Available online at www.sciencedirect.com

ScienceDirect Theoretical Comuter

Science

y /;h Coss
ELSEVIER Electronic Notes in Theoretical Computer Science 177 (2007) 107-122
www.elsevier.com/locate/entcs

The Interactive Curry Observation Debugger
iCODE"

Parissa H. Sadeghi and Frank Huch

{phsa,fhu}@informatik.uni-kiel.de
Institute of Computer Science
University of Kiel
Olshausenstr. 40, 24098 Kiel, Germany

Abstract

Debugging by observing the evaluation of expressions and functions is a useful approach for finding bugs
in lazy functional and functional logic programs. However, adding and removing observation annotations
to a program is an effort making the use of this debugging technique in practice uncomfortable. Having
tool support for managing observations is desirable. We developed a tool that provides this ability for
programmers. Without annotating expressions in a program, the evaluation of functions, data structures
and arbitrary subexpressions can be observed by selecting them from a tree-structure representing the whole
program. Furthermore, the tool provides a step by step performing of observations where each observation
is shown in a separated viewer. Beside searching bugs, the tool can be used to assist beginners in learning
the non-deterministic behavior of lazy functional logic programs. To find a surrounding area that contains
the failure, the tool can furthermore show the executed part of the program by marking the expressions
that are activated during program execution.

Keywords: Curry, debugging, functional logic languages, observation, tool

1 Introduction

One of the original problems of programming is locating bugs in programs. This
is especially true for declarative programming languages which make it difficult
to predict the evaluation order. There is a variety of methods for locating bugs
in a program (related approaches are discussed in Section 7). Although the tools
implementing these methods do usually not remove the bugs, they are often called
debuggers. The Curry Object Observation SYstem (COOSY) is one of them [2].
This debugger is a tool to observe data structures and functions of a program written
in the declarative multi-paradigm language Curry [9]. COOSY extends Gill’s idea
[1] of observing expressions in lazy functional programs to the lazy functional logic
setting.

1 This work has been partially supported by the German Research Council (DFG) under grant Ha 2457/5-1.

1571-0661/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2007.01.007

http://www.elsevier.com/locate/entcs

108 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

In COOSY, a programmer annotates expressions in her/his program to observe
the evaluation of the program execution in the desired position. However, in practice
adding and removing observations to/from the program is some kind of effort which
keeps people away from using tools like COOSY. Instead, people prefer printing
data structures using trace, which influences the evaluation behavior and does not
provide the power of observing functions. Another problem exists for beginners still
fighting the type system, currying, and lazy evaluation: understanding COOSY
would mean another burden to them (especially since Curry does not provide type
classes and observations have to be annotated with special observers related to the
type of the observed values).

Our solution to this problem is a convenient graphical interactive tool called
iCODE (Interactive Curry Observation DEbugger) which supports debugging by
observations with the following features:

e marking expressions representing the executed part of the program to locate a
surrounding area which contains the failure.

¢ representing the whole program as a tree-structure with the selection ability on
each expression or function in a graphical user interface.

¢ showing the observation steps of each desired part of the program in separated
viewers, with the backward and forward stepping ability on the steps.

¢ automatic generation of observers for all user defined data types.

All source code modifications are performed automatically before executing the
code. A step by step presentation of the evaluation of selected data structures or
functions in a separate window can help beginners to understand the lazy execution
semantics of Curry. This presentation provides another advantage: all views are
implemented by independent system processes which may even be distributed on
multiple computers to avoid a slow-down or shortage of memory of observed exe-
cutions. Finally, observation sessions can be saved and reloaded when debugging
is necessary again. The tool is implemented in Curry using libraries for GUI pro-
gramming [10,11] and meta programming which are available for the Curry system

PAKCS [6].

