
A purely functional implementation of ROBDDs in Haskell

Jan Christiansen and Frank Huch
{jac,fhu}@informatik.uni-kiel.de

Christian Albrechts University Kiel, Germany

Abstract

This paper presents an implementation of the ROBDD data structure in Haskell. It shows
that lazy evaluation can be used to improve the performance of some ROBDD algorithms.
While standard implementations construct the whole structure no matter which parts are
demanded we use lazy evaluation to provide a more demand driven construction. To
achieve this behavior we have to relax a property that guarantees that ROBDDs contain
no redundant nodes. All measurements show that relaxing causes only a small number of
additional nodes. Furthermore we present an equality checkimplementation that performs
well although it does not make use of canoicity. The canonicity is lost because of the
relaxing. The equality check implementation benefits highly from laziness.

1 INTRODUCTION

A Reduced Ordered Binary Decision Diagram (ROBDD) is a data structure to
represent boolean expressions. It is a compact representation that provides effi-
cient operations for its manipulation. All BDD Package implementations, i.e., the
ROBDD data structure with a couple of operations that are used in practice are
written in C or C++. This paper presents the implementation of a BDD Package in
Haskell.

We investigate the use of lazy evaluation to save unnecessary computations.
This idea was already mentioned by Bryant who introduced ROBDDs [4]: ”One
possibility would be apply the idea of ’lazy’ or ’delayed’ evaluation to OBDD-
based manipulation. That is, rather than eagerly creating afull representation of
every function during a sequence of operations, the programwould attempt to con-
struct only as much of the OBDDs as is required to derive the final information
desired.”. Even the idea of using Haskell was brought up by Launchbury et al. [5]:
”An even more interesting question may be whether there’s some way to play off of
Haskell’s strengths and take advantage of laziness.”. These two citations document
the relevance behind the idea of this paper. To the best of ourknowledge, despite
these citations there is no approach to a lazy BDD Package implementation.

The less memory is used by an ROBDD the greater ROBDDs can be handled.
If some of the ROBDD parts are not needed at all we do not have toconstruct them.
The implementation of this idea in a strict language would bevery hard. In Haskell
we get this feature for free.

Even though we do not beat an up-to-date C implementation we show that the
idea of lazy evaluation can be applied to the area of ROBDD manipulation. The



a) 0 1

x3 x3

x2 x2

x1

x3 x3

b) 0 1

x3

x2 x2

x1

FIGURE 1. An OBDD a) and an ROBDD b) for (x1∧x2)∨ (x1∧x3)∨ (x2∧x3)

insights presented in this paper can potentially be taken back to strict languages to
improve standard implementations.

2 ROBDDS

Lee introduced a data structure called Binary Decision Diagram (BDD) [11] which
was popularized by Akers [1]. A BDD is a directed acyclic graph (DAG) which
consists of two types of nodes. There are leaves labeled0 and1 representing the
boolean valuesfalse and true and there are variable nodes. These nodes are la-
beled with boolean variables. A variable node has two successors, its low and high
successor. The BDD that is rooted at the low successor represents the boolean ex-
pression that is yielded by substitutingfalse for the variable. The high successor
represents the boolean expression that is yielded by substituting true. A BDD with
a fix variable order, i.e., the variables on all paths from theroot node to a leaf occur
in the same order is called OBDD (Ordered BDD). Figure 1 a) shows an OBDD for
the expression(x1∧x2)∨ (x1∧x3)∨ (x2∧x3) and the variable orderx1 < x2 < x3.
This OBDD is the OBDD of worst case size for this expression.

In the worst case OBDDs have exponential size with respect tothe number
of variables. There are various OBDDs of different sizes that represent the same
boolean function. Bryant introduced two properties for OBDDs and called OBDDs
that satisfy these properties ROBDDs (Reduced OBDDs) [3].

An OBDD can contain two nodes with the same variable, low and high succes-
sor. For example, the two center nodes labeledx3 in Figure 1 a) are equal in this
respect. If we redirect all edges that point to one of these nodes to the other one
the resulting OBDD still represents the same function. Figure 2 a) illustrates this
transformation. If no node of an OBDD can be simplified in thisway the OBDD
satisfies thesharingproperty.

