
Translating Curry To Haskell
System Demo

Bernd Braßel∗ and Frank Huch
University of Kiel, Institute of Computer Science

Olshausenstr. 40, 24098 Kiel, Germany
{bbr,fhu}@informatik.uni-kiel.de

Abstract
There exist several implementations of the functional logic lan-
guage Curry: a transformation to Prolog and implementations of
abstract machines for C and Java. We show that there are many
advantages of a further implementation as a transformation to
Haskell: increases in performance, availability of libraries and
tools, and open access to the implementation. We present the ba-
sic ideas and a prototypical implementation of our transformation,
which generates Haskell programs without use of impure features.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors (Compilers); D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; D.1.6
[PROGRAMMING LANGUAGES]: Logic Programming

General Terms Languages

Keywords Curry, Haskell, Compiler, Translation

1. Why compile to Haskell?
The language Curry is among the most widely used functional logic
languages, integrating the key concepts of the two main paradigms
of declarative programming: functional and logic programming. It
supports lazy evaluation, logic search, constraint programming, and
a modern polymorphic type system.

1.1 Previous Implementations

According to the nature of Curry, there are three basic ways to
implement the language:

• implement an abstract machine in a suitable base language like
C or Java

• transform Curry programs into logic programs
• transform Curry programs into (lazy) functional programs

Each way has some advantages and disadvantages: Designing an
abstract machine has the advantage of giving the developer full
access to all features, allowing him to gather information about

∗ The research described in this paper has been partially supported by the
German Research Council (DFG) under grant Ha 2457/5-1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WCFLP’05 September 29, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-069-8/05/0009. . . $5.00.

sharing, or control the search mechanisms in order to implement for
instance encapsulated search. However, both functional and logic
programming come with a long history of optimization techniques,
knowledge of how to avoid space leaks, how to design garbage
collection and so on. When implementing a new machine from
scratch, all of this work has to be reimplemented and chances are
high that the machine will be behind state-of-the-art forever. In
addition, libraries of the base language are comparatively hard to
include in the implemented language. From the point of view of
the abstract machine, these libraries are strictly external.

This is what makes approaches to transformation into related
languages promising. All of the optimization techniques for the
base language will be the more effective the lesser the level of in-
terpretation is. There is no need to reimplement garbage collection
or reconsider discussions about space leaks. The greater the simi-
larities between base and implemented language, the easier is the
integration of the base language’s libraries. Furthermore, transfor-
mation to an existing language can involve less work than imple-
menting an abstract machine from scratch. This is because many
of the base language’s features can be used without reconsidering
implementation details of these features.

On the other hand, the developer of a transformation has less
control on program execution. When transforming to a logic lan-
guage, for instance, the developer has to rely on the base language
features to control logic search. Implementing an own approach to
encapsulated search, like the one proposed for Curry in [4], are hard
or even impossible to realize. When transforming to a functional
language (in the following we will consider the lazy functional lan-
guage Haskell [8]), features like sharing are beyond access. This
makes implementing Curry’s features like call-time choice tricky to
transform. Moreover, the developer has to comply with standards
of the target language. For instance, in transforming to Prolog he
has to consider implementing lazy evaluation in a strict language.
When transforming to Haskell he has to obey the type system, if he
wants to take advantage of all of Haskell’s optimizations.

There have been several implementations of abstract machines
for Curry in imperative languages. An early Java implementation
[7] has by now been set aside, an implementation in C [11] has
reached the state of usability. A second attempt to implement Curry
in Java with new concepts is still under development [3]. All of
these implementations more or less follow the idea of compiling
into code for an abstract machine.