2 A Review on Observations in COOSY

COOSY [2] is based on the idea to observe data structures and functions during
program execution. The programmer can import the module Observe into her/his
program and annotate expressions with applications of the function observe:

observe :: Observer a -> String -> a -> a

The function observe behaves as an identity on its third argument. Additionally,
it generates, as a hidden side effect, a trail file representing the evaluated part of
the observed data. To distinguish different observations from each other, observe
takes a label as its second argument. After program termination (including run-
time errors and aborts), all observations are presented to the user, with respect to
their different labels. Finally, observe demands an observer as its first argument

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 109

which defines the special observation behavior for the type of the value observe
is applied to. For each predefined type 7 such an observer is defined as o7. For
example, for expressions of type Int the observer oInt should be used and for [Int]
the observer oList oInt. Note, that observers for polymorphic type constructors
(e.g., [1) are functions taking as many arguments as the type constructor.

The explicit annotation of the observer for each type is necessary, since Curry,
in contrast to Haskell, does not provide type classes which hide these observers from
the user in HOOD. However, there is also a benefit of these explicit annotations.
It is possible to use different observers for the same type which allows selective
masking of substructures in large observed data structures, e.g. by the predefined
observer oOpaque [2] which presents every data structure by the symbol #.

As a small example, we consider a function which computes all sublists of a
given list (here with elements of type Int):

sublists :: [Int] -> [[Int]]
sublists xs = let (ready,extend) = sublists’ xs in ready++extend

sublists’ :: [Int] -> ([[Intl], [[Int]])

sublists’ [1 = ([011,000DD

sublists’ (x:xs) = let (ready,extend) = sublists’ xs in
(ready++extend, [x] :map (x:) extend)

The idea is to distinguish lists which are already closed sublists and lists which
may be extended with the actual list element x. Unfortunately, this program con-
tains a little bug. sublists [1,2,3] yields:

[[] 3 [] s [3] s [3] s [2] b [2’3] b [2,3] b [1] s [1,2] s [1,2,3] s [1!2’3]]

Some elements occur twice in the result. To find this bug, we first observe the
two results of sublists’ in sublists and obtain:

sublists xs =
let (ready,extend) = observe (oPair (oList (oList oInt))
(oList (oList oInt)))
"result" (sublists’ xs) in
ready++extend

result

(rey, 1, 31, 31, 21, 2,31, 2,311, (111, (1,21, [1,2,3], [1,2,3]11)

The bug seems to result from the first pair component because the replication
appears here. Hence, we observe this component within the right-hand side of
sublists’ and obtain:

sublists’ (x:xs) =
let (ready,extend) = sublists’ xs in
(observe (oList (oList oInt)) "first component" (ready++extend),
[x] :map (x:) extend)

110 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

first component

(a1, 1l
(tl, 01, 031, 311
e, 01,031,031, 21, 12,37, [2,3]]

This observation still shows the bug, but does not help to locate it, since we
cannot distinguish the values of ready and extend. A better observation point
would have been the result of sublists’ during recursion. Hence, we again change
the source code and add an observer to another place:

sublists’ (x:xs) =
let (ready,extend) =
observe (oPair (oList (oList oInt)) (oList (oList oInt)))
"sublists’" (sublists’ xs) in
(ready++extend, [x]:map (x:) extend)

sublists’

(fa1, tan
(00, 011, 0031, (311
(00, 0,031,311, 21, 2,31, [2,3]11)

In the second line of this observation, we see that the bug is located in the
second pair component. Thinking about this observation, we see that the expression
[x]:map (x:) extend adds the list [3] twice, since the empty list is contained in
extend. The bug is located in the base case which should be corrected to:

sublists’ [] = ([[1]1,[])

Observing data structures can help finding a bug. However, a program consists
functions and it is more interesting to observe functions which COOSY provides as
well. Observers for functions can be constructed by means of the right associative
operator:

(™>) :: Observer a -> Observer b -> Observer (a -> b)

In our example, we could have used a functional observer to observe the recursive
calls of sublists’:

sublists’ (x:xs) =
let (ready,extend) =
observe (oList oInt ~> oPair (oList (oList oInt))
(oList (oList oInt)))
"sublists’" sublists’ xs in
(ready++extend, [x]:map (x:) extend)

sublists’

