
EasyCheck — Test Data for Free?

Jan Christiansen and Sebastian Fischer

Department of Computing Science, University of Kiel, Germany
{jac,sebf}@informatik.uni-kiel.de

Abstract. We present a lightweight, automated tool for specification-
based testing of declarative programs written in the functional logic pro-
gramming language Curry and emphasize the usefulness of logic features
in its implementation and use. Free variables, nondeterminism and en-
capsulated search turn out to be elegant and powerful means to express
test-data generation.

Key words: Testing, Nondeterminism, Encapsulated Search, Curry

1 Introduction

Automatic test tools have to generate values of a certain type. For exam-
ple, to test the function reverse which reverses a list we have to generate
a variety of lists of values of some type.

We present the implementation of an automatic test tool for the func-
tional logic programming language Curry. Functional logic languages like
Curry extend the functional programming paradigm with nondetermin-
istic operations and free variables. In [1] it was shown that a free variable
can be seen as a nondeterministic generator that yields all values of its
type. We argue that this result is not only of theoretical interest. We
present a practical application of this new view on free variables. Instead
of defining a test-case generator for lists, we can use a free variable of
an appropriate list type. Moreover, the notion of nondeterminism greatly
simplifies the implementation of custom generators.

In Curry, nondeterminism is introduced by operations with overlap-
ping left hand sides. For example, the operation bool is nondeterministic
because its left hand sides trivially overlap – they are identical. It is se-
mantically equivalent to a free variable of type Bool.
bool = False

bool = True

The operation bool nondeterministically evaluates to False or True. The
operation bList is semantically equivalent to a free variable of type [Bool].
? Partially supported by the German Research Council (DFG) grant Ha 2457/5-2.

bList = []

bList = bool : bList

It yields an empty list or a list with a boolean head and a bList as tail.
Therefore, bList nondeterministically yields all values of type [Bool].

The above definitions are superfluous, because they evaluate to every
value of their type and we can replace them by free variables. However,
we can apply a similar technique to define custom generators that eval-
uate only to a subset of all possible values. For example, if we do not
want to check reverse for empty lists, we can define an operation that
nondeterministically yields all nonempty lists of type [Bool].

neBList = bool : bList

We present an automatic test tool that uses nondeterministic operations
for the generation of test data.

– We show that the generation of test data is already included in the
concepts of functional logic programming. Therefore, the programmer
does not have to learn a new syntax and the syntax for test data
generation is very simple.

– We separate the generation of test data and its enumeration. Test
data generators are nondeterministic operations. The nondeterminism
is encapsulated [2] by an operation that yields a tree which contains
all possible values. We present a new traversal strategy for such trees
that serves well for the purpose of test data generation (Section 4).
In contrast to other approaches, this enables us to ensure that every
value is enumerated only once and that every value is eventually enu-
merated. The separation between generation and enumeration of test
data allows a clear and flexible implementation of automatic testing.

– We extend the interface of test tools for functional languages with
additional operations to specify properties of nondeterministic opera-
tions (Section 3).

2 Curry

Curry is a functional logic programming language whose syntax is similar
to the syntax of the functional programming language Haskell [3]. In the
following, we assume that the reader is familiar with the syntax of Haskell
and only explain Curry specifics in detail. Apart from functional features
(algebraic datatypes, higher-order functions, lazy evaluation), Curry pro-
vides the essential features of logic programming, viz., nondeterminism
and free variables. Because of nondeterminism we use the term operation

in the context of Curry instead of function. Free variables are introduced
by the keyword free and nondeterminism by overlapping left hand sides.
Curry does not follow a top-down strategy but evaluates every matching
rule of an operation. For example, the binary operation (?) :: a -> a -> a

nondeterministically yields one of its arguments.

x ? _ = x

_ ? x = x

In Curry you can encapsulate a nondeterministic value and get a deter-
ministic tree that contains all possible values. In the following, we will use
the term search tree when we talk about this tree structure. Note that
this is not a search tree in the sense of an AVL or a Red Black tree. A
search tree in our sense denotes a value of the following datatype.1

data SearchTree a = Value a | Or [SearchTree a]

The Curry system KiCS [4, 5] provides a primitive encapsulating oper-
ation searchTree :: a -> SearchTree a that takes a possibly nondetermin-
istic value and yields the corresponding search tree. Encapsulating non-
determinism is still a topic of ongoing research. Nevertheless, all Curry
implementations provide some kind of encapsulated search. The search
tree for a deterministic value is a single Value leaf.

