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Abstract

This paper presents an implementation of the ROBDD datatsirelin Haskell. 1t shows

that lazy evaluation can be used to improve the performahserne ROBDD algorithms.

While standard implementations construct the whole stinecho matter which parts are
demanded we use lazy evaluation to provide a more demanednddenstruction. To

achieve this behavior we have to relax a property that gteearthat ROBDDs contain
no redundant nodes. All measurements show that relaxingesaanly a small number of
additional nodes. Furthermore we present an equality cingglementation that performs
well although it does not make use of canoicity. The canonisi lost because of the
relaxing. The equality check implementation benefits higidm laziness.

1 INTRODUCTION

A Reduced Ordered Binary Decision Diagram (ROBDD) is a datactire to
represent boolean expressions. It is a compact repreisenthtt provides effi-
cient operations for its manipulation. All BDD Package iempentations, i.e., the
ROBDD data structure with a couple of operations that arel iisgractice are
written in C or C++. This paper presents the implementatioaBDD Package in
Haskell.

We investigate the use of lazy evaluation to save unnegessanputations.
This idea was already mentioned by Bryant who introduced BD8[4]: "One
possibility would be apply the idea of 'lazy’ or 'delayed’ auation to OBDD-
based manipulation. That is, rather than eagerly creatifull aepresentation of
every function during a sequence of operations, the progvauid attempt to con-
struct only as much of the OBDDs as is required to derive tha fifformation
desired.”. Even the idea of using Haskell was brought up hynchbury et al. [5]:
"An even more interesting question may be whether therersesoay to play off of
Haskell's strengths and take advantage of laziness.”. &tves citations document
the relevance behind the idea of this paper. To the best dfrmawledge, despite
these citations there is no approach to a lazy BDD Packagleingmtation.

The less memory is used by an ROBDD the greater ROBDDs canrizbieul
If some of the ROBDD parts are not needed at all we do not hagertstruct them.
The implementation of this idea in a strict language woulddny hard. In Haskell
we get this feature for free.

Even though we do not beat an up-to-date C implementatiorhaw that the
idea of lazy evaluation can be applied to the area of ROBDDipudation. The



FIGURE 1. An OBDD a) and an ROBDD b) for (x1 AX2) V (X1 AX3) V (X2 A X3)

insights presented in this paper can potentially be takek twastrict languages to
improve standard implementations.

2 ROBDDS

Lee introduced a data structure called Binary Decision @iag(BDD) [11] which
was popularized by Akers [1]. A BDD is a directed acyclic drgpAG) which
consists of two types of nodes. There are leaves lal&katd 1 representing the
boolean valuegalse andtrue and there are variable nodes. These nodes are la-
beled with boolean variables. A variable node has two s@orssits low and high
successor. The BDD that is rooted at the low successor mmsethe boolean ex-
pression that is yielded by substitutifgise for the variable. The high successor
represents the boolean expression that is yielded by tutbggitrue. A BDD with

a fix variable order, i.e., the variables on all paths fromrta node to a leaf occur
in the same order is called OBDD (Ordered BDD). Figure 1 ajwsten OBDD for
the expressiofix; A X2) V (X1 AX3) V (X2 A X3) and the variable ordeq < xp < Xs.
This OBDD is the OBDD of worst case size for this expression.

In the worst case OBDDs have exponential size with respethi@acumber
of variables. There are various OBDDs of different size$ thpresent the same
boolean function. Bryant introduced two properties for QBland called OBDDs
that satisfy these properties ROBDDs (Reduced OBDDs) [3].

An OBDD can contain two nodes with the same variable, low agd succes-
sor. For example, the two center nodes labetgth Figure 1 a) are equal in this
respect. If we redirect all edges that point to one of theskesdo the other one
the resulting OBDD still represents the same function. Fadlia) illustrates this
transformation. If no node of an OBDD can be simplified in thisy the OBDD
satisfies thesharingproperty.

An OBDD can contain nodes whose low and high edge point toahesode.
In Figure 1 a) both edges of the outermost nodes labrigooint to the same
node, namely theeroandoneleaf respectively. The value of the whole boolean
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FIGURE 2. SharingProperty a) and No-Redundancy Property b)

expression is independent of the value of this variable.efedirect all edges that
point to a node like this to its successor the resulting OBEiDrepresents the

same function. Figure 2 b) illustrates this transformatidmo node of an OBDD

can be simplified this way the OBDD satisfies tieredundancyroperty.