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 111

Files Options Tools Help
2|0 90l 4 Caressior, :
S fomelphsaf
lreverze [] = [] :
lreverse (x:xs) = reverse X3 ++ [x] _TBS"CO']IS} "
|- All Functions A
I~ - reverse
ladd :: Int -» Int -» Int + reverse(1)
ladd %y = x + ¥ - reverse(2)
Imain = add (071) 1 - (reverse xs) ++ [x]
= - (++] (reverse xs)
(++)
test o : [Int] -» [Int] - reverse xs
lbest xs = bug xs ++ okay =xs
reverse
lbug :: [Int] -» [Int] =S
[bug 1] =[] | + ¥l
okay :: [Int] -> [Int] +add.
jokay xs = xs + main
+ test
I | +bug '
il el cllint]] B - swbis ‘ Ohsarvers (9L O mangel 9
| 1sts xs = let (rea exten == 1sts' x5 1n g i
ready++extend 2 J—
|sublists' :: [Int] -» ([[Int]],[[Int]]} i 5
lsubLists' [1 = ([11] [[1]) Submit |
|sublists' (x:x=s) = let (ready, extend) = sublists' xs in
| (ready++extend, [x] :map (x:) extend) % Imported Modules:
= 1~ [+ Testcooisy |59
Ready

Fig. 1. A tree of all program expressions in the main window

(1 -> (0, 00D
(31 —> (C01, 01,0031, 031D)
(2,31 -> (L0, 01,031, (311, [[2],[2,3],[2,3]1])

In this observation, it is also possible to detect the bug and in practice it is often
easier to find bugs by observing functions. However, in larger programs it is still an
iteration of adding and removing observers to find the location of a bug, similar to
the debugging session sketch for the sublists example. A tool which supports the
programmer in adding and removing observers is desired.

3 'Tree Presentation of a Program

iCODE is a small portable Curry program that provides a graphical interface de-
bugger for the Curry programs. It uses the meta-programming library of Curry
[6] and presents the whole program as a tree which contains functions, data struc-
tures and all defined subexpressions of the program which may be necessary to be
observed for finding bugs. By means of Curry’s Tcl/Tk library [10,11] we provide
convenient access to this tree. By default all functions of a program (module) are
available. On selection of a corresponding rule the user can access the right-hand
side of a function definition and descend into the tree representing all its subexpres-
sions. On the other hand, for a concise presentation, initially local definitions and

112 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

all subexpressions are hidden and can be opened on demand by the user. She/he
can also select and deselect arbitrary expressions for being observed.

Let us consider the following simple program that offers the reverse presentation
of a list:

reverse :: [Int] -> [Int]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

The function reverse is defined by two rules which we present as reverse(1) and
reverse(2) to the user. Each of these rules can be selected for observation. All
expressions within each of these rules have to be presented in the tree. In the right-
hand side of the first rule the only expression is the empty list. In other words, only
the expression [] is presented to the user. The second rule contains three function
calls: (++), reverse and (:). Each function takes two expressions as parameters.
Furthermore, every function call itself and all partial applications are represented
(see Figure 1).

Now by the selection of the expression that is done by only a mouse-click on the
expression, iICODE automatically adds necessary observe function to the source code
as described in the following section and loads the changed program automatically
in a new PAKCS-Shell which is provided for the programmer to perform request
to the program. Advance can be triggered automatically in separate viewers which
are distinguished by different labels they belong to.

4 Automatic Observations in iCODE

In this section we show how iCODE helps programmers during debugging by auto-
matically adding the necessary observers to selected expressions and functions.

4.1 Observing Functions

The most important feature of a convenient observation tool, is the observation
of top-level functions. In Curry, these functions can be defined by one or more
rules and may behave non-deterministically. The idea of observing such a function
should be that every call to this function is observed. The easiest way to realize this
behavior is to add a wrapper function which adds the observation to the original
function. In our example from Section 2, an observation of all calls to sublists’
can be obtained as follows:

sublists’ = observe (oList oInt ~> oPair (oList (oList olInt))
(oList (oList oInt)))
"sublists’"
helpSublists’

where
helpSublists’ []
helpSublists’ (x:xs)
let (ready,extend) = sublists’ xs in

(0011, 0015

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 113
(ready++extend, [x] :map (x:) extend)

Note, that we reuse the original function name for the wrapper function. By leav-
ing the recursive calls in the right hand sides of the original function definition un-
changed, we guarantee that iCODE observes each application of sublists’. This
technique can also be applied to locally defined functions and is provided by our
tool.