To the best of our knowledge, there has been only one trans-
formation of Curry into a declarative language: the system PAKCS
[6] transforms Curry programs to SICStus Prolog [13], thereby us-
ing Prolog’s features of constraint solving, free variables and logic
search. There have been no attempts so far to translate Curry to a
functional language. One of the main reasons for this is the strong
type systems of modern functional languages. Strong typed lan-

60

guages are very good for programmers, but they can be a real obsta-
cle in using them as a target language for program transformations.
Recent generalizations of Haskell’s type system make dynamic typ-
ing possible (classes Dynamics and Typeable, [9]). This allows
the transformation of Curry into Haskell which can be compiled
by the Glasgow Haskell Compiler (ghc) [5]. In the next subsection
we will show that this opportunity is indeed very promising for the
future of Curry.

1.2 What Haskell Could Bring

Although Prolog is also a declarative language, there are many dif-
ferences between Prolog and Curry, more, as we will see, than there
are between Curry and Haskell. Curry is not only syntactically very
close to Haskell, many Curry modules in fact are Haskell programs.
A great part of every-day Curry programming is functional pro-
gramming, and what makes the basic concepts of Curry powerful
is that each function can be used to perform logic search without
changing its definition. Whether a deterministic function is used
logically or functionally only depends on the way it is called: Call-
ing a given function with free variables as arguments automatically
induces a search if these variables are needed, whereas a call with-
out free variables implies a deterministic evaluation like in Haskell.

This fact implies a great deal of potential optimization when
translating Curry to Haskell: whenever we can make ensure by an-
alyzing the source program that a given expression does not induce
non-determinism or binding of free variables, we can simply use
the original Curry code without any transformation at all. Clearly,
this way we will automatically profit from all of Haskell’s opti-
mization techniques. Accordingly, the amount of interpretation is,
even in case of potentially non-deterministic programs, much lesser
than in Prolog. This leads to other advantages like easy integration
of Haskell-libraries, at least for deterministic parts of Curry pro-
grams.

One last point in favor of a Haskell transformation stems from
recent research in encapsulated search: In [4] it was shown that
new basic concepts are needed to provide a declarative access to
search operators. Unfortunately, these concepts are not realizable if
the features normally provided by Prolog are used. As logic search
has to be added to the Haskell transformation, the developer has
full control on this part of the implementation. Thus, a transforma-
tion to Haskell can provide a better, i.e. more declarative, way of
implementing encapsulated logic search.

2. An Example Derivation
In this section, the kernel concepts of treating requests and manag-
ing the bindings of logical variables are exemplified. Note however,
that for the sake of readability, the derivation is only sketched. The
real derivation is about twice as long (and twice as broad).

We consider the follwoing Curry program:

data Nat = O | S Nat

plus x O = x
plus x (S y) = S (plus x y)

isO O = True

main = isO (plus x x) where x free

Its evaluation with respect to Curry’s semantics can be sketched as
follows, where free variables are denoted by X and Y:

main
→ isO (plus X X)
→ isO O | isO (S (plus Y (S Y)))
→ True | 6→

The evaluation induces non-determinism, as (plus X X) demands
instantiating the free variable X with O and (S Y), because these
are the patterns of plus. Only the first of the two branches, sepa-
rated by |, succeeds, the other fails. The important point is that X
is immediately substituted by the binding, wherever it occurs. As
free variables are represented by constructors, no purely functional
implementation of such an immediate variable substitution is pos-
sible. Rather, we wrap the evaluation of the translated expression
with a function top, which manages the bindings for free variables
in a store. Whenever the evaluation of a function demands the value
of a free variable, a request is generated. This request contains a)
the free variable b) the patterns this variable should be bound to, if
it is still free, and c) the function to be applied to the bound variable
in order to continue the evaluation. The request eventually reaches
top, which looks up the variable in the store. If there is no bind-
ing for the variable in the store, top induces a branch for every
requested binding. This is yielding the constructor Or applied to
a list representing the non-deterministic branches, cf. [4]. In these
branches the evaluation continues with top applying the continua-
tion to the binding of the variable.

