
From Functional to Object-Oriented Programming –
A Smooth Transition for Beginners

Rudolf Berghammer and Frank Huch
Institute of Computer Science

University of Kiel
Olshausenstraße 40, 24098 Kiel, Germany

{rub,fhu}@informatik.uni-kiel.de

Abstract
Many Computer Science curricula at universities start program-
ming with a functional programming language (for instance, SML,
Haskell, Scheme) and later change to the imperative programming
paradigm. For the latter usually the object-oriented programming
language Java is used. However, this puts a burden on the students,
since even the smallest Java program cannot be formulated with-
out the notion of class and static and public method. In this paper
we present an approach for changing from functional to object-
oriented programming. Using (Standard) ML for the functional
programming paradigm, it still prepares the decisive notions of
object-orientation by specific constructs of this language. As ex-
perience at the University of Kiel has shown, this smoothes the
transition and helps the students getting started with programming
in the Java language.

Categories and Subject Descriptors D.1.1 [Applicative (func-
tional) programming]; D.1.5 [Object-oriented programming];
D.3.3 [Language constructs and features]

General Terms Languages

Keywords SML, signature, structure, functor, Java, object, class

1. Introduction
Many Computer Science curricula at universities start with the
functional programming paradigm. This is mainly due to the fact
that this paradigm cannot only be used to explain many basic con-
cepts of programming and algorithm development, but also to teach
a lot of fundamental concepts of Computer Science and how these
concepts evolve from each other. A further advantage of functional
programming is that it uses in the for novices very important ini-
tial stage only the notion of (recursive, partial) functions, which
should be known from high school. Finally, it should be mentioned
that functional programs allow to demonstrate proofs of simple pro-
gram properties by combining structural or well-founded induction
with equational reasoning.

Although functional programming has a lot of advantages, it is
also important to familiarize students with imperative and object-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FDPE’05 September 25, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-067-1/05/0009. . . $5.00.

oriented concepts already during the first year at the university.
These concepts are widely used in industry and many topics of
subsequent courses use imperative or object-oriented programming
languages (especially, Java and C++). At the University of Kiel we
change to imperative programming after the introduction to func-
tional programming and use, as many other universities, the object-
oriented programming language Java [2, 6]. However, experience
has shown that this puts a burden on the students if one starts im-
perative programming with Java’s overhead of object-oriented no-
tations. Even the smallest Java program cannot be formulated with-
out the notion of class and static and public (main) methods, and
neglecting these notions at the beginning proved to be unsatisfac-
tory for teachers as well as for students1. Therefore, we have de-
cided to prepare the transition to Java already on the level of SML
[8, 14], the language we use for the introduction to functional pro-
gramming. Fortunately, this is possible due to the very rich module
system and the reference mechanism of SML. As experience has
shown, our approach smoothes the transition and helps students
getting started with object-orientation and programming in Java.

The remainder of the paper is organized as follows. In Sec-
tion 2 we outline the concept for the two first year courses in pro-
gramming at the University of Kiel and describe our approach for
changing from functional SML-programming to imperative/object-
oriented Java-programming without going into details. Details of
the approach are presented in the next three sections. Using a run-
ning example very similar to the well-known bank account exam-
ple of the textbook [1], we show how to model objects, classes,
and inheritance in SML and demonstrate the great similarity of the
resulting pieces of SML-code and the corresponding Java-pieces.
For these sections we assume the reader to be familiar with SML,
including references and the module system, and with Java. In Sec-
tion 6 we show the limitations of our approach and Section 7 con-
tains some concluding remarks.

2. The Approach
At the University of Kiel, the two first year courses in program-
ming are divided into “Programming” (first semester) and “Algo-
rithms and Data Structures” (second semester). Both courses com-
bine theoretical aspects of programming and algorithm develop-
ment with practical aspects of these fields. In doing so, we want to
avoid two disadvantages which frequently appear if one puts too
much emphasis on one of these aspects. Overemphasizing practi-
cal programming may suggest to the students that theory has lit-
tle to do with practice and they can become a good programmer

1 From a pedagogical point of view, there are many arguments against Java
as first-course programming language at universities. We recommend the
reader to have a look at [5].

3

without studying theory. On the other hand, overemphasizing the-
ory may lead to the impression that theory as “mere theory” has its
right (e.g., for studying the absolute or gradual limits of what algo-
rithmically can be solved), but it is not relevant for programming
practice.

Since more than one decade we use the functional paradigm
in the first semester and the imperative paradigm in the second
one. Due to certain reasons (e.g., its very clean implementation of
most of the important object-oriented concepts and also to meet
demands of industry), some years ago Java has been selected for
the course on algorithms and data structures and it has been decided
that the transition from the functional language to Java appears
at the end of the first course. Giving the course on programming
the first time and thereby starting with Java from the scratch, we
noticed that such an approach puts a great burden on the students
and the results did not meet our expectations. As a consequence,
we decided to prepare the transition already on the level of SML.
This was enabled by the following (rough) structure of the previous
course on programming.

(1) Mathematical preliminaries (sets, logical notation, induction,
terms, term replacement etc.).

(2) Introduction to functional programming (first-order recursive
functions [10] over primitive types, parameter passing, unfold-
fold technique etc.).

(3) Advanced concepts of functional programming (datatype dec-
larations, recursive data types, pattern matching, higher-order
functions, polymorphism, advanced programming techniques
etc.).

(4) Data abstraction and modularization (information hiding, ab-
stract types, signatures, structures, functors etc.).