> searchTree True

Value True

Nondeterministic choices are reflected by Or nodes in the search tree.

> searchTree (False ? True ? False)

Or [Value False,Or [Value True,Value False]]

If we apply searchTree to bList or a free variable of type [Bool], we obtain
an infinite search tree because there are infinitely many values of type
[Bool]. However, due to lazy evaluation, only those parts of the search
tree are generated that are demanded by the surrounding computation.
Therefore it is possible to guide the search by user defined traversal op-
erations as the one presented in Section 4. Figure 1 visualizes the first
six levels of the search tree that corresponds to a free variable of type
[Bool]. Each inner node represents a nondeterministic choice for a con-
structor and its outgoing edges are labeled with the chosen constructor.
The leaves of the tree are labeled with the corresponding lists of booleans.

1 We do not consider failure throughout this paper, which could be expressed as Or [].

[]

 [] (:)

 False True

[False]

 [] (:)

[True]

 [] (:)

 False True

[False,False]

 [] (:)

[False,True]

 [] (:)

 False True

[True,False]

 [] (:)

[True,True]

 [] (:)

Fig. 1. Search tree for a free variable of type [Bool]

3 Using EasyCheck

The interface of EasyCheck is similar to the interface of QuickCheck [6]
or G∀st [7]. We provide a combinator property :: Bool -> Property that
is satisfied if its argument deterministically evaluates to True. The de-
terministic equality operator (-=-) :: a -> a -> Property is satisfied if its
arguments are deterministically evaluated to the same value.

However, EasyCheck is a test tool for a functional logic language and
has special combinators to deal with nondeterminism. In this section we
present the use of additional combinators to specify properties of nonde-
terministic operations.

We cannot use (-=-) to specify properties of nondeterministic opera-
tions because (-=-) demands its arguments to be deterministic. It would
be questionable what a property like (0?1) -=- 1 should mean and whether
it should be equivalent to 1 -=- (0?1). We provide different combinators
for nondeterministic operations that allow to address multiple values of
an expression explicitly: (~>), (<~), (<~>) :: a -> a -> Property.

– The combinator (~>) demands that its left argument evaluates to every
value of its right argument. The set of results of the left argument must
be a superset of the set of results of the right argument.

– The combinator (<~) is dual to (~>) and demands that the set of results
of its left argument is a subset of the set of results of the right one.

– Finally, (<~>) is satisfied if the sets of results of its arguments are
equal. Note that (<~>) is not equivalent to (-=-) because the latter
demands that the sets of results of its arguments are singleton sets.

In order to demonstrate nondeterministic testing, we consider an opera-
tion that inserts an element at an arbitrary position in a list.

insert :: a -> [a] -> [a]

insert x xs = x : xs

insert x (y:ys) = y : insert x ys

The following property states that insert should insert the given element
(at least) at the first and last position of the given list.
insertAsFirstOrLast :: Int -> [Int] -> Property

insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

To check a polymorphic property we have to annotate a type to determine
possible test cases. For example insertAsFirstOrLast is tested for integers
and lists of integers. We can use easyCheck2 to verify that insert satisfies
this property for the first 1,000 generated test cases.
> easyCheck2 insertAsFirstOrLast

OK, passed 1000 tests.

We provide operations easyCheckn to test properties of arity n for every
reasonable n. As Curry does not support type classes, we cannot provide
an operation easyCheck that handles properties of arbitrary arities.

We can employ insert to define a nondeterministic operation perm that
computes all permutations of a given list.
perm :: [a] -> [a]

perm = foldr insert []

In order to test perm, we use one of the nondeterministic counterparts
of the operation property, namely always, eventually :: Bool -> Property.
These operations do not demand their arguments to be deterministic and
are satisfied if all and any of the nondeterministic results of the argument
are satisfied respectively. Assuming a predicate sorted :: [Int] -> Bool we
can define a test for perm as follows.
permIsEventuallySorted :: [Int] -> Property

permIsEventuallySorted xs = eventually (sorted (perm xs))

> easyCheck1 permIsEventuallySorted

OK, passed 1000 tests.

The presented combinators are a relatively straightforward generalization
of those found in QuickCheck for nondeterministic operations. We did not
present all available combinators in this section. We introduce additional
combinators in later sections when we use them.