OBDDs that satisfy thesharing and theno-redundancyproperty are called
ROBDDs. For a boolean functioh and a fix variable order the ROBDD is the
OBDD of minimal size of all OBDDs that represehfit The operation that applies
these two transformations to an OBDD and yields an ROBDDlisdaeduction
Figure 1 b) shows an ROBDD for the boolean expressgiam Xz) VV (X1 A X3) V
(X2 AX3). While the worst case OBDD for this expression has 9 nodeR@BDD
has only 6.

Bryant proved [3] that ROBDDs are canonical with respect vargable order.
That is, for a fix variable order every boolean function isresented by exactly
one ROBDD. All boolean expressions that are not satisfialele that are the con-
stant functiorfalseare represented by the same ROBDD namely the sihigaf.
Similarly, all tautologies are represented by the same RDBBmely thel leaf.
Therefore, the satisfiability and the tautology check forB®Ds are inO(1). For
a canonical representation the equality check is very sirnptause two ROBDDs
are equal iff they are isomorphic.

Bryant presented operations for the efficient manipulatibROBDDs. These
operations have worst case behaviors that are linear inutmar of nodes of the
ROBDD they are applied to. They base on the use of memoizatiprocess equal
subtrees only once.

3 ROBDDIMPLEMENTATIONIN HASKELL

The idea behind the implementation of the ROBDD data stradtuHaskell is to
represent a directed acyclic graph by a tree with sharedrsel: The algebraic
data type that implements this tree is cal@DD. There is one constructor for the
nodes that takes a variable of tyger and one nullary constructor for each leaf.
data OBDD = OBDD OBDD Var OBDD

| Zero
| One



A consumer function traverses tBBDD. It memoizes the results of the processing
of all sub-OBDDs. Before a sulBDD is processed the function checks whether an
equal subaBDD has been processed before.

Haskell provides no mechanism to check pointer equalityofterms, i.e., to
check whether two terms are shared. Because a comparisohobé wuboBDDs
would be inefficient we need explicit sharing in addition e implicit sharing.
The explicit sharing provides an efficient method to mempioeessed subBDDs
and to preserve thgharingand theno-redundancyroperty.

To implement explicit sharing, we associate every node dR@BDD with a
unique identifier. These ids are integer values and we caihtkodel ds. The
Nodel d of a node uniquely determines the structure of a sub-ROBDiimvan
ROBDD. That is, the root nodes of two sa@BbDs have equaNodel ds iff these
sub-OBDDs are structurally equal.

To check whether a node is redundant Maelel ds of the two successors of
a node are compared. If they are equal the node is redunddm. cdnsumer
functions use thesiodel ds for memoization. They memoize all partial results
using a map callechemo map

To preserve theharing property we use a map that contains all constructed
nodes. This mapping maps triples consisting of Koelel ds of low and high
successor and the variable number toNbeel d of the node. Because of the shar-
ing property an ROBDD contains no two nodes with the saméetbpt different
Nodel ds. When a node is constructed it is looked up in this map. Tlag two
nodes with the same low and high successor and variable mugebéhe same
Nodel d. Because the construction works bottom-up this preseivwesharing
property. We do not only storgodel ds in this map but whole subBDDs. That
way equal sulBDDs are implicitly shared. Since this map is the reverse mappin
of the structure of the ROBDD we refer to it as tteverse map The ROBDD
data type combines th@BDD and thereverse maphat is implemented by the type
RevMap.

dat a ROBDD = ROBDD OBDD RevMap

Each node is enriched withNbdel d. The leaves have the statibdel ds 0
and 1. We use an additional constructor calRed to mark references, i.e., sub-
OBDDs that are shared. To save memory we merge eRefryconstructor with the
outermosiOBDD constructor of its argument and call the constru&efr OBDD. \We
refer to aRef OBDD constructor as a reference node and t@aDD constructor as
an original node.
data OBDD = OBDD OBDD Var OBDD Nodel d

| Ref OBDD OBDD Var OBDD Nodel d
| Zero
| One

References that point to leaves are not representeRebyconstructors. All
leaves are represented by the construckarso and One no matter whether they
are a reference or not. Haskell shares constants, i.eZead leaves require the
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FIGURE 3. ROBDD and OBDD for the expression (x1 AX2) V (Xa AX3) V (X2 AX3)

memory of one unary constructor. The same holds fobadl leaves.