An OBDD can contain nodes whose low and high edge point to the same node.
In Figure 1 a) both edges of the outermost nodes labeledx3 point to the same
node, namely thezeroandone leaf respectively. The value of the whole boolean



a)

xk

xn

xk

xm

⇒
xm xn

xk

b)

xm

xn

⇒ xn

FIGURE 2. Sharing Property a) and No-Redundancy Property b)

expression is independent of the value of this variable. If we redirect all edges that
point to a node like this to its successor the resulting OBDD still represents the
same function. Figure 2 b) illustrates this transformation. If no node of an OBDD
can be simplified this way the OBDD satisfies theno-redundancyproperty.

OBDDs that satisfy thesharing and theno-redundancyproperty are called
ROBDDs. For a boolean functionf and a fix variable order the ROBDD is the
OBDD of minimal size of all OBDDs that representf . The operation that applies
these two transformations to an OBDD and yields an ROBDD is called reduction.
Figure 1 b) shows an ROBDD for the boolean expression(x1 ∧ x2)∨ (x1 ∧ x3)∨
(x2∧x3). While the worst case OBDD for this expression has 9 nodes theROBDD
has only 6.

Bryant proved [3] that ROBDDs are canonical with respect to avariable order.
That is, for a fix variable order every boolean function is represented by exactly
one ROBDD. All boolean expressions that are not satisfiable,i.e., that are the con-
stant functionfalseare represented by the same ROBDD namely the single0 leaf.
Similarly, all tautologies are represented by the same ROBDD namely the1 leaf.
Therefore, the satisfiability and the tautology check for ROBDDs are inO(1). For
a canonical representation the equality check is very simple because two ROBDDs
are equal iff they are isomorphic.

Bryant presented operations for the efficient manipulationof ROBDDs. These
operations have worst case behaviors that are linear in the number of nodes of the
ROBDD they are applied to. They base on the use of memoizationto process equal
subtrees only once.

3 ROBDD IMPLEMENTATION IN HASKELL

The idea behind the implementation of the ROBDD data structure in Haskell is to
represent a directed acyclic graph by a tree with shared sub-trees. The algebraic
data type that implements this tree is calledOBDD. There is one constructor for the
nodes that takes a variable of typeVar and one nullary constructor for each leaf.

data OBDD = OBDD OBDD Var OBDD
| Zero
| One



A consumer function traverses theOBDD. It memoizes the results of the processing
of all sub-OBDDs. Before a sub-OBDD is processed the function checks whether an
equal sub-OBDD has been processed before.

Haskell provides no mechanism to check pointer equality of two terms, i.e., to
check whether two terms are shared. Because a comparison of whole sub-OBDDs
would be inefficient we need explicit sharing in addition to the implicit sharing.
The explicit sharing provides an efficient method to memoizeprocessed sub-OBDDs
and to preserve thesharingand theno-redundancyproperty.

To implement explicit sharing, we associate every node of anROBDD with a
unique identifier. These ids are integer values and we call them NodeIds. The
NodeId of a node uniquely determines the structure of a sub-ROBDD within an
ROBDD. That is, the root nodes of two sub-OBDDs have equalNodeIds iff these
sub-OBDDs are structurally equal.

To check whether a node is redundant theNodeIds of the two successors of
a node are compared. If they are equal the node is redundant. The consumer
functions use theseNodeIds for memoization. They memoize all partial results
using a map calledmemo map.

To preserve thesharing property we use a map that contains all constructed
nodes. This mapping maps triples consisting of theNodeIds of low and high
successor and the variable number to theNodeId of the node. Because of the shar-
ing property an ROBDD contains no two nodes with the same triple but different
NodeIds. When a node is constructed it is looked up in this map. This way two
nodes with the same low and high successor and variable number get the same
NodeId. Because the construction works bottom-up this preserves the sharing
property. We do not only storeNodeIds in this map but whole sub-OBDDs. That
way equal sub-OBDDs are implicitly shared. Since this map is the reverse mapping
of the structure of the ROBDD we refer to it as thereverse map. The ROBDD
data type combines theOBDD and thereverse mapthat is implemented by the type
RevMap.

data ROBDD = ROBDD OBDD RevMap

Each node is enriched with aNodeId. The leaves have the staticNodeIds 0
and 1. We use an additional constructor calledRef to mark references, i.e., sub-
OBDDs that are shared. To save memory we merge everyRef constructor with the
outermostOBDD constructor of its argument and call the constructorRefOBDD. We
refer to aRefOBDD constructor as a reference node and to anOBDD constructor as
an original node.

data OBDD = OBDD OBDD Var OBDD NodeId
| RefOBDD OBDD Var OBDD NodeId
| Zero
| One

References that point to leaves are not represented byRef constructors. All
leaves are represented by the constructorsZero andOne no matter whether they
are a reference or not. Haskell shares constants, i.e., allZero leaves require the



0 1

x3

x2 x2

x1

(OBDD (OBDD Zero
2
(OBDD Zero 3 One 4)
3)

1
(OBDD (RefOBDD Zero 3 One 4)

2
One
5)

6)

FIGURE 3. ROBDD and OBDD for the expression (x1∧x2)∨ (x1∧x3)∨ (x2∧x3)

memory of one unary constructor. The same holds for allOne leaves.
We assure that anOBDD contains exactly one original node for everyNodeId.