4.2 Observing Data Types

The most problematic part of using COOSY (especially for beginners) is the defini-
tion of observers for newly introduced data types, although COOSY provides useful
abstractions for this task. For every user defined data type, corresponding observers
have to be defined to observe values of this type. Our tool provides an automatic
derivation of these observers, not only for defined data types in the program, but
also for data types which are imported from other modules. We sketch the idea by
means of an example. Consider the data type for natural numbers:

data Nat = 0 | S Nat

It defines two constructors, the constructor 0 :: Nat with arity 0 and the con-
structor 8§ :: Nat -> Nat with arity 1. The observer for each type 7 (e.g., Int)
should be available as function o7 (e.g., oInt). Hence, we define an observer oNat.
COOSY already provides generic observers ol, 02, 03,...by which the observer
oNat can easily be defined as follows:

oNat :: Observer Nat
oNat O = o0 "O" O
oNat (S x) = ol oNat "S" S x

For polymorphic data types an observer needs observers for the polymorphic
arguments as well, like oList. The construction should become clear from the
following example:

data Tree a b = Branch a b [Tree a b] [Tree a b]

oTree :: Observer x1 -> Observer x2 -> Observer (Tree x1 x2)
oTree oa ob (Branch x1 x2 x3 x4) =
04 oa ob (oList (oTree oa ob)) (oList (oTree oa ob)) "Branch"
Branch x1 x2 x3 x4

In this way, generic observers for all data structures defined in the program are
generated and added automatically to the program. These observers are used for
observations of functions and expressions over values of this type. This method is
applied to the imported data types, so that for all imported modules the data types
observers can be generated and automatically imported to the program.

However, polymorphism brings up a problem. How can polymorphic functions
be observed? The function can be used in different type instantiations. Hence, the
only type we can assign to its polymorphic arguments is oOpaque.

114 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122
4.8 Observing Expressions

Sometimes it is not sufficient to observe functions defined in a program. Observa-
tions of subexpressions in the right-hand sides of rules can become necessary to find
a bug. A user can also select (sub-)expressions from right-hand sides of function
definitions. For this purpose iCODE provides a tree representation of the whole
program, in which the user can select arbitrary (sub-)expressions of the program to
be observed. Corresponding calls of observe are automatically added as presented
in Section 2. The type of each selected expression is inferred and a corresponding
observer is generated.

iCODE also automatically generates labels for the observers which helps the pro-
grammer to later identify the observations. Top-level functions are simply labeled
with their name. Local functions are labeled with a colon-separated list of function
names leading to the declaration of the observed function. Finally, expressions are
labeled with the corresponding function name and a String representation of the
selected expression.

4.4 Observing Imported Modules

iCODE supports adding observations to different modules of a project. When the
user selects functions or expressions of a module to be observed a new module is
generated which contains the observer calls. Since observer calls in (even indirectly)
imported modules must also be executed, iCODE can check for each imported
module whether an observer version is available and uses this for execution.

5 Design of iCODE

With the advance of modern computer technology, distributed programming is be-
coming more and more popular. Instead of storing huge amounts of data redun-
dantly in many places, we use a client/server architecture, and typically, we have
many clients connected to many servers. For the communication between a client
and a server in Curry, TCP communication can be used. In this section we briefly
review the client /server architecture of iCODE for showing the observation steps in
separate viewing tools.

5.1 Architecture

Originally in COOSY, each time the computation made progress the information
about observed values was recorded in a separate trace file as events. There are two
kinds of events to distinguish unevaluated expressions from failed or non-terminated
computations: Demand and Value. A demand event shows that a value is needed
for the computation. A value event shows that the computation of a value has
succeeded [2]. These events were shown with a textual visualization in the viewer
of COOSY.