4 Enumerating Test Cases

The primitive operation searchTree :: a -> SearchTree a encapsulates non-
determinism. It takes a possibly nondeterministic expression as argument

and deterministically yields a search tree that contains all possible val-
ues of this expression. The standard libraries of Curry provide two op-
erations to traverse a search tree and enumerate its values in depth- or
breadth-first order. However, for test-case generation, we need a complete,
advancing and balanced enumeration.

– We call an enumeration complete if every value is eventually enumer-
ated. This property allows us to prove properties that only involve
datatypes with finitely many values. Moreover, it implies that any
node of an infinite search tree is reached in finite time.

– Furthermore, it is desirable to obtain reasonably large test cases early
in order to avoid numerous trivial test cases. Therefore we want to
visit the first node of the n-th level of a search tree after p(n) other
nodes where p is a polynomial. We call an enumeration with this
property advancing.

– We call an enumeration balanced if the enumerated values are indepen-
dent of the order of child trees in branch nodes. Balance is important
in order to obtain diverse test cases.

Neither depth- nor breadth-first search fulfills all properties. Depth-first
search is advancing2 but incomplete and unbalanced. Breadth-first search
is complete and almost balanced but not advancing because it generates a
lot of small values before larger ones. Therefore, we present a new search
tree traversal that is better suited for test-case generation.

4.1 Level Diagonalization

The following operation yields the list of levels of a search forest.
levels :: [SearchTree a] -> [[SearchTree a]]

levels ts | null ts = []

| otherwise = ts : levels [u | Or us <- ts, u <- us]

Note that not only values but all nodes of the forest are enumerated. If we
would only enumerate leaves, we might need to process large sequences of
inner nodes without being able to yield a node. As a consequence, large
parts of levels would be visited what we aim to avoid due to performance
reasons. By yielding also the inner nodes of the tree, we are able to process
all levels incrementally. The operation levelDiag merges the different levels
and extracts the values from the resulting enumeration.
levelDiag :: SearchTree a -> [a]

levelDiag t = [x | Value x <- diagonal (levels [t])]

2 not always, however, because it is incomplete

Fig. 2. Level diagonalization for [Bool] values

We do not simply concatenate the levels like in breadth-first search but
use a list diagonalization operation reminiscent to the diagonalizing list
comprehensions of Miranda [8]. The operation diagonal takes a list of lists
and yields a list that contains all elements of the inner lists in a diagonally
interleaved order.
diagonal :: [[a]] -> [a]

diagonal = concat . foldr diags []

where diags [] ys = ys

diags (x:xs) ys = [x] : merge xs ys

merge [] ys = ys

merge xs@(_:_) [] = map (:[]) xs

merge (x:xs) (y:ys) = (x:y) : merge xs ys

We can use diagonal to merge an infinite list of infinite lists:
> take 10 (diagonal [[(i,j) | j <- [1..]] | i <- [1..]])

[(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)]

You can think of the list of lists as a matrix. Note that the first element
of the nth inner list is returned as (n(n + 1)/2)th element of the result
(or earlier). This means that levelDiag visits the first node of level n
after visiting only O(n2) other nodes (compared to O(2n) for breadth-
first search and O(n) for depth-first search). Figure 2 shows part of the
search tree that represents lists of booleans. The first 100 nodes that are
visited by levelDiag are highlighted. Thanks to lazy evaluation, only a
small part of the tree is computed. Observe that all values of lower levels
are enumerated and, therefore, boundary cases are covered completely.
Moreover, large values are enumerated reasonably early, i.e., levelDiag is

Fig. 3. Combined randomized level diagonalization for [Bool] values

advancing. It is also complete since every value is eventually enumerated.
However, it is not balanced because it prefers left branches. Also, most of
the visited nodes are in the left part of the tree.

4.2 Randomization

We employ shuffle :: Int -> [a] -> [a] in order to choose every branch
with equal probability. It takes a random seed and yields a random per-
mutation of its argument. We use this operation to shuffle search trees.
shuffleTree :: Int -> SearchTree a -> SearchTree a

shuffleTree _ (Value x) = Value x

shuffleTree rnd (Or ts) = Or (shuffle r (zipWith shuffleTree rs ts))

where r:rs = split rnd

The function split computes an infinite list of uncorrelated random seeds
from a given random seed. We can combine shuffleTree and levelDiag in
order to obtain a complete, advancing and balanced search tree traversal.
If we start the search with a fixed random seed, we obtain reproducible
test cases. This is important because it is difficult to track down a bug if
the same property fails in one execution and succeeds in another. Instead
of shuffling only the children of nodes we could as well shuffle whole
levels. This would give a good distribution but result in unacceptable
performance since it causes the evaluation of large parts of the search
tree.