That is, there are no twoOBDD constructors with the sameNodeId in anOBDD data
structure. The original node is always the leftmost node of all nodes with the same
NodeId in an OBDD. This decision is arbitrary but it has to be considered in the
implementations of the consumer functions. Figure 3 shows an ROBDD and the
OBDD data structure for this ROBDD.

We generalize the implementation of consumer functions. Wepresent this gen-
eralization here to show how theOBDD data structure is used. Thefold function
for OBDDs is based on the standard fold function for binary trees. It uses amemo
map to memoize partial results. The application offold to a leaf yields one of
the two neutral elements. We do not memoize applications to leaves because the
input is constant. Therefore the computation is not expensive. The memoizing of
the result would be more expensive than the computation. Thefold function tra-
verses theOBDD from left to right. If it reaches a reference node the result for this
sub-OBDD was computed before and it is looked up in thememo map. If it reaches
an original node it continues traversing theOBDD and memoizes the result for this
node.

Thefold function only looks up theNodeIds of reference nodes in thememo
map. Without theRefOBDD constructors we would have to look up theNodeIds
of all nodes in thememo map. Iff the look-up fails the node is an original node.
A look-up takes a logarithmic amount of time while checking whether a node is a
reference takes constant time.

It is advantageous for laziness to look up as fewNodeIds as possible. Every
look-up causes the evaluation of theNodeIds of all suspended inserts in thememo
map. Furthermore the information whether a node is a reference or not saves look-
ups in thereverse map. The prevention of these look-ups in thereverse mapis
essential for laziness. This is addressed in detail in the next section. The additional
Ref constructors require additional memory. Even theRefOBDD constructors re-
quire additional memory. The outermost constructor of an original node and a



reference to it cannot be shared. That is, an original node and a reference to it
require the memory for theOBDD data structure plus the memory for oneRefOBDD
constructor. Without theRef constructors we would only need the memory for the
OBDD data structure.

fold :: (a → Var → a → a) → a → a → OBDD → a
fold f ez eo obdd =

fst (fold’ emptyMemoMap obdd)
where
fold’ memomap Zero = (ez, memomap

fold’ memomap One = (eo, memomap)

fold’ memomap (RefOBDD _ _ _ nodeId) =
let Just v = lookupMemoMap nodeId memomap
in
(v, memomap)

fold’ memomap (OBDD low var high nodeId) =
let (lowV, lowMemomap) = fold’ memomap low

(highV, highMemomap) = fold’ lowMemomap high
v = f lowV var highV

in
(v, insertMemoMap nodeId v highMemomap)

The functionrOBDD is a smart constructor for the ROBDD data structure. It
adds a new node to an ROBDD. It takes a variable number, low andhigh successor,
and thereverse mapand yields the resulting ROBDD.

rOBDD :: OBDD → Var → OBDD → RevMap → ROBDD
rOBDD low var high revmap

| getId low==getId high = ROBDD low revmap
| otherwise =
case lookupRevMap low var high revmap of

Just obdd → ROBDD obdd revmap
Nothing → rOBDD2 low var high revmap

First it checks whether the node is redundant. This is the case if theNodeIds
of the successors are equal. In this case the unchangedreverse mapand the low
successor are yielded. We could as well yield the high successor. If theNodeIds
are not equal we look up whether a node with these successors and variable number
already exists. If the look-up succeeds anROBDD is yielded that contains the shared
OBDD and thereverse map. All the OBDDs in thereverse mapare reference nodes.
Therefore the outermost constructors of all reference nodes are implicitly shared.
If the look-up fails the functionrOBDD2 is applied to the arguments.

rOBDD2 :: OBDD → Var → OBDD → RevMap → ROBDD
rOBDD2 low var high revmap =

let obdd = OBDD low var high (nextId revmap)
in
ROBDD obdd (insertRevMap low var high (toRef obdd) revmap)



apply :: (Bool → Bool → Bool) → ROBDD → ROBDD → ROBDD
negate :: ROBDD → ROBDD
restrict :: ROBDD → Var → Bool → ROBDD
anySat :: ROBDD → Maybe Binding
allSat :: ROBDD → [Binding]
evaluate :: Binding → ROBDD → Bool
(==) :: ROBDD → ROBDD → Bool

TABLE 1. Interface of a simple BDD Package

The functionrOBDD2 constructs anOBDD with a new root node and inserts this
OBDD in the reverse map. The functionnextId yields the next freeNodeId and
increases the corresponding counter in thereverse map.

