

which returns the part of the URL following the character “?”. Note that an URL parameter
should be “URL encoded” to avoid the appearance of characters with a special meaning.
The HTML library provides the functions “urlencoded2string” and “string2urlencoded”
to decode and encode such parameters, respectively.

As a simple example, we want to write a web script to navigate through a directory
structure. The current directory is the URL parameter for this script. The script extracts this
parameter by the use of getUrlParameter and shows all entries as a HTML list [Program]:

showDirForm = do

param <- getUrlParameter

let dir = if param=="" then "." else urlencoded2string param

entries <- getDirectoryContents dir

hexps <- mapIO (entry2html dir) entries

return $ form "Browse Directory"

[h1 [htxt $ "Directory: " ++ dir], ulist hexps]

The I/O action “getDirectoryContents” is defined in the system library Directory and
returns the list of all entries in a directory. The function “entry2html” checks for an entry
whether it is a directory. If this is the case, it returns a link to the same web script but
with an extended parameter, otherwise it simply returns the entry name as an HTML text
(“doesDirectoryExist” is defined in the library Directory and returns True if the argument
is the name of a directory):

entry2html :: String -> String -> IO [HtmlExp]

entry2html dir e = do

direx <- doesDirectoryExist (dir++"/"++e)

if direx

then return [href ("browsedir.cgi?" ++ string2urlencoded (dir++"/"++e))

[htxt e]]

else return [htxt e]

Finally, the prelude function “mapIO” applies a mapping from elements into I/O actions to
all elements of a list and collect all results in a list:

mapIO :: (a -> IO b) -> [a] -> IO [b]

mapIO _ [] = return []

mapIO f (x:xs) = do

y <- f x

ys <- mapIO f xs

66

return (y:ys)

5.8.3 Style Sheets

[To be completed.]

67

Chapter 6

Further Libraries for Application

Programming

• Databases [9]

• Constraints

• GUI [7]

• XML

• Distributed Programming, ports [6]

• Metaprogramming

68

Bibliography

[1] S. Antoy. Definitional trees. In Proc. of the 4th Intl. Conf. on Algebraic and Logic
Programming, pages 143–157. Springer LNCS 632, 1992.

[2] S. Antoy. Optimal non-deterministic functional logic computations. In 6th Int’l Conf. on
Algebraic and Logic Programming (ALP’97), volume 1298, pages 16–30. Springer LNCS,
1997.

[3] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the
ACM, 47(4):776–822, 2000.

[4] M. Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994.

[5] M. Hanus. Teaching functional and logic programming with a single computation model.
In Proc. Ninth International Symposium on Programming Languages, Implementations,
Logics, and Programs (PLILP’97), pages 335–350. Springer LNCS 1292, 1997.

[6] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc.
of the International Conference on Principles and Practice of Declarative Programming
(PPDP’99), pages 376–395. Springer LNCS 1702, 1999.

[7] M. Hanus. A functional logic programming approach to graphical user interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00), pages
47–62. Springer LNCS 1753, 2000.

[8] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’01), pages
76–92. Springer LNCS 1990, 2001.

[9] M. Hanus. Dynamic predicates in functional logic programs. Journal of Functional and
Logic Programming, 2004(5), 2004.

[10] M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International
Conference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670,
2007.

[11] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http:

//www.informatik.uni-kiel.de/~pakcs/, 2007.

69

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/

[12] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available
at http://www.informatik.uni-kiel.de/~curry, 2006.

[13] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

[14] P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

70

http://www.informatik.uni-kiel.de/~curry

Index

(), 14, 15
++, 21
:, 37
=:=, 15
==, 15
>>, 32
>>=, 33
[u,v..], 40
[u,v..w], 40
[u..], 40
[u..v], 40
$, 52
&, 15
&>, 15
&&, 15
||, 15
_, 8

anonymous variable, 8
associativity

values, 13
atom, 13
attribute (HTML tag), 47

binary tree, 19
bold, 49
Bool, 14
Boolean conjunction, 15
Boolean disjunction, 15
Boolean equality, 15, 29
breakline, 49
button

radio, 62

CGI, 51
environment, 54
event handler, 54
reference, 54

Char, 14
comprehension

generator, 40
guard, 40

concatMap, 51
conditional expression, 6, 14
conjunction

Boolean, 15
parallel, 15

Cons, 37
constrained equality, 15, 29
constrained expression, 15
constraint, 9, 15, 17

equational, 9
cookie, 64
cookieForm, 64
currydoc, 41

data constructor, 19
data declaration, 18

data constructor, 19
type constructor, 18
type variable, 19

data structure, 12
infinite, 25

defining equation, 5
disjunction

Boolean, 15
do, 33
do notation, 33
documentation, 41
doesDirectoryExist, 66
doesFileExist, 58
done, 33

ensureNotFree, 30
equality

71

Boolean, 15
constrained, 15

equation
defining, 5

equational constraint, 9
evaluation, 16, 23

completeness, 24
lazy, 16, 24
short circuit, 16
strategy, 24

event handler, 54
expression

conditional, 6, 14
constrained, 15
constraint, 17
definition, 13
ground, 30
HTML, 48

extra variable, 29

filter, 42
findall, 43
flexible, 30
floundering, 29
folding functions, 42
foldr, 42
form