Neither left nor right branches are preferred by randomized level diag-
onalization. But still large parts of the visited nodes are in the same part
of the tree. This is desirable from a performance point of view because

unvisited parts need not be computed. However, there is also an unde-
sirable consequence: the larger the computed values are the more they
resemble each other. QuickCheck does not show this behaviour because
its test cases are independent of each other. But as a consequence the
probability for enumerating a small value twice is very high.

Finding an efficient enumeration scheme that is complete, balanced
and generates sufficiently different large values early deserves future work.
In a first attempt, we apply randomized level diagonalization to different
subtrees of the initial tree and combine the individual results. Figure 3
visualizes the effect of combining two randomized level diagonalizations.

5 Case Study

In this section we demonstrate how to test a heap implementation with
EasyCheck. A heap is a tree that satisfies the heap property : the sequence
of labels along any path from the root to a leaf must be non-decreasing.
We want to evaluate test-case distribution for a complex datatype with
multiple recursive components. Therefore, we use a custom datatype for
natural numbers in binary notation as heap entries (cf. [9]).
data Heap = Empty | Fork Nat [Heap]

data Nat = One | O Nat | I Nat

The heap implementation provides operations empty :: Heap to create an
empty heap, insert :: Nat -> Heap -> Heap to add an element to a heap
and splitMin :: Heap -> (Nat,Heap) to get the minimum of a nonempty
heap and the heap without the minimum. The property minIsLeqInserted

states that the minimum of a heap after inserting an element is less than
or equal to the new entry.
minIsLeqInserted :: Nat -> Heap -> Property

minIsLeqInserted v h = property (m<=v)

where (m,_) = splitMin (insert v h)

EasyCheck reports that this property is satisfied for 1000 test cases. The
test uses a free variable to generate heaps. Because the test cases are
generated by a free variable they do not necessarily satisfy the heap
property. To count the number of valid heaps we employ the operation
classify :: Bool -> String -> Property -> Property and a predicate valid

on heaps. 505 of the first 1,000 heaps generated by a free variable are
valid. We could use the operator (==>) :: Bool -> Property -> Property to
reject invalid heaps like it is often done in QuickCheck. In this case all
test cases – valid and invalid ones – are generated. This is insufficient if
the percentage of valid test cases is small.

0 1 2 3 4 5
0

100

200

300

400

500

600

700
2
3
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

400

500

600

700

heapVar

heapAbs

heapGen

Fig. 4. Depth and size of generated Heap values

5.1 Generating Only Valid Heaps

In this subsection we discuss approaches to generate only valid heaps.
In Subsection 5.2, we compare the distribution of test data with similar
QuickCheck generators.

– We constrain a free variable by the predicate valid,
– we employ the abstract heap constructors empty and insert, and
– we explicitly generate an adequate subset of valid heaps.

For each of these approaches we measure the depth and the size of the
generated heaps, i.e., the length of the longest path from the root to a leaf
and the number of entries, respectively. The results of these measurements
are depicted in Figure 4.

We can define a generator for valid heaps by narrowing a free variable.
heapVar | valid h = h where h free

This is a very simple and elegant way to generate only valid heaps. The
test tool SparseCheck [10] employs the same idea, cf. Section 6 on related
work. This definition is more efficient compared to the approach using
(==>). Thanks to laziness, invalid heaps are only generated as far as nec-
essary to detect that they are invalid. If we use (==>) all test cases are
generated completely and tested afterwards. Narrowing a free variable
w.r.t. a predicate only generates valid heaps. Figure 4 shows that the
majority of test cases that are generated by heapVar are small heaps. The
probability that a larger heap that is generated by a free variable is valid
is very small. Therefore it is much more effective to directly generate valid

heaps. We can directly generate only valid heaps by using the abstract
heap constructors empty and insert.
heapAbs = empty

heapAbs = insert unknown heapAbs

With heapAbs the average depth and size of the generated heaps increase
noticably. More than 200 heaps of depth and size 3 are generated in 1,000
trials compared to none with heapVar.