Instead, in iCODE, we use a Socket establishing a connection between the main
window of the tool and the observed application (PAKCS-System). All events of the

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 115

observed application are sent to the iCODE’s main window. Each event contains
the label of the observation it belongs to. Using this architecture we can also

Client Server
Socket

—— (lgbelevent) . s | DNain Window
PAKCS-Svstem

e ‘"nextstep?’ |- of iICODE

Fig. 2. A Socket to connect the observe applications and the main window

present observations in a single-step mode which helps beginners to understand the
evaluation order of a computation. By pressing the forward button in this mode,
the user can delay the client for an acknowledging message from the server before
the computation continues and the next message is sent to the server (see Figure 2).
The received messages in the server are forwarded to the trace windows, for showing
all observations of a special label. When started, each trace window generates a
socket and waits to receive the events from the main window, see Figure 3.

Client

: Sockets i Servers R
Maujj Window 4-4 ﬁ—- Tiuica
of iCODE \ I Window 1

(U LY
\ —_—
\‘\ -~ -\
0 Trace
v events 3
Window 2

A 4

l\u
v
L)
\
A

Fig. 3. Sockets to connect the main window and the trace windows

In Section 2 we have seen that for each observed function/expression a label is
needed to match the observed values with the observed expressions. These labels
group the progress of the execution for each observed expression in separate trace
windows. Each of these windows which is named with the corresponding label
receives messages from the main window through a socket.

Now, by sending events, the observed values are shown to the programmer with
a textual visualization in the related trace window. The programmer may conve-
niently arrange these windows on her/his screen and even close observations she/he
is not interested in anymore.

5.2 Surfing Observation

Originally in COOSY, the information about the observed expression was recorded
as a list of events in a trace file which was considered to be shown after the program
execution. That means the programmer could observe the evaluation of selected
expressions only when the execution was terminated. Our aim in the new version
(iCODE) is the ability to also show intermediate steps of the evaluation with the
possibility of forward and backward stepping. For this purpose we use TCP commu-
nication and change the list data-structure to a tree structure which is stored in a

116 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

dynamic predicate [5]. Dynamic predicates are similar to external functions, whose
code is not contained in the program, but is dynamically computed/extended, like
the meta predicates assert and retract in Prolog.

In COOSY the generation of the observations for each observation label con-
tained in the trace file works in a bottom-up manner. For a continuous update
of observed data terms this algorithm is of no use, since in each step the whole
observed data structure has to be re-constructed. We need a top-down algorithm
which allows extensions in all possible leaf positions of the presented data structure.
For instance, during the computation non-evaluated arguments (represented by un-
derscores) may flip into values, but values within a data structure will not change
anymore. However, we must consider the non-determinism within Curry by which
values may later be related to different non-deterministic computations. Our new
representation of events is stored in the following dynamic predicate:

TreesTable :: [([Index],EvalTree)] -> Dynamic
TreesTable = dynamic

data EvalTree = Open Int
| Value Arity String Index [EvalTree]
| Demand ArgNr Index [EvalTreel
| Fun Index [EvalTree]
| LogVar Index [EvalTree]

type Index = Int

type ArgNr = Int

type Arity = Int

The dynamic predicate TreesTable is a kind of global state accessible and mod-
ifiable within the whole program. The indices represent all nodes occuring in the
corresponding evaluation tree (EvalTree) with respect to the order in which they
were added. This is necessary since the evaluation order is not statically fixed.

In Section 5 we have seen that events are sent via a socket connection from the
main window of iCODE to each trace window. Each event contains a logical parent
showing in which order values are constructed. Hence, within one non-deterministic
branching the index list [Index] is extended in its head position whenever the
evaluation tree is extended, usually in an Open leaf.

If part of a value is used in more than one non-deterministic computation, then
the logical parent indicates which part of an evaluation tree is shared within two
non-deterministic computations. We only consider the subtree consisting of nodes
from the index list up to the logical parent of the new event. This subtree with
the corresponding indices is copied as an additional evaluation tree to the global
TreesTable.