All OBDDs in the reverse mapare reference nodes. Therefore we apply the
functiontoRef to theOBDD which replaces the outermostOBDD constructor by an
RefOBDD constructor.

Table 1 shows the functions of a simple BDD Package. We have implemented
all these operations for the ROBDD data structure that is presented here. The
ROBDD for a boolean expression is constructed by the use of the operationsapply
andnegate. The operationapply combines two ROBDDs with a boolean opera-
tor andnegate negates an ROBDD. The ROBDD for a boolean expression can be
constructed by replacing all boolean operators in the expression by appropriate ap-
plications ofapply. The negations in the expression are replaced by applications
of negate. The ROBDDs for the constantstrue and false and single variables
are simple to construct. The operationrestrict is equivalent to a substitution
of a variable bytrue or false in the boolean expression. The consumer function
allSat yields all satisfying bindings for an ROBDD whileanySat yields only
one. The operationevaluate takes a variable binding and an ROBDD and yields
the boolean value that results from substituting all variables bytrueor falseaccord-
ing to the given binding. Additionally, there is an equalitycheck for ROBDDs.

4 LAZINESS

To check the laziness of this ROBDD implementation we observe which parts of
the OBDD are evaluated when applying the functionanySat. This function is a
good check because it visits only a small number of nodes of the ROBDD. The
operationanySat yields one satisfying binding for an ROBDD. It uses a depth
first traversal to find aoneleaf.

This implementation processes theOBDD from left to right. There is no rule
for anRefOBDD constructor because it never visits a reference node. The function
anySat visits all nodes on the path to the leftmostone leaf and left of it. All
these nodes are original nodes. The reduction constructs the ROBDD from left to
right and bottom up. The predecessor of the leftmostone leaf cannot be shared



because thereverse mapdoes not contain a node whose successor is aone leaf.
All predecessors of this node are not shared because one of their successors is not
shared. Therefore all nodes on the path to the leftmostoneleaf are original nodes.

anySat :: ROBDD → Maybe Binding
anySat (ROBDD obdd _) = anySat’ obdd
where
anySat’ Zero = Nothing

anySat’ One = Just []

anySat’ (OBDD low var high _) =
case (anySat’ low, anySat’ high) of

(Just path, _) → Just ((var,False):path)
(_, Just path) → Just ((var,True):path)

We applyanySat to the ROBDD for the expression(x1∧x2)∨(x1∧x3)∨(x2∧
x3) like it is shown in Figure 1. Figure 4 shows two observations made by the Hood
observer [9, 8]. This tool provides the information which parts of a data structure
are evaluated in a run of a program. Hood provides the function observe ::

String -> a -> a. When it is applied to aString it behaves like the identity
function and additionally records to which result its argument is evaluated. The
String argument defines a name that is associated with this observation. At the
end of the program run the observations of allobserve applications are reported.
Unevaluated parts of a data structure are represented by an underscore.

The left one results from observing theOBDD data structure when applying
anySat to the corresponding ROBDD. The right observation shows thesame ap-
plication for anOBDD that does neither fulfill thesharingnor theno-redundancy
property. Without the two properties only the path to the leftmostOne leaf and all

(OBDD (OBDD Zero
2
(OBDD Zero 3 One 4)
3)

1
(OBDD (RefOBDD Zero 3 One 4)

_
One
5)

_)

(OBDD (OBDD Zero
2
(OBDD Zero 3 One _)
_)

1
_

_)

FIGURE 4. Observations when applying anySat

parts left of it are evaluated. With the properties almost the wholeOBDD structure
is evaluated. AlthoughanySat does not pattern match against theNodeIds all ids
except for the one of the root node are evaluated.

To check whether a node is redundant we compare theNodeIds of the two
successors of a node when it is constructed. To determine theNodeIds of the



x1 x1

FIGURE 5. Situation before a node is shared

successors we have to check whether the successor nodes are redundant. That is,
we have to compare theNodeIds of their successors. This results in the complete
evaluation of theOBDD data structure if it is evaluated to head normal form. This
is not surprising because theNodeIds determine the structure of theOBDD and
we compare theNodeIds of the successors of the root node. That is, in fact we
compare the structure of theOBDDs that are rooted at the successors of the root
node.