Finally, we explicitly generate a subset of valid heaps, in order to
further improve test-data distribution.
heapGen = Empty

heapGen = fork One

fork n = Fork m (heapList m) where m = n + smallNat

heapList _ = []

heapList n = fork n : heapList n

smallNat = One ? O One ? I One ? O (O One) ? I (O One) ? O (I One)

The number that is passed to fork defines the minimum size of all entries
of the generated heap. That way, we assure that the generated heaps are
valid. We also restrict the entries of the generated heaps: the difference
of a label at any node and its children is at most 6. In our experiments,
heapGen generates heaps up to depth 5 with up to 13 entries in the first
1,000 test cases. This is a significant improvement over the previously
presented generators.

In order to evaluate the benefits of the presented search tree traver-
sal, we have enumerated 1,000 results of the custom generator heapGen

in breadth-first order. The largest heap of the first 1,000 results gener-
ated by breadth-first search has 5 entries. With combined randomized
level diagonalization, the largest heap has 13 entries. The practical re-
sults documented in this section show that the new search tree traversal
is an improvement over existing ones in the context of test-case genera-
tion. We have shown that EasyCheck serves well to generate sufficiently
complex test data of non-trivial recursive datatypes like Heap. The genera-
tion of 1,000 heaps with the presented generators takes about one second
on average using KiCS [4, 5] on a 2.2 GHz Apple MacBookTM.

5.2 Comparison with QuickCheck

Due to lack of space, we cannot provide an extensive comparison with all
important test tools for declarative languages. Therefore, we restrict our-
selves to QuickCheck – the most widely used test tool for Haskell – and

0 1 2 3 4 5 6 7 8 9 10 >10
0

100

200

300

400

500

600

700

800

900
heapVar

heapAbs

heapGen

0 1 2 3 4 5 6 7 8 9 10 >10
0

100

200

300

400

500

600

700

800

900
heapVar

heapAbs

heapGen

Fig. 5. Depth and size of generated Heap values

only describe data generators that resemble the ones presented before.
QuickCheck provides additional combinators that allow to tune the dis-
tribution of test input. We want to point out, that the search presented in
this paper relieves the programmer from the burden to manually adjust
test-case distribution to some extent.

In QuickCheck we define data generators of type Gen a instead of non-
deterministic values of type a by using oneof :: [Gen a] -> Gen a. It takes
a list of generators and yields a generator where each of its arguments
is chosen with equal probability. Figure 5 shows the distribution of the
depth and size of the generated heaps for the three adapted generators.
We have taken the average of 10 runs of QuickCheck.

The black bars represent the result for a generator that resembles a
free variable. We just enumerate the constructors employing oneof and
use the implication operator (==>) to reject invalid heaps. 960 out of
1,000 test cases are empty heaps. At first sight it seems easy to improve
this. But if we use (==>) to prohibit the generation of empty heaps only
around 300 out of the first 10,000 test cases are valid. Another way to
improve this generator is by using the frequency operator. This operator
is similar to oneof but each list element is assigned with a probability.
Finding good probabilities is nontrivial. For example, we have faced the
problem of undesirably large test input leading to a significant slowdown
or even stack overflows. If we do not use (==>) only about 500 out of 1,000
heaps are valid and about 25 are valid and not empty. This is a well-
known deficiency of QuickCheck also tackled by SparseCheck [10] with an
approach similar to our restricted free variable. The distribution measured
with the QuickCheck generators heapAbs and heapGen is acceptable. The

number of generated heaps decreases with increasing depth and size but,
nevertheless, larger heaps are generated.

The generation of test cases with QuickCheck is considerably faster
than with EasyCheck. One reason is that a complete search is more time
and space consuming than an incomplete random search. Also, the Curry
system KiCS is a prototype and not as mature as modern Haskell systems
– especially w.r.t. performance. Nevertheless, the run time of EasyCheck
is acceptable, viz., a few seconds also for complex test-input.

6 Related Work

There are four implementations of automated test tools in functional lan-
guages, namely QuickCheck [6, 11], SmallCheck [12] and SparseCheck [10]
in Haskell and G∀st [7] in Clean [13]. Besides these, there are a couple
of implementations of QuickCheck in other functional languages.