We assure that a@BDD contains exactly one original node for evedydel d.
That is, there are no twoBDD constructors with the sanodel d in anOBDD data
structure. The original node is always the leftmost noddlofades with the same
Nodel d in an OBDD. This decision is arbitrary but it has to be considered in the
implementations of the consumer functions. Figure 3 shawR@BDD and the
OBDD data structure for this ROBDD.

We generalize the implementation of consumer functionspkieent this gen-
eralization here to show how ti@BDD data structure is used. Thel d function
for OBDDs is based on the standard fold function for binary treessdswamemo
mapto memoize partial results. The applicationfafl d to a leaf yields one of
the two neutral elements. We do not memoize applicationsaees because the
input is constant. Therefore the computation is not expensihe memoizing of
the result would be more expensive than the computation.f ®hd function tra-
verses thedBDD from left to right. If it reaches a reference node the resuditliis
sub-OBDD was computed before and it is looked up in themo maplf it reaches
an original node it continues traversing t@DD and memoizes the result for this
node.

Thef ol d function only looks up thé&odel ds of reference nodes in tmeemo
map Without theRef OBDD constructors we would have to look up tRedel ds
of all nodes in thememo map Iff the look-up fails the node is an original node.
A look-up takes a logarithmic amount of time while checkingether a node is a
reference takes constant time.

It is advantageous for laziness to look up as fewvdel ds as possible. Every
look-up causes the evaluation of tRedel ds of all suspended inserts in theemo
map Furthermore the information whether a node is a referenoetsaves look-
ups in thereverse map The prevention of these look-ups in treverse maps
essential for laziness. This is addressed in detail in tkegeetion. The additional
Ref constructors require additional memory. Even He¢ OBDD constructors re-
quire additional memory. The outermost constructor of dgimal node and a



reference to it cannot be shared. That is, an original nodeaareference to it
require the memaory for théBDD data structure plus the memory for odRef OBDD
constructor. Without th&ef constructors we would only need the memory for the
OBDD data structure.

fold :: (a - Var - a - a — a — a — OBDD — a
fold f ez eo obdd =

fst (fold enptyMenoMap obdd)

wher e

fold nenomap Zero = (ez, nenonmap

fold menomap One = (eo, nenomap)

fold menomap (RefOBDD _ _ _ nodeld) =
| et Just v = | ookupMenoMap nodel d nenonap
in
(v, menonmap)

fold nmenormap (OBDD | ow var hi gh nodeld) =
let (low, |owMenmonap) = fold nenmomap | ow
(hi ghV, hi ghMenomap) = fold | owMenormap hi gh
v = f low var highV
in
(v, insertMenoMap nodeld v hi ghMenorap)

The functionr OBDD is a smart constructor for the ROBDD data structure. It
adds a new node to an ROBDD. It takes a variable number, lovihigihdsuccessor,
and thereverse mand yields the resulting ROBDD.
rOBDD :: OBDD — Var — OBDD — ReviMap — ROBDD
rOBDD | ow var hi gh revnap

| getld | ow==getld high = ROBDD | ow revnap
| otherwi se =
case | ookupRevMap | ow var hi gh revmap of

Just obdd — ROBDD obdd revnap
Not hi ng — rOBDD2 | ow var high revmap

First it checks whether the node is redundant. This is the ddke Nodel ds
of the successors are equal. In this case the unchaegedse mam@and the low
successor are yielded. We could as well yield the high ssoce$f theNodel ds
are not equal we look up whether a node with these successbrsdable number
already exists. If the look-up succeedsRBDDIs yielded that contains the shared
OBDD and thereverse mapAll the OBDDs in thereverse magare reference nodes.
Therefore the outermost constructors of all reference siade implicitly shared.
If the look-up fails the functiom OBDD2 is applied to the arguments.
roBDD2 :: OBDD — Var — OBDD — ReviMap — ROBDD
rOBDD2 | ow var high revmap =

|l et obdd = OBDD | ow var high (nextld revmap)
In
ROBDD obdd (insertRevMap | ow var high (toRef obdd) revmap)