The evaluation of our example can be sketched as:

main → top [] (isO (plus X X))
→ top [] (isO (Request [O,S Y] X (plus X)))
→ top [] (Request [O,S Y] X (isO . (plus X)))
→ Or [top [X7→O] (isO . (plus X)) O,

top [X7→S Y] (isO . (plus X)) (S Y)]

A nice feature of the translation to Haskell is that laziness enables
us to choose which of the branches should be evaluated next. We
decide to evaluate the first branch only and continue with

top [X7→O] (isO . (plus X)) O
→ top [X7→O] (isO (plus O X))
→ top [X7→O] (isO X)
→ top [X7→O] (Request [O] X (isO_1))
→ top [X7→O] (isO_1 O)
→ top [X7→O] True
→ True

3. Basic Concepts of the Transformation
As a well designed language, Curry has a certain number of ker-
nel structures, with which every Curry program can be expressed.
This kernel is called “FlatCurry” and forms the base of an opera-
tional semantics for Curry [1]. According to this conceptual design
there are front ends, transforming Curry programs to Flat Curry
programs. Therefore, all we have to provide is a transformation of
FlatCurry to Haskell. The general syntax of FlatCurry programs is
listed in Figure 1.

3.1 Transforming Data Declarations

First of all, we have to extend all data declarations by three new
constructors enabling logic programming. In addition to the con-
structor terms which form the values in functional languages, a
functional logic language knows a further kind of value: a free vari-
able. Conceptually there are free variables of any type, representing
all possible values of this type. In addition, failing computations in
Curry to not directly correspond to run-time errors in Haskell. A fail
is not the end of the whole program execution but rather only the
end of the evaluation of a single branch. In order to represent free
variables and failing evaluations correctly, we extend each data type
with additional constructors Fail and FreeVar. For the purpose of
controlling logical search, one further constructor is needed, which
we call Request. The nature of requests will be explained below.
In addition to the new constructors, we derive class instances for
Eq, Show and Typeable, the first of which correspond to general

61

P ::= D1 . . . Dm (program)
D ::= data t(χ1, . . . , χn) = C1| . . . |Cm (type declaration)

| f(x1, . . . , xn) = e (function definition)
C ::= c(τ1, . . . , τn) (constructor definition)
τ ::= χ (type variable)

| t(χ1, . . . , χn) (type)
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| let {xk = ek} in e (let binding)
| let x free in e (free variable)
| e1 or e2 (disjunction)
| case e of {pk → ek} (rigid case)
| fcase e of {pk → ek} (flexible case)

p ::= c(x1, . . . , xn) (pattern)

Domains
P1, P2, . . . ∈ Prog (Programs)

χ, χ1, χ2, . . . ∈ Var (Type Variables)
t, t1, t2, . . . ∈ T (Types)
τ, τ1, τ2, . . . ∈ TExp (Type Expressions)

x, y, z, . . . ∈ Var (Variables)
a, b, c, . . . ∈ C (Constructors)
f, g, h, . . . ∈ F (Functions)

s, s1, s2, . . . ∈ C ∪ F
p1, p2, . . . ∈ Pat (Patterns)

e, e1, e2, . . . ∈ Exp (Expressions)

Figure 1. Syntax of FlatCurry

definitions in Curry,1 the latter is needed to store bindings of free
variables as described below.

For the example from Section 2 we obtain the following type:

data Nat = O
| S Nat
| NatFreeVar Int
| NatFail
| NatRequest (Request Nat)

deriving (Eq, Show, Typeable)

The general scheme of transforming data declarations is easily
derivable from the example.

The main advantage of extending every data type like this, is
that purely functional programs can operate without any change.
If their evaluation does not include non-determinism or binding of
variables, it is guaranteed that there will be only constructors of the
original data declaration.