As an example we consider the following simple program that performs a non-
deterministic computation:

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 117

add :: Int -> Int -> Int
add x y =x +y
main = add (071) 1
The expression (071) either yields 0 or 1. That means the function main offers two
different results 0+1 and 1+1.

For the first result after selecting the function add to be observed, ten events are
sent from the observe application to the main window. The first event is a Demand
that is stored in the above defined dynamic tree with the index 0 as:

[([0], Demand O O [(Open 1)1)]

The second received message is a Fun event with the logical parent 0 that should
be substituted in the open-subtree of its parent:

[([1,0], Demand O O [Fun 1 [(Open 1), (Open 2)]11)]

This Fun event is stored as a node with two subtrees presenting the argument and
the result of the corresponding function. Functions are represented in curried form,
i.e. the result of a function with arity two is again a function.

After adding the remaining eight events to the evaluation tree we obtain

[([e,8,7,6,5,4,3,2,1,0] , DemandO)]
|

Funi
/ \
Demand5 Demand2
| I
Value6 Fun3
| / \

"O0" Demand7 Demand4
I I
Value8 Value9

I I
|l1|| lllll

which is shown to the user as {\0 1 -> 1}.

The next incoming event is a value event with the logical parent 5. This index
does not occur in the head position of the index list. Hence, we detect a non-
deterministic computation. The observed value of this computation shares the nodes
with indices 0 to 5 with the first tree. Hence we copy this part and extend it with
the new event 10, which means the same function is called with another argument
(1) in this non-deterministic branch. After adding three further events we obtain

([13,12,11,10,5,4,3,2,1,0] , DemandO)
I
Funi
/ N\

Demand5 Demand?2

118 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

| |
ValuelO Fun3
| / \
"1" Demandll Demand4
I |
Valuel?2 Valuel3
I |
Il1l| ll2||

which is shown to the user as {\1 1 -> 2}.

This method helps us to provide fast pretty printing for each intermediate step
of observations in the trace windows. Furthermore, we can present shared parts
of the evaluation trees in the second presentation by a lighter color, which helps
to understand non-deterministic computations. Figure 4 shows the last four steps
of the example. While, the underscore represents a non-evaluated expression, the
exclamation mark stands for an initiated but not jet finished computation.

- X
e DG
- X
TR
add
{v01l -»1
1 | 3
- 01 31y Clear Backwardl Forwardl Exnl
L ! (h01 1
1 ! |
Y [(rol 1y ’g
S — /
= = =

Fig. 4. A trace window

By storing the number of incoming events in a list we can also perform backward
and forward stepping through the observations presented in one observation window
by filtering the TreesTable with respect to a subsets of considered indices.

For removing the evaluation trees from the TreesTable we have defined a clear-
button in each trace window. Furthermore when the observed program is restarted
the TreesTable is cleared automatically.

6 Executed Parts of the Program

In some cases programmers prefer to follow the order of program execution instead of
observing functions to see the program behavior during the execution. Furthermore,
knowing which parts of the program have been executed is an interesting information
for the programmer, because this restricts the possible locations of a bug to the
executed parts. Observers should only be added to executed code. iCODE provides
such a feature which can also be useful for testing small separate functions of a
program and focus on a small environment of the program for being observed.
Another nice feature of constantly showing the executed parts of a program is

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 119

that in case of the program yielding No more solutions, the last marked expression
usually shows where the computation finally failed. In many cases, the last marked
expression determines the reason for an unexpected program failure or run-time
error. To keep the result view of our tool small (c.f. Figure 5), we take the following
artificial program as an example:

test :: [Int] -> [Int]
test xs = bug xs ++ okay xs

bug :: [Int] -> [Int]
bug [1 = []

okay :: [Int] -> [Int]
okay xs = Xs

The function bug represents a failing computation which might be much more com-
plex in a real application. iCODE’s presentation of the execution of test [1] is
shown in Figure 5. The program is again represented as a tree (Section 3), in which
executed parts are marked green and the last executed expression is marked red.
We can see that the function okay is never applied. The bug may either be located
in the application of bug to xs or within the function bug. Furthermore, we can see
that the program finally failed when the function bug was applied to xs.

| E} Execut Parts — |2
Mome/phsaTestCooisy .curry
«I »I A ust show result Hefre.s‘.‘rl Siear | Enit
S boed fogio sl varTabies
— All Functions
| el
— by wsl v+ (okay s
- bug ==
- okay x5
b = test T
- bug
[1
- okay
x5
| |
= I~
I |
=] P
Program Execution: 40%

Fig. 5. Marking the executed part of the program

The viewer also shows how many times the executed functions are called. For
a non-terminating computation, this information can be helpful to find the non-
terminating recursion.

