
EasyCheck
Test Data for Free

Jan Christiansen & Sebastian Fischer
University of Kiel, Germany

FLOPS 2008, Ise, Japan

Curry

(?) :: a -> a -> a
x ? _ = x
_ ? x = x

unknown :: a
unknown = x where x free

Combined Functional
Logic Programming

insert :: a -> [a] -> [a]
insert x xs = x : xs
insert x (y:xs) = y : insert x xs

permute = foldr insert []

psort xs | sorted ys = ys
 where ys = permute xs

> permute unknown
[] More?
[x2] More?
[x2,x7] More?
[x7,x2] More?
[x2,x7,x11] More?
[x7,x2,x11] More?
[x2,x11,x7] More?
[x11,x2,x7] More?
[x7,x11,x2] More?
[x11,x7,x2] More? no

> (l, permute l) where l free

([],[]) More?

([x2],[x2]) More?

([x2,x7],[x2,x7]) More?
([x2,x7],[x7,x2]) More?

([x2,x7,x11],[x2,x7,x11]) More?
([x2,x7,x11],[x7,x2,x11]) More?
([x2,x7,x11],[x2,x11,x7]) More?
([x2,x7,x11],[x11,x2,x7]) More?
([x2,x7,x11],[x7,x11,x2]) More?
([x2,x7,x11],[x11,x7,x2]) More? no

•Nondeterminism + Free Variables

•Test Input for free

•Manual Testing without further support

Curry

Property-Based Testing*

psortSorts :: [Int] -> Prop
psortSorts xs =
 psort xs -=- mergeSort xs

*Thank You QuickCheck!

Non-Determinism

> easyCheck1 psortSorts
Falsified by 6th test.
Arguments:
[0,0]
Results:
([0,0],[0,0])
([0,0],[0,0])

Two Equal Results

> psort [0,0]
[0,0] More?
[0,0] More?
No more solutions.

Deterministic Equality

psortSorts :: [Int] -> Prop
psortSorts xs =
 psort xs -=- mergeSort xs

Semantic Equivalence

psortSorts :: [Int] -> Prop
psortSorts xs =
 psort xs <~> mergeSort xs

Success!

> easyCheck1 psortSorts
Ok, passed 100 tests.

Investigating Input

psortSortsSmall :: [Int] -> Prop
psortSortsSmall xs =
 classify (length xs <= 2) "small"
 (psortSorts xs)

> easyCheck1 psortSortsSmall
OK, passed 100 tests - 45% small.

Custom Input
shuffle :: Int -> [a] -> [a]
shuffle _ [] = []
shuffle _ [x] = [x]
shuffle _ [x,y] = [x,y] ? [y,x]
shuffle len xs@(_:_:_:_) =
 x : shuffle mid ys
 ++ shuffle (len-mid-1) zs
 where
 mid = len `div` 2 + (0?1)
 (ys,x:zs) = splitAt mid xs

Custom Input

psortSortsLen :: Int -> Prop
psortSortsLen len =
 (0 < len && len < 10) ==>
 for (shuffle len [1..len])
 psortSortsSmall

> easyCheck1 psortSortsLen
OK, passed 100 tests - 3% small.

EasyCheck

•Like QuickCheck, only simpler!

•Support for Non-Determinism

•Standard Input = Free Variables

•Custom Input = Non-Det Operation

•No fixed strategy or probabilities (yet)

Enumerating Test Input
data SearchTree a
 = Value a
 | Or [SearchTree a]

searchTree :: a -> SearchTree a
searchTree external

> searchTree (False ? True)
Or [Value False,Value True] More?
No more solutions.

[]
[False]
[False,False]
[False,False,False]
...

[]
[False]
[True]
[False,False]
[False,True]
...

Depth-First or
Breadth-First Search?

Not Good Enough

•depth-first search:

incomplete (does not reach every node)

•breadth-first search:

to many small values

first node of level n after O(2) othersn

Diagonalization
diagonal :: [[a]] -> [a]
diagonal = ...

> diagonal [[(x,y) | y <- [1..]]
 | x <- [1..]]
[(1,1)
,(1,2),(2,1)
,(1,3),(2,2),(1,3)
,(1,4),(2,3),(3,2),(4,1)
,...

Level Diagonalization

levelDiag :: SearchTree a -> [a]
levelDiag t =
 [x | Value x <-
 diagonal (levels [t])]

levels ts =
 if null ts then []
 else ts:levels [u | Or us <- ts
 , u <- us]

Level Diagonalization

•complete (reaches every node)

•large values early

first node of level n after O(n) others2

Left Biased

Randomization

Multiple Searches

Conclusions

•Free Variables and Non-Determinism

Easy way to describe test input!

•Separated Declaration and Enumeration

Old code benefits from new strategies

•Randomized Level Diagonalization

complete, advancing, balanced