QuickCheck provides monadic combinators to define random test case
generators in an elegant way. In order to test a function, the user has to
define an instance of the type class Arbitrary for each type used as test
input. Functional logic languages like Curry, already provide default gen-
erators for all datatypes, viz., free variables. Moreover, custom generators
are defined by nondeterministic operations – no type class is necessary.
With QuickCheck the user cannot ensure that all values of a datatype
are used during a test. Furthermore, the same test data may be gener-
ated more than once. In EasyCheck, we employ a complete enumeration
scheme for generating test data and ensure that every value is enumerated
at most once. Moreover, every value would be eventually enumerated, if
we would not abort the generation of test cases. In contrast to EasyCheck,
QuickCheck can be used to generate higher order functions as test cases.
The extension of EasyCheck to higher order values is future work.

The idea behind SmallCheck is that counter examples often consist
of a small number of constructors. Instead of testing randomly generated
values, SmallCheck tests properties for all finitely many values up to some
size. Size denotes the number of constructors of a value. The size of the
test cases is increased in the testing process. That is, we get the same
results as SmallCheck for EasyCheck by using an iterative deepening or
breadth-first traversal for the search trees. This demonstrates the power
of the separation of test case generation and enumeration.

The automatic test tool G∀st uses generic programming to provide
test data generators for all types. In contrast to QuickCheck, this relieves
the user from defining instances of type classes. If the user wants to define

a custom generator he has to employ the generic programming extension
of Clean [14]. In our approach, no language extension is necessary from
the point of view of a functional logic programmer. Of course, we heav-
ily use logic programming extensions built into functional logic languages.
An outstanding characteristics of G∀st is that properties can be proven if
there are only finitely many checks. However, G∀sts enumeration scheme
is not complete because left recursive datatypes lead to an infinite loop.
In EasyCheck, we can prove properties because of the complete enumer-
ation of test data. Moreover, the algorithm that generates test data is
independent from the algorithm that enumerates it. Therefore, we can
apply flexible enumeration schemes.

The idea of SparseCheck is based on a work by Fredrik Lindblad [15].
He proposes a system that uses narrowing to generate test cases that
fulfil additional requirements. The approach of QuickCheck, SmallCheck
and G∀st is to generate all values and discard the values that do not
satisfy these requirements. If only a small percentage of test cases fulfils
the requirements this strategy fails. In SparseCheck, values that fulfil the
requirements are generated using narrowing implemented in a logic pro-
gramming library for Haskell [16]. This library provides similar features
like Curry but separates functional from logic definitions that use special
purpose combinators and operate on values of a special term type.

Recently, an approach to glass-box testing of Curry programs was pre-
sented in [17]. Glass-box testing aims at a systematic coverage of tested
code w.r.t. a coverage criterion. The main difference between a black-box
tool like EasyCheck and a glass-box tool is that EasyCheck generates
test input in advance and a glass-box tool narrows test input during the
execution of the tested function. An advantage of the glass-box approach
is that input that is not processed by the program does not need to be
generated. However, a glass-box approach is not lightweight because it re-
quires a program transformation or a modification of the run-time system
in order to monitor code coverage. Another disadvantage is that nonde-
terminism introduced by the tested function cannot be distinguished from
the nondeterminism introduced by the test input. For example, a glass-
box test tool cannot detect test input that leads to a failure or multiple
results of the tested function. EasyCheck has combinators to deal with
nondeterminism and, therefore, also with failure. A glass-box tool is usu-
ally employed to generate unit tests for deterministic operations.

The Curry implementation PAKCS [18] comes with CurryTest – a
unit-test tool for Curry. Unit tests specify test in- and output explic-
itly, while specification-based tests in QuickCheck, G∀st and EasyCheck

only specify properties and the tool generates test data automatically.
Thanks to the simplified form of test-data generation, defining a unit test
in EasyCheck is as elegant as in CurryTest.

Checking defined functions against a seperate specification by sys-
tematically enumerating the arguments of the function can be seen as
(bounded) model checking. See [19] for recent work on this topic. Usually,
model checking refers to specifications of concurrent systems in temporal
logic. XMC [20] is a model checker based on logic programming.

7 Conclusions and Future Work

We have presented EasyCheck3 – a lightweight tool for automated, specifi-
cation-based testing of Curry programs. Compared to similar tools for
purely functional languages, we provide additional combinators for testing
nondeterministic operations (Section 3).