HTML, 52
free variable, 8
function, 12

anonymous, 16, 23
application, 13
argument, 16
argument binding, 16
flexible, 30
higher order, 22
identifier, 16
nested, 26
non-deterministic, 10, 17
rigid, 30
set-valued, 10

functional logic languages, 28

getChar, 32

getClockTime, 52
getCookies, 64
getDirectoryContents, 66
getLine, 34
getUrlParameter, 66
ground expression, 30

h1, 49
higher-order

on lists, 41
hrule, 49
HTML, 47

expression, 48
form, 52

HtmlExp, 48
HtmlForm, 52
HtmlPage, 50
htmlQuote, 49
HtmlStruct, 48
HtmlText, 48
htxt, 49

if-then-else, 14
image, 49
infinite structures, 40
infix, 13
infix operator, 6

associativity, 13
character set, 13
declaration, 13
precedence, 13

infixl, 13
infixr, 13
Int, 14
IO, 32
italic, 49

juxtaposition, 13

layout, 28
layout rule, 7
laziness, 24
let, 27
let clause, 27
library

72

HTML, 47, 49
lines, 51, 60
List, 14
list, 14, 37

comprehension, 40
cons, 20
definition, 20, 37
enumeration, 20, 38
head, 20
higher-order functions, 41
nil, 20
notation, 20, 37
ranges, 40
tail, 20

logic variable, 28
lookup, 65

makecurrycgi, 53, 63
map, 42
mapIO, 66
maybe, 65
monadic I/O, 32

narrowing, 29
Nil, 37
non-deterministic function, 10

off-side rule, 7, 28
operator, 6

infix, 6
otherwise, 17
overloading, 21, 31

page, 50
PAKCS, 4
pakcs, 4
parallel conjunction, 15
parameter

URL, 66
pattern, 7
pattern matching, 17
precedence

values, 13
prefix, 13
Prelude, 4, 13

program, 5
putChar, 32
putStrLn, 33

readFile, 34
readInt, 57
readNat, 60
residuation, 29
return, 33
reverse, 21
rewrite rule, 16, 17

left-hand side, 16
right-hand side, 16
structure, 17

rigid, 30
rule, 5

conditional, 17

scope, 26
local, 26
shadowing, 27

set-valued function, 10
shadowing, 27
show, 34
showHtmlExps, 50
showHtmlPage, 50
static scoping, 25
strategy, 24
String, 14, 21
Success, 30
Success, 14
success, 10, 15

tags (HTML), 47
time, 52
toDateString, 52
toUpper, 34
tree, 37
tuple, 15, 21
type, 14, 18

builtin, 14
polymorphic, 19
synonym, 20

type, 20
type constructor, 18

73

type inference, 7
type variable, 19
types, 7

unit type, 14
URL

parameter, 66

value, 5
definition, 23

variable
anonymous, 8
free, 8
local, 26

W3C, 47
where, 26
where clause, 26
writeFile, 34

zip, 62

74

	Contents
	Preface
	I Language Features
	Introduction
	Getting Started with Curry
	Main Features of Curry
	Overview
	Expressions
	Predefined Types
	Predefined Operations
	Functions
	Basic Concepts
	Pattern Matching
	Conditions
	Non-determinism

	User-defined Types
	Lists
	Strings
	Tuple
	Higher-Order Computations
	Lazy Evaluation
	Local Definitions
	Where Clauses
	Let Clauses
	Layout

	Variables
	Logic Variables
	Evaluation
	Flexible vs. Rigid Operations
	Programming

	Input/Output

	II Programming with Curry
	Programming in Curry
	Overview
	Lists
	Notation
	Inductive Definitions
	Ranges
	Comprehensions
	Basic Functions
	Higher-order Functions
	findall
	Narrowing

	Trees

	III Applications & Libraries
	Web Programming
	Overview
	Representing HTML Documents in Curry
	Server-Side Web Scripts
	Installing Web Programs
	Forms with User Input
	Further Examples for Web Server Programming
	Interaction Sequences
	Handling Intermediate States
	Storing Information on the Server
	Ensuring Exclusive Access
	Example: A Web Questionnaire

	Finding Bugs
	Advanced Web Programming
	Cookies
	URL Parameters
	Style Sheets

	Further Libraries for Application Programming
	Bibliography
	Index