In order to access the extended values in a uniform way, each
datatype is an instance of the type class Curry, which features
functions of the following types2:

class Typeable a => Curry a where
failed :: a
freeVar :: Int -> a
request :: Request a -> a
isVal :: a -> Bool
isFail :: a -> Bool
isFreeVar :: a -> Bool
freeVarRef :: a -> Int
selectReq :: a -> Request a
subst :: Store -> a -> a
ccase :: Curry b =>

CaseMode a -> (a -> b) -> a -> b
nf :: Curry b => (a -> b) -> a -> b

With the exception of ccase and nf, the instantiation for these
functions is trivial and can easily be conceived from the example
transformation of type Nat:

instance Curry Nat where
failed = NatFail
freeVar = NatFreeVar
request = NatRequest

1 It is possible to derive Eq and Show, because we provided a trivial instance
for the data type Request. By the semantics of the transformed program,
requests are never shown nor compared.
2 The necessity for the class constraint Typeable and the purpose and
definition of requests and the Store will be explained below.

isVal O = True
isVal (S _) = True
isVal _ = False
isFail NatFail = True
isFail _ = False
isFreeVar (NatFreeVar _) = True
isFreeVar _ = False
freeVarRef (NatFreeVar r) = r
selectReq (NatRequest r) = r
subst store O = O
subst store (S x) = S (subst store x)
subst store (NatLogVar r) = fetch store r

The function ccase is one of our kernel concepts. It controls
the evaluation of an expression (its third argument) according to
the semantics of Curry. Its first argument is the CaseMode. There
are three modes, corresponding to Curry’s rigid and flexible case
expressions and to the evaluation to head normal-form.

data CaseMode a = Rigid | Flexible [a] | HNF

Case expressions in FlatCurry are of the form given in Figure 1.
The operational meaning of both case expressions is: Evaluate e to
head normal-form, determine which pattern pi matches this head
normal-form and continue with the evaluation of the corresponding
ei. The difference between a rigid and a flexible case expression
in Curry comes apparent, when e evaluates to a free variable.
The evaluation of a rigid case suspends (residuation) whereas the
evaluation of a flexible case induces a non-deterministic branching,
binding the free variable to each of the patterns pi. Therefore, the
CaseMode Flexible has one argument which is the list of the
bindings for a free variable.

The CaseMode HNF is used where an expression should be
evaluated to head normal-form. In contrast to the modes Rigid
and Flexible the evaluation of a ccase with mode HNF is finished
when the result is a free variable.

The second argument of ccase is a continuation. Whenever
the evaluation of the given expression (ccase’s third argument) is
finished, the continuation is applied to the result. Hence, the first
rules of the transformation of our example type Nat are defined as
follows:

ccase _ f O = f O
ccase _ f v@(S _) = f v

A failure has to be propagated to the top level:

ccase _ _ NatFail = failed

The interesting cases are those treating free variables and incoming
requests. When ccase encounters a free variable, it sends a request

62

to the top level of the evaluation. This is done, because the free
variable might have been bound by the previous evaluation and
all the bindings for free variables are managed at the top level.
A request is either introduced by a case evaluation (CaseReq),
containing a CaseMode and the reference of a free variable (an Int)
or it is a request to create a new free variable (NewVarReq). Both
kinds of requests contain a continuation (b -> a):

data Request a =
forall b. (Curry b, Typeable b) =>
CaseReq (CaseMode b) FreeVarRef (b -> a)

| forall b. (Curry b, Typeable b) =>
NewVarReq (b -> a)

Here is our first use of Glasgow Haskell Compiler’s extensions
to the Haskell98 type system: ghc provides existential types in
data declarations [10]. The data type Request a may contain
CaseModes over arbitrary types b which by means of the con-
tinuation can be converted into a value of type a.

As explained above, when applied to a free variable, the func-
tion ccase has to request the current value of this variable from the
top level, which manages the variable bindings:

ccase m f (NatFreeVar r) = request (CaseReq m r f)

As the request also contains the CaseMode, the top level function
managing the variable bindings can react according to this mode,
i.e. introduce a non-deterministic branching with different bindings
for the variable or suspend the evaluation.