apply :: (Bool — Bool — Bool) — ROBDD — ROBDD — ROBDD
negate :: ROBDD — ROBDD

restrict :: ROBDD — Var — Bool — ROBDD

anySat :: ROBDD — Maybe Bi ndi ng

all Sat :: ROBDD — [ Binding]

evaluate :: Binding — ROBDD — Bool

(==) :: ROBDD — ROBDD — Bool

TABLE 1. Interfaceof asimple BDD Package

The functionr OBDD2 constructs arOBDD with a new root node and inserts this
OBDD in the reverse map The functionnext | d yields the next fre&odel d and
increases the corresponding counter inrtharse map

All OBDDs in thereverse mapare reference nodes. Therefore we apply the
functiont oRef to theOBDD which replaces the outermoSBDD constructor by an
Ref OBDD constructor.

Table 1 shows the functions of a simple BDD Package. We hap&eimented
all these operations for the ROBDD data structure that isgmed here. The
ROBDD for a boolean expression is constructed by the useeaifpierationsppl y
andnegat e. The operatiorappl y combines two ROBDDs with a boolean opera-
tor andnegat e negates an ROBDD. The ROBDD for a boolean expression can be
constructed by replacing all boolean operators in the egpva by appropriate ap-
plications ofappl y. The negations in the expression are replaced by applisatio
of negat e. The ROBDDs for the constantsue and false and single variables
are simple to construct. The operatioast ri ct is equivalent to a substitution
of a variable bytrue or falsein the boolean expression. The consumer function
al | Sat yields all satisfying bindings for an ROBDD whibnySat yields only
one. The operatioaval uat e takes a variable binding and an ROBDD and yields
the boolean value that results from substituting all vdesibytrue or falseaccord-
ing to the given binding. Additionally, there is an equalityeck for ROBDDs.

4 LAZINESS

To check the laziness of this ROBDD implementation we olesavkich parts of
the OBDD are evaluated when applying the functianySat . This function is a
good check because it visits only a small number of nodeseR@GBDD. The
operationanySat yields one satisfying binding for an ROBDD. It uses a depth
first traversal to find @neleaf.

This implementation processes t0BDD from left to right. There is no rule
for anRef OBDD constructor because it never visits a reference node. Triatidun
anySat visits all nodes on the path to the leftmaste leaf and left of it. All
these nodes are original nodes. The reduction construet®@BDD from left to
right and bottom up. The predecessor of the leftnuyst leaf cannot be shared



because theeverse maploes not contain a node whose successordaedeaf.
All predecessors of this node are not shared because oneioétitcessors is not
shared. Therefore all nodes on the path to the leftronsteaf are original nodes.
anySat :: ROBDD — Maybe Bi nding

anySat (ROBDD obdd _) = anySat’ obdd

wher e
anySat’ Zero = Not hi ng

anySat’ One = Just []

anySat’ (OBDD | ow var high _) =
case (anySat’ low, anySat’' high) of
(Just path, ) — Just ((var, Fal se): path)
(_, Just path) — Just ((var, True): path)

We applyanySat to the ROBDD for the expressidm AXz) V (X1 AX3) V (X2 A
x3) like it is shown in Figure 1. Figure 4 shows two observatiorsimby the Hood
observer [9, 8]. This tool provides the information whichrtpaf a data structure
are evaluated in a run of a program. Hood provides the fumatltsser ve : :
String -> a -> a. When itis applied to &t ri ng it behaves like the identity
function and additionally records to which result its argunhnis evaluated. The
St ri ng argument defines a name that is associated with this obervait the
end of the program run the observations ofadlser ve applications are reported.
Unevaluated parts of a data structure are represented hydenscore.

The left one results from observing tl@BDD data structure when applying
anySat to the corresponding ROBDD. The right observation shows#me ap-
plication for anOBDD that does neither fulfill theharing nor theno-redundancy
property. Without the two properties only the path to thénhefstOne leaf and all

(OBDD (OBDD Zero (OBDD (OBDD Zero
2 2
(OBDD Zero 3 One 4) (OBDD Zero 3 One )
3) )
1 1

(OBDD (Ref OBDD Zero 3 One 4)
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FIGURE 4. Observationswhen applying any Sat

parts left of it are evaluated. With the properties almostwuitinole OBDD structure
is evaluated. AlthoughnySat does not pattern match against twalel ds all ids
except for the one of the root node are evaluated.