For marking expressions, iCODE adds calls to the function markLineNumber
applied to the position of the actual expression in a flat-tree of the curry program:

markLineNumber :: String -> Int -> a -> a

To distinguish the expressions of imported modules from the main module, the
function takes the name of the actual module as its first argument. The second
argument is the position of the actual expression in a flat-tree representing the
whole program and the third argument is the executed expression that the function

120 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

markLineNumber behaves as an identity function on. Executing this function, the
first and second argument are sent as a message from the executed application to
the main window of iCODE (Section 5). In the main window process, the message
initiates a marking of the corresponding position of the actual expression in the
viewer with the ability of backward and forward stepping on the marked expressions.
This technique is a light-weight implementation of program slicing as defined in [3].
Furthermore, it will be interesting to investigate how this kind of slicing can be used
for improving debugging like done in [4].

7 Related Work

iCODE is an observational debugger for the functional logic language Curry which
extends Gill’s idea (HOOD) [1] to observe data structures of program expressions.
It is an improvement of COOSY that covers all aspects of modern functional logic
languages such as lazy evaluation, higher order functions, non-deterministic search,
logical variables, concurrency and constraints.

iCODE offers a comfortable graphical user interface that helps the user to conve-
niently and automatically observe the evaluation of arbitrary program expressions.
It displays the observation steps as a comprehensive summary, based on pretty-
printing.

The graphical visualization of HOOD (GHOOD) [7] also uses Gill’s idea to ob-
serve the expressions of a program. In contrast to HOODs comprehensive summary
as a textual visualization, GHOOD offers a graphical visualization, based on a tree-
layout algorithm which displays the structure of the selected expression of a program
as a tree. However, also in GHOOD observers have to be added manually which
still means more effort than using iCODE.

For having a suitable overview of large programs, GHOOD offers a graphical
visualization instead of textual information. This is nice for educational purposes.
However, for real application the textual representation seems more appropriate
and we decided to keep COOSY’s textual representation within iCODE. As an
improvement we present the trace for each selected expression in a separate window
which the user can conveniently move or even close within his graphical environment.

Also related to debugging lazy languages is the Haskell tracer Hat [8]. It is based
on tracing the whole execution of a program, combined with different viewing tools
supporting users to conveniently analyze the recorded trace. Although Hat is a
powerful debugging tool, there are also some disadvantage of Hat compared to
observation based debugging:

e Hat is restricted to a subset of Haskell. Extension of Haskell can not be covered
easily and Hat cannot be used at all to analyze programs using such extensions.

¢ During the execution, large trace files are generated which may slow down using
the tracer for debugging real applications a lot.

These disadvantages do not hold for iCODE which is still light-weight and works
independently of Curry extension (at least for that parts of a program not using

P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122 121

the extension). On the other hand, having the whole program as a data structure
in iCODE, some more global information like in Hat can be computed (like the
line information discussed in Section 6). However, iCODE is supposed to stay a
light-weight and easy to use debugger.

8 Conclusion

Sometimes it is hard to figure out what caused an unexpected output or program
failure. A well implemented, easy to use debugger is needed to help the programmer
in finding the position of the error in the program quickly and easily.

We have extended the Curry Object Observation System [2] in a new version to
provide a comfortable graphical interface as Interactive Curry Observation DEbug-
ger. It helps the programmer to observe data structures or functions of arbitrary
expressions of her/his program to find bugs. Using iCODE is very simple and should
be accessible to beginners which we want to investigate in our next lectures about
declarative programming.