We have to guarantee that every request reaches the top level.
Hence, each ccase forwards incoming requests. This is done by
extending the continuation which is part of every request by the
function forwarding the request:

ccase m f (NatRequest req) =
request (extendCont req (ccase m f))

All definitions like data Request and class Curry are con-
tained in a module Curry.hs. This module also contains the defi-
nition of extendCont:

extendCont (CaseReq m r f) f’ =
CaseReq m r (f’ . f)

extendCont (NewVarReq f) f’ = NewVarReq (f’ . f)

This completes the definition of ccase. The last function to be
explained is nf, which is responsible for evaluating a given expres-
sion to normal form. There are two notable differences between nf
and ccase: 1) nf does not have a CaseMode as argument as its
request always contains the mode HNF and 2) the treatment of com-
plex data structures. Whenever a data declaration defines a complex
constructor c with arity n, nf is responsible for evaluating the nor-
mal forms of the n arguments before reconstructing the term. The
transformation scheme is therefore:

nf f (c x1 ... xn) =
nf (\v1 ->...nf (\vn -> f (c v1...vn)) xn)...x1)

The whole definition of nf for our example type Nat is:

nf f O = f O
nf f (S x1) = nf (\v1 -> f (S v1)) x1
nf _ NatFail = failed
nf f (NatFreeVar r) = request (CaseReq HNF r f)
nf f (NatRequest req) =
request (extendCont req (nf f))

This completes the transformation of data declarations. We can now
examine how function declarations are translated to Haskell.

3.2 Transforming Function Declarations

We present our translation by means of the example from Section 2.
Its FlatCurry representation is
plus x y = fcase x of {O-> y, S z-> S (plus x y)}
isO x = fcase x of {O -> True}
main = let x free in isO (plus x x)

Left-hand sides of functions, variables and function/constructor
calls can be left unchanged.3 An expression (or e e′) is translated
as the construct with the semantically equivalent expression
let x free in fcase x of {True -> e, False -> e’}

The translation of expressions (let x free in e) is straight for-
ward. Free variables are introduced by a call to function free ap-
plied to the continuation (\x->e). The general scheme is therefore

trExp(let x free in e) = free (\x->trExp(e))

and free is defined as4:
free :: (Curry b, Curry a) => (b -> a) -> a
free f = request (NewVarReq f)

The main work for the transformation lies in translating case
expressions. Similar to the scheme proposed in [2], we divide the
tasks of evaluating the given expression to normal form and then
choose the corresponding case branch into two different functions.
Therefore, we introduce an auxiliary function for each case ex-
pression, performing the actual pattern matching. The evaluation
to head normal form is done by a call to the function ccase as
detailed above. The auxiliary function is then the continuation of
ccase. For instance, the example function isO is translated to:
isO x = fcase [O] isO_1 x
isO_1 O = True
isO_1 _ = failed

And generally fcase is defined as:
fcase ps = ccase (Flexible ps)

As explained in Section 3.1, the CaseMode Flexible contains a
list of constructor terms which correspond to the patterns of the
fcase expression. If the third argument of ccase is evaluated to a
free variable, a non-deterministic branching is introduced. In each
branch the variable is bound to one of the constructor terms in the
list. If the constructor term corresponds to a complex pattern, i.e.
headed by a constructor of arity greater than 1, the arguments of the
constructor are fresh free variables. The example function plus is
therefore translated to:

plus x y = fcase [O,S (free (\z->z))] (plus_1 x) y
plus_1 x O = x
plus_1 x (S z) = S (plus x z)
plus_1 _ _ = failed

Finally, the function main is treated specially. This is because ghc
is a stand-alone compiler which expects main to be a constant of
type IO (), marking the start of the computation. The translated
right hand side of main is wrapped by a function start and, if
necessary by a call to print. For our example we obtain:

main = print (start (free (\x -> isO (plus x x))))

And start is generally defined as:

start = top emptyStore (nf id x)

The discussion of the functions top and emptyStore belongs to
the next Section.

3 Some functions and constructors have to be renamed to avoid name
clashes with Haskell definitions.
4 An alternative definition of free is discussed in Section 5.