To check whether a node is redundant we compareNtu! ds of the two
successors of a node when it is constructed. To determinéidtiel ds of the



FIGURE 5. Situation beforeanodeisshared

successors we have to check whether the successor nodeslandant. That is,
we have to compare thdodel ds of their successors. This results in the complete
evaluation of thedBDD data structure if it is evaluated to head normal form. This
is not surprising because tiNedel ds determine the structure of tt@BDD and

we compare thélodel ds of the successors of the root node. That is, in fact we
compare the structure of th@BDDs that are rooted at the successors of the root
node.

Every check for equality of tw@BDDs will cause the evaluation of at least the
outermost constructors of the tv@BDDs. That is, if we make any kind of redun-
dancy check for every node the whaBDD structure is evaluated if we evaluate it
to head normal form. To gain any laziness in the construcifcan ROBDD at all
we relax theno-redundancyproperty. That is, we check whether a node is redun-
dant for some nodes of an ROBDD but not for all. Although an RDBwith re-
laxedno-redundancyroperty is not reduced anymore we carry on using the name
ROBDD. We distinguish between an ROBDD with full and relaxedredundancy
property. Sometimes we call an ROBDD with relaxeatredundancyproperty
short relaxed ROBDD and an ROBDD with fulb-redundancyull ROBDD. We
refer to the implementation with relax@ed-redundancys relaxed implementation
and to the implementation with fulo-redundancyas full implementation.

Even withoutho-redundancyroperty the construction is completely strict. We
have to check whether a node already exists by a look-up iretlerse mapThis
causes the evaluation of thedel ds of both successors of a node. Therefore if all
nodes are looked up in theverse maphe whole structure is evaluated just like it
is the case witmo-redundancyroperty.

Figure 5 illustrates the situation in which a node can beeshacow and high
edge of the right node point to the same sub-ROBDDs as low igidduge of the
left node. In theOBDD data structure the successors of the right node are reterenc
nodes. If one of the two successors of the right node woulddoeeference the
node could not be shared. We would not have to look it up irreélierse map

Therefore we only look up nodes whose successors are bateneks. The
look-up of a node causes the evaluation of Maelel ds of the two successors.
We check whether a node is redundant for nodes that are lagkédthereverse
map TheNodel ds of the successors of these nodes are evaluated by the pook-u

anyway.



rOBDD :: OBDD — Var — OBDD — RevMap — ROBDD
rOBDD Zero _ Zero revnap = ROBDD Zero revmap

rOBDD One _ One revmap = ROBDD One revnap

rOBDD | ow var hi gh revnap
| isRef low & isRef high =
if getld |l ow==getld high
t hen ROBDD | ow revmap
el se
case | ookupRevMap | ow var hi gh revmap of
Just obdd — ROBDD obdd revmap
Not hi ng — rOBDD2 | ow var high revnap
| otherwi se = rOBDD2 | ow var high revimap

We keep theno-redundancyroperty for leaves. That is, there are no redundant
nodes whose successor is a leaf. Therefore all tautologiestifl represented by
the singleoneleaf and all unsatisfiable expressions by the sizg® leaf. That
way the complexity of the satisfiability and the tautologg afill in O(1).

We construct an ROBDD with relaxetb-redundancyroperty for the expres-
sion(x1 AX2) V (X1 AX3) V (X2 AX3) and check whether there is a satisfying binding
for this ROBDD. We observe theBDD data structure when applyirgy Sat to the
ROBDD. The left part of Figure 6 shows the observations oféexed implemen-
tation. The right part shows the observations for the fulBRBD implementation.

(OBDD (OBDD Zero (OBDD (OBDD Zero
2 2
(OBDD Zero (OBDD Zero
3 3
One One
) 4)
2 3)
1 1
_ (OBDD ( Ref OBDD Zero
3
One
4)
ne
5)

2 2

FIGURE 6. Observationsfor therelaxed implementation

The whole high successor of the root node is not evaluatetidoyelaxed im-
plementation while it is by the full implementation. In theaenple with relaxed
no-redundancyall evaluated nodes are not looked up in teeerse mapAll these
nodes are known to be no reference nodes because their loassacs are original



nodes.