Functional logic languages already include the concept of test-data
generation. Free variables provide default generators for free and the dec-
laration of custom generators is integrated in the programming para-
digm via nondeterminism. It does not require additional type classes nor
language extensions like generic programming. Logic programming fea-
tures allow for a simple and elegant declaration of test-data generators.
In Section 5 we discussed different approaches to defining custom test-
case generators and compared them w.r.t. test-data distribution using a
non-trivial datatype representing heap trees.

In EasyCheck, we separate test-case generation and enumeration, i.e.,
test-data generators can be written without committing to a specific enu-
meration scheme. Therefore, better enumeration schemes will improve
test data distribution for existing generators. We present a new search tree
traversal, viz., combined randomized level diagonalization (Section 4), and
show that it is better suited for generating test cases than other traversals
provided by Curry implementations.

Although this traversal turns out to be quite useful already, we plan to
investigate new traversals to improve the diversity of large test cases. An-
other direction for future work is to examine time and space requirements
of randomized level diagonalization. Furthermore, we would like to inves-
tigate the distribution of values generated by this traversal and to develop
traversals with a similar distribution that do not rely on randomization.

3 available at http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck

References

1. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Proceedings of the International Conference on Logic Programming
(ICLP 2006), Springer LNCS 4079 (2006) 87–101

2. Braßel, B., Hanus, M., Huch, F.: Encapsulating non-determinism in functional
logic computations. Volume 6., EAPLS (2004)

3. Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press (2003)

4. Braßel, B., Huch, F.: Translating Curry to Haskell. In: Proc. of the ACM SIGPLAN
Workshop on Curry and Functional Logic Programming, ACM Press (2005) 60–65

5. Braßel, B., Huch, F.: The Kiel Curry System KiCS. In Seipel, D., Hanus, M., eds.:
Preproceedings of the 21st Workshop on (Constraint) Logic Programming. (2007)
215–223 Technical Report 434.

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices 35(9) (2000) 268–279

7. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In Peña, R., ed.: The 14th International workshop on the
Implementation of Functional Languages, Selected Papers. Volume 2670 of LNCS.,
Madrid, Spain, Springer (2002) 84–100

8. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.
In: Proc. of a conference on Functional programming languages and computer
architecture, New York, NY, USA, Springer-Verlag New York, Inc. (1985) 1–16

9. Brassel, B., Fischer, S., Huch, F.: Declaring numbers. (2007) to be published.
10. Naylor, M.: A logic programming library for test-data generation. Available at

http://www-users.cs.york.ac.uk/~mfn/sparsecheck/ (2007)
11. Claessen, K., Hughes, J.: Quickcheck: Automatic specification-based testing. Avail-

able at http://www.cs.chalmers.se/~rjmh/QuickCheck/ (2002)
12. Runciman, C.: Smallcheck: another lightweight testing library. Available at

http://www.cs.york.ac.uk/fp/darcs/smallcheck/ (2006)
13. Plasmeijer, R., van Eekelen, M.: Concurrent Clean language report (version 2.0).

See also http://www.cs.ru.nl/~clean (2001)
14. Alimarine, A., Plasmeijer, M.J.: A generic programming extension for Clean. In:

The 13th International workshop on the Implementation of Functional Languages,
Selected Papers. Lecture Notes in Computer Science (2002) 168–185

15. Lindblad, F.: Property directed generation of first-order test data. In Morazan,
M.T., Nilsson, H., eds.: Draft Proceedings of the Eighth Symposium on Trends in
Functional Programming. (2007)

16. Naylor, M., Axelsson, E., Runciman, C.: A functional-logic library for wired˙ In:
Proceedings of the ACM SIGPLAN workshop on Haskell. (2007)

17. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: Proc. of the 9th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, ACM Press (2007)

18. Hanus, M., et al.: PAKCS: The Portland Aachen Kiel Curry System (version 1.8.1).
Available at http://www.informatik.uni-kiel.de/~pakcs/ (2007)

19. Cheney, J., Momigliano, A.: Mechanized metatheory model-checking. In: PPDP
’07: Proc. of the 9th ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, New York, NY, USA, ACM (2007) 75–86

20. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: A logic-programming-based verifi-
cation toolset. In: Computer Aided Verification. (2000) 576–580