63

4. Basic Concepts of the Run-Time System
Every Haskell program generated by our compiler imports the
module Curry.hs. This module contains the basic definitions of
our run-time system. We have already presented some of the defini-
tions of Curry.hs, e.g. the type class Curry, the data declarations
CaseMode and Request and the functions extendCont, free and
start. Mentioned, but not defined were the functions fetch, top
and emptyStore. The first topic of this section is the management
of variable bindings.

4.1 Managing Free Variables: the Store

For implementing the store, we need a data structure which holds
bindings for all free variables. Unfortunately, when complying to
the Haskell 98 standard, it is not possible to define a data structure
mapping variable indices (Ints) to values of arbitrary type. The
solution is dynamic typing [9] provided in ghc [5] which allows
the definition of an abstract data type Store with the following
interface:

emptyStore :: Store
newStoreEntry :: Store -> Int -> (Store,[Int])
addToStore :: Typeable a=> Store-> Int-> a-> Store
fromStore :: Typeable a => Store -> Int -> Maybe a

The function newStoreEntry is used to introduce a number of
new free variables, addToStore binds a free variable to a value
and fromStore looks up the binding of a variable. The values read
from the store are directly casted into the correct type, which is
guaranteed to be equal for every occurrence of the same free vari-
able by Curry’s type system. For fast access, the store is efficiently
implemented as a Braun tree [12].

Using this interface, we can now define the function fetch.
fetch is called by all instances of subst, which is contained in the
class Curry as defined above. The purpose of subst is to substitute
all occurrences of free variables by their bindings after a normal
from has been computed, cf. next section.

fetch :: (Curry a) => Store -> Int -> a
fetch store r = case fromStore store r of

Nothing -> freeVar r
Just t -> subst store t

4.2 Representing Search

To represent search in Haskell, our compiler employs the concept
proposed in [4]. There each non-deterministic computation yields
a data structure representing the actual search space. The defini-
tion of this representation is independent of the search strategy em-
ployed and is captured by the following algebraic data type:

data SearchTree a =
Fail | Value a | Or [SearchTree a]

Thus, a non-deterministic computation yields either the successful
computation of a completely evaluated term v (i.e., a term without
defined functions) represented by Value v, an unsuccessful com-
putation (Fail), or a branching to several subcomputations repre-
sented by Or [t1, . . . , tn] where t1, . . . , tn are search trees repre-
senting the subcomputations.

Analogously to findall in MCC, this structure is provided
lazily, i.e., search trees are only evaluated to head normal form.
By means of pattern matching on the search tree, a programmer can
explore the structure and demand the evaluation of subtrees. Hence,
it is possible to define arbitrary search strategies on the structure
of search trees. For instance, depth-first search can be defined as
follows:

depthFirst :: SearchTree a -> [a]
depthFirst (Val v) = [v]

depthFirst Fail = []
depthFirst (Or ts) = concatMap depthFirst ts

Evaluating the search tree lazily, this function evaluates the list of
all values in a lazy manner too. With similar ease, breadth-first
search can be defined [4].

4.3 The Kernel: Function top

It has been mentioned a few times that requests and variable bind-
ings are managed at the top-level of the evaluation. We are now
ready to give the according details, i.e. the definition of the func-
tion top. At the start of the computation, top is applied to an empty
store and an expression of the form nf id e. It has to ensure that
the final result is the normal form of e. First, function top deter-
mines whether the evaluation has finished or a request has to be
treated. If the evaluation was successful, i.e. nf id e was reduced
to a value, any remaining free variables have to be substituted by
their bindings held in the store.

top store x
| isFail x = Fail
| isVal x || isFreeVar x = Value (subst store x)
| otherwise = req store (selectReq x)