Every check for equality of twoOBDDs will cause the evaluation of at least the
outermost constructors of the twoOBDDs. That is, if we make any kind of redun-
dancy check for every node the wholeOBDD structure is evaluated if we evaluate it
to head normal form. To gain any laziness in the constructionof an ROBDD at all
we relax theno-redundancyproperty. That is, we check whether a node is redun-
dant for some nodes of an ROBDD but not for all. Although an ROBDD with re-
laxedno-redundancyproperty is not reduced anymore we carry on using the name
ROBDD. We distinguish between an ROBDD with full and relaxedno-redundancy
property. Sometimes we call an ROBDD with relaxedno-redundancyproperty
short relaxed ROBDD and an ROBDD with fullno-redundancyfull ROBDD. We
refer to the implementation with relaxedno-redundancyas relaxed implementation
and to the implementation with fullno-redundancyas full implementation.

Even withoutno-redundancyproperty the construction is completely strict. We
have to check whether a node already exists by a look-up in thereverse map. This
causes the evaluation of theNodeIds of both successors of a node. Therefore if all
nodes are looked up in thereverse mapthe whole structure is evaluated just like it
is the case withno-redundancyproperty.

Figure 5 illustrates the situation in which a node can be shared. Low and high
edge of the right node point to the same sub-ROBDDs as low and high edge of the
left node. In theOBDD data structure the successors of the right node are reference
nodes. If one of the two successors of the right node would be no reference the
node could not be shared. We would not have to look it up in thereverse map.

Therefore we only look up nodes whose successors are both references. The
look-up of a node causes the evaluation of theNodeIds of the two successors.
We check whether a node is redundant for nodes that are lookedup in thereverse
map. TheNodeIds of the successors of these nodes are evaluated by the look-up
anyway.



rOBDD :: OBDD → Var → OBDD → RevMap → ROBDD
rOBDD Zero _ Zero revmap = ROBDD Zero revmap

rOBDD One _ One revmap = ROBDD One revmap

rOBDD low var high revmap
| isRef low && isRef high =
if getId low==getId high

then ROBDD low revmap
else
case lookupRevMap low var high revmap of
Just obdd → ROBDD obdd revmap
Nothing → rOBDD2 low var high revmap

| otherwise = rOBDD2 low var high revmap

We keep theno-redundancyproperty for leaves. That is, there are no redundant
nodes whose successor is a leaf. Therefore all tautologies are still represented by
the singleone leaf and all unsatisfiable expressions by the singlezero leaf. That
way the complexity of the satisfiability and the tautology are still in O(1).

We construct an ROBDD with relaxedno-redundancyproperty for the expres-
sion(x1∧x2)∨ (x1∧x3)∨ (x2∧x3) and check whether there is a satisfying binding
for this ROBDD. We observe theOBDD data structure when applyinganySat to the
ROBDD. The left part of Figure 6 shows the observations of therelaxed implemen-
tation. The right part shows the observations for the full ROBDD implementation.

(OBDD (OBDD Zero
2
(OBDD Zero

3
One
_)

_)
1
_

_)

(OBDD (OBDD Zero
2
(OBDD Zero

3
One
4)

3)
1
(OBDD (RefOBDD Zero

3
One
4)

_
One
5)

_)

FIGURE 6. Observations for the relaxed implementation

The whole high successor of the root node is not evaluated by the relaxed im-
plementation while it is by the full implementation. In the example with relaxed
no-redundancyall evaluated nodes are not looked up in thereverse map. All these
nodes are known to be no reference nodes because their low successors are original



nodes.
A relaxed ROBDD has more nodes than a full ROBDD. This worsensthe run-

times of some operations on this ROBDD. Besides this a relaxed ROBDD is not
canonical anymore. That is, there is more than one relaxed ROBDD that represents
the same boolean function. By adding a redundant node to a relaxed ROBDD we
change the structure of the ROBDD but do not change the boolean function that it
represents. For a canonical representation the equality check can be implemented
by a check for isomorphy. The equality check for a relaxed ROBDD is more diffi-
cult.

5 EXPERIMENTAL RESULTS

Because our implementation is purely functional we get an additional logarithmic
term in all operations of the BDD Package. This is caused by look-ups and inserts
in thememoand thereverse map.