A relaxed ROBDD has more nodes than a full ROBDD. This worskasun-
times of some operations on this ROBDD. Besides this a rdl&@BDD is not
canonical anymore. That is, there is more than one relaxeBiHiDthat represents
the same boolean function. By adding a redundant node t@egadiROBDD we
change the structure of the ROBDD but do not change the bodleetion that it
represents. For a canonical representation the equakiykaten be implemented
by a check for isomorphy. The equality check for a relaxed ROBs more diffi-
cult.

5 EXPERIMENTAL RESULTS

Because our implementation is purely functional we get aitiathal logarithmic
term in all operations of the BDD Package. This is caused bl-lgos and inserts
in thememoand thereverse map

Figure 7 shows some measurements of the construction of 8DRCor a
boolean expression and the application of the functeomgSat andeval . The
function eval is a structural equality check f@aBDDs. This function is used to
cause the evaluation of the wha@dBDD data structure. It is linear in the number of
nodes of the ROBDD and uses no additional memory. The measuts that are
provided by applications afval are used to check the performance of the relaxed
implementation when it cannot benefit from laziness.

We measure the time that is consumed by an application tbheaédld heap
memory and the number of constructors that are evaluatdoei@BDD data struc-
ture. For our performance test we use common boolean funscte.g.,| nt eger
16 is the expressiolix; A X17) V...V (X16 A X32). This expression has a exponen-
tially large ROBDD representation in the case of the carainiariable order. The
boolean expressiohnt eger 2 is the same boolean expression with another vari-
able order. In this case the number of nodes of the ROBDDesiim the number
of variables.

The expressioueens 8 models the eight queens problem. We use a simple
coding that uses one boolean variable to indicate whetheguars of the chess
board is occupied by a queen or not. The expressions whosesnana with the
string “.cnf” belong to a library of expressions that is uged measuring SAT
solvers called SATLIB [10].

For satisfiable boolean expressions, the quotient of etelueonstructors of
the implementation with fulho-redundancyand the implementation with relaxed
no-redundancyranges between 1531.26 font eger 16 and 1.17 forQueens
8. The number of evaluated constructors of the implememtatiith relaxedno-
redundancys less than the number of the implementation with figiredundancy
for all satisfiable expressions we have measured. The salue foo the time and
memory consumption of the construction together with ariegipon of any Sat .

The number of evaluated constructors highly depends ontthetsre of the



Expression | Operation| No-Red.| Time Memory Eval.
Constr.
Integer 16 anySat relaxed 0.00 202,064 214
full 4.36| 508,343,316 327689
eval relaxed 4.34| 512,543,932 327689
full 450| 515,689,380 327689
Integer2 1000 anySat relaxed 1.70| 294,052,836 505498
full 12.78| 1,838,362,908 1504498
eval relaxed | 18.00| 1,825,750,612 1504498
full 12.98| 1,837,786,380 1504498
Queens 8 anySat relaxed | 25.28| 2,918,337,044 1874446
full 32.00| 3,656,326,614 2214256
eval relaxed | 32.06| 3,630,827,808 2200765
full 32.06| 3,656,438,228 2214256
uf20-02.cnf | anySat relaxed 0.04 5,287,788 4689
full 0.54 70,327,860, 49518
eval relaxed 0.54 71,705,676| 50930
full 0.52 70,337,040, 49518
hole8.cnf anySat Relaxed | 20.32| 2,628,758,07§ 1632847
Full 20.14| 2,656,013,124 1635756
eval Relaxed | 20.10| 2,628,775,708 1632847
Full 20.44| 2,656,030,75¢ 1635756

FIGURE 7. Measurementsfor the construction of ROBDDs

ROBDD. For an unsatisfiable expression the number of evaduednstructors is
naturally the same for the implementation with full as wighaxedno-redundancy
property except for the additional redundant nodes. Theessmpnhol e8. cnf is
unsatisfiable.