Distributed programming helps us to send the information about the observed
expressions through a socket and to show each computed expression in a trace win-
dow in parallel. The trace windows separate the display of observation steps for
selected expressions and offer an understandable result for programmers. The infor-
mation about observed expressions/functions is collected in each trace window and
the ability of going forward and backward on the collected information is provided
for the programmer.

The programmer does not need to add annotations to her/his program to observe
the desired expressions. These annotations are added automatically by iCODE. A
tree containing all program expressions (i.e. global and local functions, patterns,
variables and all subexpressions) is provided for the programmer. Each selection in
this tree activates iCODE to write the annotations in an extra file automatically,
without changing the original program. Also larger projects consisting of different
modules are supported.

For future work, we want to improve observations of polymorphic functions by
generating specialized versions for each usage of observed polymorphic functions.
Furthermore, we plan to investigate, how our tool can also be used as a platform for
other development tools for Curry, like refactoring, test environment and program
analysis. Another possible future work could result from the fact that our tool
holds a lot of meta information about debugged programs. Hence, it could be
possible to add observations to every/many program functions automatically and
derive information about the connection between different observations which may
improve debugging.

References

[1] A. Gill. Debugging Haskell by Observing Intermediate Data Structures. Electr. Notes Theor. Comput.
Sci., 41(1), 2000.

122 P.H. Sadeghi, F. Huch / Electronic Notes in Theoretical Computer Science 177 (2007) 107-122

[2] B. BraBel, O. Chitil, M. Hanus and F. Huch. Observing Functional Logic Computations. In Proc. of

the Sizth International Symposium on Practical Aspects of Declarative Languages (PADL’04), pages
193-208. Springer LNCS 3057, 2004.

[3] C. Ochoa, J. Silva and G. Vidal. Lightweight Program Specialization via Dynamic Slicing. In Proc. of
the Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages 1-7. ACM Press,
2005.

[4] O. Chitil. Source-based trace exploration. In C. Grelck, F. Huch, G. J. Michaelson and P. Trinder,
editors, Implementation and Application of Functional Languages, 16th International Workshop, IFL
2004, LNCS 3474,pages 126—-141. Springer, March 2005.

[5] M. Hanus. Dynamic Predicates in Functional Logic Programs. In Journal of Functional and Logic
Programming, volume 5. EAPLS, 2004.

[6] M.Hanus et. al. PAKCS: The Portland Aachen Kiel Curry System, 2004. Available at
hitp://www.informatik.uni-kiel.de/~ pakcs.

[7] C. Reinke. GHood — Graphical Visualisation and Animation of Haskell Object Observations. In Ralf
Hinze, editor, ACM SIGPLAN Haskell Workshop, Firenze, Italy, volume 59 of Electronic Notes in
Theoretical Computer Science, page 29. Elsevier Science, September 2001. Preliminary Proceedings
have appeared as Technical Report UU-CS-2001-23, Institute of Information and Computing Sciences,
Utrecht University. Final proceedings to appear in ENTCS.

[8] M. Wallace, O. Chitil, T. Brehm and C. Runciman. Multiple-View Tracing for Haskell: a New Hat. In
Ralf Hinze, editor, Preliminary Proceedings of the 2001 ACM SIGPLAN Haskell Workshop, pages
151170, Firenze, Italy, September 2001. Universiteit Utrecht UU-CS-2001-23. Final proceedings to
appear in ENTCS 59(2).

[9] M. Hanus. Curry: An Integrated Functional Logic Language, 2006.
[10] M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces. In PADL ’00:
Proceedings of the Second International Workshop on Practical Aspects of Declarative Languages,

pages 4762, London, UK, 2000. Springer-Verlag.
[11] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley Longman,Inc., 1998.

	Introduction
	A Review on Observations in COOSY
	Tree Presentation of a Program
	Automatic Observations in iCODE
	Observing Functions
	Observing Data Types
	Observing Expressions
	Observing Imported Modules

	Design of iCODE
	Architecture
	Surfing Observation

	Executed Parts of the Program
	Related Work
	Conclusion
	References