Figure 7 shows some measurements of the construction of an ROBDD for a
boolean expression and the application of the functionsanySat andeval. The
function eval is a structural equality check forOBDDs. This function is used to
cause the evaluation of the wholeOBDD data structure. It is linear in the number of
nodes of the ROBDD and uses no additional memory. The measurements that are
provided by applications ofeval are used to check the performance of the relaxed
implementation when it cannot benefit from laziness.

We measure the time that is consumed by an application the allocated heap
memory and the number of constructors that are evaluated in theOBDD data struc-
ture. For our performance test we use common boolean functions: e.g.,Integer
16 is the expression(x1∧ x17)∨ . . .∨ (x16∧ x32). This expression has a exponen-
tially large ROBDD representation in the case of the canonical variable order. The
boolean expressionInteger2 is the same boolean expression with another vari-
able order. In this case the number of nodes of the ROBDD is linear in the number
of variables.

The expressionQueens 8 models the eight queens problem. We use a simple
coding that uses one boolean variable to indicate whether a square of the chess
board is occupied by a queen or not. The expressions whose names end with the
string “.cnf” belong to a library of expressions that is usedfor measuring SAT
solvers called SATLIB [10].

For satisfiable boolean expressions, the quotient of evaluated constructors of
the implementation with fullno-redundancyand the implementation with relaxed
no-redundancyranges between 1531.26 forInteger 16 and 1.17 forQueens
8. The number of evaluated constructors of the implementation with relaxedno-
redundancyis less than the number of the implementation with fullno-redundancy
for all satisfiable expressions we have measured. The same holds for the time and
memory consumption of the construction together with an application ofanySat.

The number of evaluated constructors highly depends on the structure of the



Expression Operation No-Red. Time Memory Eval.
Constr.

Integer 16 anySat relaxed 0.00 202,064 214
full 4.36 508,343,316 327689

eval relaxed 4.34 512,543,932 327689
full 4.50 515,689,380 327689

Integer2 1000 anySat relaxed 1.70 294,052,836 505498
full 12.78 1,838,362,908 1504498

eval relaxed 18.00 1,825,750,612 1504498
full 12.98 1,837,786,380 1504498

Queens 8 anySat relaxed 25.28 2,918,337,044 1874446
full 32.00 3,656,326,616 2214256

eval relaxed 32.06 3,630,827,808 2200765
full 32.06 3,656,438,228 2214256

uf20-02.cnf anySat relaxed 0.04 5,287,788 4689
full 0.54 70,327,860 49518

eval relaxed 0.54 71,705,676 50930
full 0.52 70,337,040 49518

hole8.cnf anySat Relaxed 20.32 2,628,758,076 1632847
Full 20.14 2,656,013,124 1635756

eval Relaxed 20.10 2,628,775,708 1632847
Full 20.44 2,656,030,756 1635756

FIGURE 7. Measurements for the construction of ROBDDs

ROBDD. For an unsatisfiable expression the number of evaluated constructors is
naturally the same for the implementation with full as with relaxedno-redundancy
property except for the additional redundant nodes. The expressionhole8.cnf is
unsatisfiable.

All measurements show that the number of redundant nodes of relaxed ROB-
DDs is small. In the measurements in Figure 7 only the exampleuf20-02.cnf

causes the evaluation of more constructors in the relaxed implementation than in
the one with fullno-redundancy. In the examplesQueens 8 andhole8.cnf the
number of evaluated constructors is even smaller in the relaxed than in the full im-
plementation. This can be explained by a feature calleddon’t cares. If the boolean
operator∧ is applied to thezero leaf and an arbitrary ROBDD the result is azero
leaf independent of the second argument. Therefore we do nothave to evaluate
the second argument. The full implementation even causes the evaluation of these
ROBDDs because of the redundancy checks.

6 EQUALITY CHECK

The equality check of relaxed ROBDDs can be implemented by a reduction with
the full no-redundancyproperty and the isomorphy check on the results. The run-
time of this implementation will be worse than the runtime ofthe equality check



Fst Argument Snd Argument Check Time Memory
Queens 7 uf20/uf20-02.cnf Eq1 8.76 1,072,678,276

Eq2 6.52 805,236,876
Eq3 8.36 1,074,401,436

Integer 16 Integer2 1000 Eq1 23.52 2,960,983,720
Eq2 1.38 348,603,336
Eq3 17.86 2,528,539,232

uf20-02.cnf uf20-02.cnf Eq1 1.14 155,922,460
Eq2 1.12 155,722,408
Eq3 1.02 152,363,716

Queens 7 Queens 7 Eq1 16.24 1,989,433,408
Eq2 16.22 1,986,515,412
Eq3 15.56 1,996,502,316

FIGURE 8. Measurements of the Equality Check

for full ROBDDs. This implementation is completely strict.That is, even if the
compared ROBDDs are not equal both ROBDDs are completely evaluated by the
equality check.