All measurements show that the number of redundant nodesaxfed ROB-
DDs is small. In the measurements in Figure 7 only the examipd®- 02. cnf
causes the evaluation of more constructors in the relaxgtenmrentation than in
the one with fullno-redundancyIn the exampleSueens 8 andhol e8. cnf the
number of evaluated constructors is even smaller in theedlghan in the full im-
plementation. This can be explained by a feature caltadt cares If the boolean
operatorA is applied to theeroleaf and an arbitrary ROBDD the result izaro
leaf independent of the second argument. Therefore we dbawat to evaluate
the second argument. The full implementation even caugesviluation of these
ROBDDs because of the redundancy checks.

6 EQUALITY CHECK

The equality check of relaxed ROBDDs can be implemented l®daation with
the full no-redundancyproperty and the isomorphy check on the results. The run-
time of this implementation will be worse than the runtimettod equality check



Fst Argument| Snd Argument | Check| Time Memory

Queens 7 uf20/uf20-02.cnf| Eql 8.76 | 1,072,678,276
Eq2 6.52| 805,236,876
Eq3 8.36| 1,074,401,436
Integer 16 Integer2 1000 Eql 23.52| 2,960,983,720
Eq2 1.38| 348,603,336
Eq3 17.86| 2,528,539,232
uf20-02.cnf | uf20-02.cnf Eql 1.14| 155,922,460
Eq2 1.12| 155,722,408
Eq3 1.02| 152,363,716
Queens 7 Queens 7 Eql 16.24| 1,989,433,408
Eq2 16.22| 1,986,515,412
Eq3 15.56| 1,996,502,316

FIGURE 8. Measurements of the Equality Check

for full ROBDDs. This implementation is completely stricthat is, even if the
compared ROBDDs are not equal both ROBDDs are completelyatea by the
equality check.

We implement the equality check of relaxed ROBDDs by an apfibn of the
boolean operatoe> and a check whether the result is threeleaf. This implemen-
tation has a quadratic worst case complexity in a strictdagg. If the compared
ROBDDs are equal the complexity of this equality check isdinin the size of the
ROBDD. In all other cases the operation benefits from lazin&s check whether
the result of the application &f is theoneleaf it is evaluated to head normal form.
This causes the evaluation of only a part of the ROBDD.

Figure 8 shows some measurements of equality checks. Thewvirgolumns
state the arguments of the equality check. The third colutates which equality
check is usedEql andEQ2 are equality checks of relaxed ROBDDs whie3
are checks of full ROBDDsE gl uses a reduction with fullo-redundancyand an
isomorphy check whil&q2 usesappl y.

The equality check that uses the isomorphy check of relax@BDOs is al-
ways worse than the one of full ROBDDs. This is caused by tluitiadal reduc-
tion. The measurements for the lazy implementation thegaysel y are almost as
good as the one of the isomorphy check which is linear in the af the ROBDD.
If two unequal ROBDDs are checked this equality check parfoeven better than
the equality check of full ROBDDs. This is caused by the laggof this imple-
mentation.

7 RELATED WORK

There is only one ROBDD implementation in Haskell availdBle This was done
by Jeremy Bradley in 1997. Like stated on their page this @mantation is a al-
pha version and not very efficient. We compare the purelytianal implementa-



tion using the relaxedo-redundancyroperty with this implementation. Figure 9
shows the results. The Bradley implementation cannot ctenpéh the imple-

Expression | Operation| Implementation| Time Memory
Queens 4 | anySat Relaxed 0.04 6,397,652
Bradley 4.04 816,380,772

eval Relaxed 0.06 7,957,572

Bradley 4.02 816,382,228

Integer 11 | anySat Relaxed 0.00 138,392
Bradley 33.72| 4,784,688,228

eval Relaxed 0.08 13,717,360

Bradley 34.04| 4,789,579,276

uf20-02.cnf| anySat Relaxed 0.04 5,100,168
Bradley 93.12| 17,784,793,116

eval Relaxed 0.52 69,648,632

Bradley 93.10| 17,784,817,912

FIGURE 9. Comparison with the Bradley implementation

mentation presented here. This implementation is far batiematter if we use
relaxed or fullno-redundancy The differences in the runtimes are not surprising
since we use maps that support logarithmic look-up andtioperations while the
Bradley implementation uses a list that supports look-wpiagert operations that
are linear in the number of elements. The memory usage ofrth@ld/ implemen-
tation is surprisingly high. This implementation uses amtg list where we use an
algebraic data type and a map.