The function req is responsible for treating requests. As defined
above, there are two kinds of requests: 1) NewVarReqs originate
from the function free and call for the introduction of a fresh
variable. These requests contain a continuation which is applied
to the newly generated free variable. 2) CaseReqs originate from
case (resp. hnf) expressions and call for looking up the binding of
a given variable. Beside the reference of the variable to look up,
these requests also contain a CaseMode and a continuation. If the
referenced variable is still unbound, the subsequent action depends
on the kind of the requesting case expression, i.e. the CaseMode,
see below. If the variable is bound, the continuation is applied to
the value found in the store.

req s (NewVarReq f) = top s’ (f (freeVar ref))
where (s’,[ref]) = newStoreEntry s 1

req s (CaseReq cm ref f) = case fromStore s ref of
Nothing -> treatCaseMode s cm ref f
Just v -> toplevel s (f v)

Finally, the function treatCaseMode is responsible for the case
that the referenced variable is still free. For a flexible case, the
variable has to be bound to the various values in the pattern list,
thereby inducing a non-deterministic branching if more than one
pattern is given. For a rigid case, the computation suspends, and for
HNF the variable stays free. treatCaseMode is defined locally.

where
treatCaseMode Rigid = suspend
treatCaseMode (Flexible [v]) = newTop v
treatCaseMode (Flexible vs) = Or (map newTop vs)
treatCaseMode HNF = toplevel s (f (freeVar ref))

newTop v = top (addToStore s ref v) (f v)

This concludes the discussion of the run-time system.

5. Call-Time vs. Run-Time Choice
All the concepts discussed so far result in referentially transparent
Haskell programs. There is however one feature of Curry, which is
not efficiently translatable in this way: call-time choice.

A simple standard example shows the difference between run-
time (RTC) and call-time choice (CTC):

coin = or 0 1

64

main1 = coin+coin
main2 = let x=coin in x+x

In RTC, both versions of main reduce to the same value, namely
Or [Or [0,1],Or [1,2]] whereas in CTC, only main1 pro-
duces this value, whereas main2 reduces to Or [0,2].

The example reveals a difference in the notion of referential
transparency between Curry and Haskell. In functional program-
ming, it is part of referential transparency that there may be no
difference between evaluating a given expression once or twice.
The example shows, however, that this is not the case in Curry. In
order to achieve CTC results via a referential transparent Haskell
program, coin has to be extended by an argument and needs to
be applied to the same value in the case of main2 and two differ-
ent values for main1. Obviously, this approach destroys the sharing
explicitly introduced in main2 and because it might be necessary
also to extend the functions calling coin, the approach might de-
stroy sharing in many places. As we fear that such a transformation
might be disastrous for the overall efficiency of the translated pro-
grams, we have chosen a different solution.

Because or expressions are translated by a flexible case, cf.
Section 3.2, there is only a single point where we have to change the
translation in order to achieve CTC: the declaration of free variables
by the function free. If free is defined as

free f = f (freeVar (incGlobalCounter ()))

where incGlobalCounter issues the side effect of adding 1
to a global integer value, evaluating (free,free) results in
(FreeVar 1,FreeVar 2) whereas let x=free in (x,x) re-
sults in (FreeVar 1,FreeVar 1), if the counter was 0 before
evaluation. This solves the problem of introducing CTC for the
price of introducing an impure feature. The main drawback of us-
ing impure features is that we cannot rely on ghc’s compiler op-
timizations since the correctness of the generated programs is not
guaranteed in general.

6. Runtimes
At the moment the compiler is still under development and we have
multiple ideas for runtime-improvements. However, we can already
present some first measurements in comparison to PAKCS[6]. We
compared the following five programs: logLast computes the last
element of a list by means of (++) and strict equality. naive
reverse reverses a list by appending each element at the end of
the list which needs quadratic time. fib 30 is defined by the math-
ematical exponential definition. nondetShare applies logLast to
a list containig two shared calls of fib 30. permsort uses a non-
deterministic version of perm to sort the reverse of a sorted list of
length nine. The results are quite encouraging as the following table
shows5:

PAKCS CTC opt.RTC RTC
logLast 2.5 13.8 [0.18] 8.4 [0.30] 18.5
naive reverse 4.9 2.7 [1.8] 1.5 [3.2] 2.7
fib 30 15.0 4.0 [3.8] 3.5 [4.3] 4.0
nondetShare 30.0 4.2 [7.1] 3.5 [8.6] 4.2
permsort 10.9 11.7 [0.93] 4.1 [2.66] 9.2

We compare runtimes (in seconds) of PAKCS, our compiler with
call time choice (CTC) and run time choice (RTC). For RTC we can
use ghc’s optimizations and obtain the values in column opt.RTC.
The values in square brackets represent the gained speedups com-
pared to PAKCS.

In most cases our compiler produces more efficient code. Only
in computations in which a lot of free variables are guessed and

5 In contrast to SICStus Prolog, ghc does dynamically extend its used
memory. Hence, we started our executable with 100MB of memory.

most of the computation consists of search (like logLast) our
compiler produces slower code than PAKCS. However, in practice
large parts of a program are purely functional and this slowdown
will be accumulated by the speed up in the functional computations.
This is already shown by the benchmark premsort. Although this
test performs extensive search with binding many free variables,
our compiler can keep up with PAKCS.

The benchmark nondetShare demonstrates another advantage
of our compiler compared to PAKCS. The computation of fib 30
is shared, although it occures in two different non-deterministic
computations. Here PAKCS does not provide sharing, which results
in exactly the double execution time compared to fib 30.

7. Conclusion
We have presented the advantages that a translation of Curry to
Haskell implies and sketched its implementation. Our prototypi-
cal implementation demonstrates encouraging performance, even
in comparison to a widely used implementations of Curry. In con-
trast to PAKCS, our compiler is able to translate Curry modules
separately which make the development of larger applications more
convenient.

For future work we want to profit from Curry’s similarity to
Haskell. For purely functional programs, almost no transformation
should be necessary at all which should result in much faster code.
Furthermore, the implementation of concurrency and encapsulated
search have to be completed.

References
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational

semantics for declarative multi-paradigm languages. Journal of
Symbolic Computation, 40(1):795–829, 2005.

[2] S. Antoy and M. Hanus. Compiling multi-paradigm declarative
programs into prolog. In Proc. International Workshop on Frontiers
of Combining Systems (FroCoS’2000), pages 171–185. Springer
LNCS 1794, 2000.

[3] S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine
for functional logic computations. In Proc. of the 16th Interna-
tional Workshop on Implementation and Application of Functional
Languages (IFL 2004), pages 108–125. Springer LNCS 3474, 2005.

[4] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism
in functional logic computations. Journal of Functional and Logic
Programming, 2004(6), 2004.

[5] The Glasgow Haskell compiler. http://www.haskell.org/ghc/.
[6] M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau,

R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry
System. http://www.informatik.uni-kiel.de/~pakcs/,
2004.

[7] M. Hanus and R. Sadre. A concurrent implementation of Curry in
Java. In Proc. ILPS’97, Port Jefferson (New York), 1997.

[8] Simon Peyton Jones et al. Haskell 98 report. Technical report,
http://www.haskell.org, 1998.

[9] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. ACM SIGPLAN
Notices, 38(3):26–37, March 2003.

[10] K. Läufer. Type classes with existential types. J. of Functional
Programming, 6(3):485–517, May 1996.

[11] Wolfgang Lux and Herbert Kuchen. An efficient abstract machine
for Curry. In K. Beiersdörfer, G. Engels, and W. Schäfer, editors,
Informatik ’99 – 29. Jahrestagung der Gesellschaft für Informatik,
Oktober 1999, pages 390–399. Springer Verlag, 1999.

[12] Chris Okasaki. Three algorithms on Braun trees. Journal of
Functional Programming, 7(6):661–666, November 1997. Functional
Pearl.

[13] SICStus Prolog. www.sics.se/isl/sicstuswww/site/index.
html.

65