We implement the equality check of relaxed ROBDDs by an application of the
boolean operator⇔ and a check whether the result is theoneleaf. This implemen-
tation has a quadratic worst case complexity in a strict language. If the compared
ROBDDs are equal the complexity of this equality check is linear in the size of the
ROBDD. In all other cases the operation benefits from laziness. To check whether
the result of the application of⇔ is theoneleaf it is evaluated to head normal form.
This causes the evaluation of only a part of the ROBDD.

Figure 8 shows some measurements of equality checks. The first two columns
state the arguments of the equality check. The third column states which equality
check is used.Eq1 andEq2 are equality checks of relaxed ROBDDs whileEq3
are checks of full ROBDDs.Eq1 uses a reduction with fullno-redundancyand an
isomorphy check whileEq2 usesapply.

The equality check that uses the isomorphy check of relaxed ROBDDs is al-
ways worse than the one of full ROBDDs. This is caused by the additional reduc-
tion. The measurements for the lazy implementation that usesapply are almost as
good as the one of the isomorphy check which is linear in the size of the ROBDD.
If two unequal ROBDDs are checked this equality check performs even better than
the equality check of full ROBDDs. This is caused by the laziness of this imple-
mentation.

7 RELATED WORK

There is only one ROBDD implementation in Haskell available[2]. This was done
by Jeremy Bradley in 1997. Like stated on their page this implementation is a al-
pha version and not very efficient. We compare the purely functional implementa-



tion using the relaxedno-redundancyproperty with this implementation. Figure 9
shows the results. The Bradley implementation cannot compete with the imple-

Expression Operation Implementation Time Memory
Queens 4 anySat Relaxed 0.04 6,397,652

Bradley 4.04 816,380,772
eval Relaxed 0.06 7,957,572

Bradley 4.02 816,382,228
Integer 11 anySat Relaxed 0.00 138,392

Bradley 33.72 4,784,688,228
eval Relaxed 0.08 13,717,360

Bradley 34.04 4,789,579,276
uf20-02.cnf anySat Relaxed 0.04 5,100,168

Bradley 93.12 17,784,793,116
eval Relaxed 0.52 69,648,632

Bradley 93.10 17,784,817,912

FIGURE 9. Comparison with the Bradley implementation

mentation presented here. This implementation is far better no matter if we use
relaxed or fullno-redundancy. The differences in the runtimes are not surprising
since we use maps that support logarithmic look-up and insert operations while the
Bradley implementation uses a list that supports look-up and insert operations that
are linear in the number of elements. The memory usage of the Bradley implemen-
tation is surprisingly high. This implementation uses onlyone list where we use an
algebraic data type and a map.

There are two implementations of interfaces to BDD packagesusing the for-
eign function interface of the GHC. The first was presented in1999 by Day, Launch-
bury and Lewis [5]. We use a user interface for the construction of boolean ex-
pressions which is very similar to the one presented in that work. They use this
interface to bind the CMU Long BDD Package to Haskell. Their interface is ref-
erentially transparent which allows the user to ignore the details of the imperative
implementation.

The other binding of a BDD Package is HBDD [6]. This is a Haskell interface
that can be used with the CMU Long BDD Package, too. Bindings to CUDD and
BuDDy are planned. HBDD is used in MCK [7] a model checker for the logic of
knowledge written in Haskell. We compare our implementation with the HBDD
binding. This binding is more up-to-date. We use optimizations in this measure-
ments. The C implementation is highly optimized and therefore we want to bring
out the best in our implementation. We do not consider the internal implementa-
tion of the BDD Package. Therefore we are unable to explain the differences in the
measurements considering the internals anyway.