There are two implementations of interfaces to BDD packag#sg the for-
eign function interface of the GHC. The first was presented®®0 by Day, Launch-
bury and Lewis [5]. We use a user interface for the constuactif boolean ex-
pressions which is very similar to the one presented in tlmkwThey use this
interface to bind the CMU Long BDD Package to Haskell. Theieiface is ref-
erentially transparent which allows the user to ignore tiimits of the imperative
implementation.

The other binding of a BDD Package is HBDD [6]. This is a Hakketrface
that can be used with the CMU Long BDD Package, too. BindingsWDD and
BuDDy are planned. HBDD is used in MCK [7] a model checker fa togic of
knowledge written in Haskell. We compare our implementatiith the HBDD
binding. This binding is more up-to-date. We use optim@agi in this measure-
ments. The C implementation is highly optimized and theeefee want to bring
out the best in our implementation. We do not consider theria implementa-
tion of the BDD Package. Therefore we are unable to explaifierences in the
measurements considering the internals anyway.

It is not completely clear to this moment whether the membay is allocated
by the C program is reflected in the values of the profiling. AB®OD implemen-
tation consumes less time and memory than the implementptesented here in



Expression Operation| Implementation| Time Memory
Queens 8 anySat Relaxed 8.14| 1,413,390,596
HBDD 1,04 1,476,988
eval Relaxed 10.36| 1,754,746,240

HBDD 1,04 1,377,600

Integer 19 anySat Relaxed 0.00 166,972
HBDD 0,00 69,916
eval Relaxed 10.54| 2,223,653,380

HBDD 0,00 58,256

Integer2 1800 anySat Relaxed 2.92| 587,783,116
HBDD 0,04 6,103,648
eval Relaxed 21.82| 3,138,158,752

HBDD 0,04 4,080,732

FIGURE 10. Comparison with the HBDD implementation

all measurements. On the one hand the C implementation atsex refinements.

A major one is the variable reordering. The best examplehferuse of variable
reordering is the nt eger expression. This expression is of exponential size with
the canonical variable order that is used by our implememtatThe best order
causes nt eger to be linear in the number of variables likat eger 2 which uses
this optimal variable order. On the other hand C is more efficihan Haskell.

8 CONCLUSION

This paper demonstrates that even a complex data struttei@®BDDs can ben-
efit from laziness. We improve the performance of the opamation ROBDDs
with respect to time and memory consumption. Teeredundancyproperty of
ROBDDs causes the evaluation of the whole ROBDD when we agplyperation
to it.

Relaxing theno-redundancyproperty is an adequate answer to this problem.
Experiments show that the disadvantages of relaxing aré snmeot existent. The
number of redundant nodes is very small for all examples we hwasured. More
or less all operations benefit from laziness. Relaxingithveedundancyroperty is
an elementary modification of the ROBDD data structure. ®iisfact a variation
of the data structure and not an implementation detail.

One disadvantage of the implementation presented heratig tthoes not use
onereverse magor all ROBDDs. This is an extension that was proposed shortl
after the publication of the ROBDD data structure. If we use reverse majthe
number of nodes is reduced because ROBDDs share equal SBBHRO Addi-
tionally the performance of the construction is improveche®ppl y operation
memoizes the application of a boolean operator to a pair ROBDDs. With
onereverse mapll applications ofappl y with a specific boolean operator can
share one memoization map.



The use of oneeverse mapvould require use to pass theverse majrom one
application ofappl y to another. Therefore it would require a monadic like imple-
mentation of the construction of an ROBDD. First tests shbthat this extension
does not cooperate with laziness. That is, we lose lazimgb&iconstruction if we
use it. One look-up in theeverse mapvould cause the evaluation of &lbdel ds
of the nodes that were constructed so far.

Apart from the advantages in the semantics it is very harekteefit from lazi-
ness if this should exceed the standard examples like iafifsita structures. It is
very easy to destroy the laziness of an algorithm. Furthegntas very difficult to
locate the origin because of the complexity of lazy evabmatits unlikely that an
algorithm is implemented without bothering about laziresd benefits from it as a
side effect. There are no tools that explicitly support thsigh of lazy algorithms.

We hope that this paper is the starting point for furtheraes®on the benefits
and disadvantages of lazy evaluation for the efficiency gbthms. Still today
eight years after the definition of the Haskell 98 Standarsliisue is highly up-
to-date.
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