It is not completely clear to this moment whether the memory that is allocated
by the C program is reflected in the values of the profiling. TheHBDD implemen-
tation consumes less time and memory than the implementation presented here in



Expression Operation Implementation Time Memory
Queens 8 anySat Relaxed 8.14 1,413,390,596

HBDD 1,04 1,476,988
eval Relaxed 10.36 1,754,746,240

HBDD 1,04 1,377,600
Integer 19 anySat Relaxed 0.00 166,972

HBDD 0,00 69,916
eval Relaxed 10.54 2,223,653,380

HBDD 0,00 58,256
Integer2 1800 anySat Relaxed 2.92 587,783,116

HBDD 0,04 6,103,648
eval Relaxed 21.82 3,138,158,752

HBDD 0,04 4,080,732

FIGURE 10. Comparison with the HBDD implementation

all measurements. On the one hand the C implementation uses lots of refinements.
A major one is the variable reordering. The best example for the use of variable
reordering is theInteger expression. This expression is of exponential size with
the canonical variable order that is used by our implementation. The best order
causesInteger to be linear in the number of variables likeInteger2 which uses
this optimal variable order. On the other hand C is more efficient than Haskell.

8 CONCLUSION

This paper demonstrates that even a complex data structure like ROBDDs can ben-
efit from laziness. We improve the performance of the operations on ROBDDs
with respect to time and memory consumption. Theno-redundancyproperty of
ROBDDs causes the evaluation of the whole ROBDD when we applyan operation
to it.

Relaxing theno-redundancyproperty is an adequate answer to this problem.
Experiments show that the disadvantages of relaxing are small or not existent. The
number of redundant nodes is very small for all examples we have measured. More
or less all operations benefit from laziness. Relaxing theno-redundancyproperty is
an elementary modification of the ROBDD data structure. Thisis in fact a variation
of the data structure and not an implementation detail.

One disadvantage of the implementation presented here is that it does not use
onereverse mapfor all ROBDDs. This is an extension that was proposed shortly
after the publication of the ROBDD data structure. If we use one reverse mapthe
number of nodes is reduced because ROBDDs share equal sub-ROBDDs. Addi-
tionally the performance of the construction is improved. The apply operation
memoizes the application of a boolean operator to a pair of sub-ROBDDs. With
one reverse mapall applications ofapply with a specific boolean operator can
share one memoization map.



The use of onereverse mapwould require use to pass thereverse mapfrom one
application ofapply to another. Therefore it would require a monadic like imple-
mentation of the construction of an ROBDD. First tests showed that this extension
does not cooperate with laziness. That is, we lose laziness in the construction if we
use it. One look-up in thereverse mapwould cause the evaluation of allNodeIds
of the nodes that were constructed so far.

Apart from the advantages in the semantics it is very hard to benefit from lazi-
ness if this should exceed the standard examples like infinite data structures. It is
very easy to destroy the laziness of an algorithm. Furthermore it is very difficult to
locate the origin because of the complexity of lazy evaluation. Its unlikely that an
algorithm is implemented without bothering about lazinessand benefits from it as a
side effect. There are no tools that explicitly support the design of lazy algorithms.

We hope that this paper is the starting point for further research on the benefits
and disadvantages of lazy evaluation for the efficiency of algorithms. Still today
eight years after the definition of the Haskell 98 Standard this issue is highly up-
to-date.

REFERENCES

[1] Akers, S., Binary Decision Diagrams, IEEE Trans. actions on ComputersC-27
(1978), pp. 509–516.

[2] Bradley, J., Binary decision diagrams - A functional implementation(1997),
http://www.cs.bris.ac.uk/ bradley/publish/bdd/.

[3] Bryant, R. E.,Graph-based algorithms for boolean function manipulation, IEEE
Trans. Comput.35 (1986), pp. 677–691.

[4] Bryant, R. E.,Symbolic boolean manipulation with ordered binary-decision dia-
grams, ACM Comput. Surv.24 (1992), pp. 293–318.

[5] Day, N. A., J. Launchbury and J. Lewis,Logical abstractions in Haskell, in: Pro-
ceedings of the 1999 Haskell Workshop(1999).

[6] Gammie, P.,A Haskell binding to Long’s BDD library,
http://www.cse.unsw.edu.au/ mck/.

[7] Gammie, P. and R. van der Meyden,MCK: Model checking the logic of knowledge,
in: Proceedings of the 16th International conference on Computer Aided Verification,
CAV, 2004, pp. 479–483.

[8] Gill, A., Debugging haskell by observing intermediate data structures(2000).

[9] Gill, A., The haskell object observation debugger(2000),
http://www.haskel.org/hood/.

[10] Hoos, H. H. and T. Stützle,SATLIB: An online resource for research on SAT, in: SAT
2000(2000), pp. 283–292, http://www.satlib.org.

[11] Lee, C.,Representation of switching circuits by binary decision diagrams, Bell Sys-
tem Technical Journal38 (1959), pp. 985–999.