(5) Introduction to Java (basic concepts of object-orientation,
while-programs over primitive types, loop invariants, assertion
technique for development etc.).

In the refined course, Part (4) is extended by a section which in-
troduces and motivates object-orientation as a specific approach of
modularization. Then descriptions of the fundamental notions ob-
ject, class, and inheritance are given (polymorphism is discussed
already in (3)). The main focus of this is to convey these notions
in general and not as particular constructs of a programming lan-
guage. To reach this aim, we proceed as follows:

• First objects are specified as “things” that have attributes and
can perform actions.

• Then classes are introduced as descriptions of all objects (the
instances) of a particular kind, together with the creation of
instances.

• Finally, inheritance is explained as a mechanism that allows to
derive new classes from given ones to deal with specific cases
in adequate manner.

Having introduced these three notions, it is shown how they
can be modeled within the known language SML by means of a
suited example. Due to the great similarity of the resulting SML-
code and a later formulation of the example in Java, this new ap-
proach smoothes the transition from SML to Java and avoids, as
experience has shown, many teething troubles with the new lan-
guage and paradigm. Of course, the extension of Part (4) required
to shorten the other parts of the course a little bit and to move some
topics into the second semester to stay within the time scheduled
for one semester. This, however, caused no serious problems. A
German version of the actual lecture notes on programming (win-
ter semester 2004/05) is available via the Web [3].

3. Modeling Objects
Object-oriented programming is based on objects. As already men-
tioned in the last section, abstractly these are “things” that have at-
tributes (also called fields) associated with it and that can perform
certain actions. Attributes are ascertainable through their values. In
object-oriented programming languages like Java they are speci-
fied by variables. Based on this, actions are performed by calls of
methods which, in the most simple case, either compute values or
change values of variables.

As an example, bank accounts can be considered as objects.
In a very simple case (see [1]) the attributes of an account are
given by the current account balance and the overdraft agreement.
Two possible actions that compute values are the computation of
the available money and the computation of the account balance.
Attributes are changed, for example, by defining the new overdraft,
by depositing and withdrawing money, and by deducing charges.

To model objects in SML, we use references instead of variables
and functions instead of methods. Then an object corresponds to
an SML-structure which consists of declarations of references for
the attributes and of functions for the actions. Usually attributes
(and auxiliary methods) of objects are declared to be private. Also
this information hiding can be modeled in SML. We only have to
define a SML-signature that exactly contains the names and types
of the non-private (i.e., public) functions and after that to restrict
structures through this signature.

In the case of our bank account example, the declaration of an
object A1 is described by the following SML-code. The two refer-
ences st and cr in the structure declaration are used for the two
attributes “account balance” and “overdraft”; the five functions re-
alize the actions mentioned above. Hiding of st and cr is obtained
by restricting the declared structure through an appropriate signa-
ture.

signature Account =
sig
val Available : unit -> int;
val AccountBalance : unit -> int;
val SetOverdraft : int -> unit;
val Deposit : int -> unit;
val Withdraw : int -> unit;
val Charge : int -> unit;

end;

structure A1 : Account =
struct
val st : int ref = ref 0;
val cr : int ref = ref 0;

fun Available () : int =
!st + !cr;

fun AccountBalance () : int =
!st;

fun SetOverdraft (n : int) : unit =
cr := n;

fun Deposit (n : int) : unit =
st := !st + n;

fun Withdraw (n : int) : unit =
if n <= Available()
then st := !st - n
else ();

fun Charge (n : int) : unit =
st := !st - n;

end;

As this example shows, we prefer to type SML-functions com-
pletely although the SML language possesses a sophisticated type

4

inference mechanism. By adhering to this style, we hope to focus
the student’s attention on the importance of being aware of the ar-
guments and results of each function one introduces in the course
of a program. In the context of modeling object-orientation, fur-
thermore, the result type unit indicates that a function/method
changes values of attributes. It directly corresponds to the speci-
fication void in Java.

4. Modeling Classes
Abstractly, a class is a description of all objects of a particular kind,
i.e., objects with the same attributes and actions. These objects
are called instances. For each class there exists a mechanism for
creating its instances.

Having a look at the bank account example of Section 3, one
observes that the description of the account/object A1 essentially
is given by the right-hand side of the structure declaration, i.e.,
the code from struct to end. Creating a new account in the
course of a program, say A2, therefore can be obtained by repeating
the structure declaration by A2 in lieu of A1. However, this is
a laborious way of creating new objects. There exists a much
more elegant way. It uses the functor mechanism of SML: an
SML-functor operates on structures to produce other structures.
Typically, the resulting structure is defined in the usual way, i.e.,
its constituents are parenthesized by the keywords struct and end,
where in the declarations the constituents of the parameter structure
may be used. From this point of view, functors are “parameterized”
structures.

We have decided to model classes by functors, since functors
frequently generalize structures in a way very similar to the gener-
alization of objects to classes2. This approach enables us to model
the generation of instances by simple functor calls which is possible
due to the fact that SML-functors are not referentially transparent.
If a functor is called with an argument twice, then the results of the
calls are different structures.

In our bank account example, a parameterless functor modeling
the class of accounts immediately arises from the above structure
as follows:

functor new_Account () : Account =
struct
val st : int ref = ref 0;
val cr : int ref = ref 0;

fun Available () : int =
!st + !cr;

fun AccountBalance () : int =
!st;

fun SetOverdraft (n : int) : unit =
cr := n;

fun Deposit (n : int) : unit =
st := !st + n;

fun Withdraw (n : int) : unit =
if n <= Available()
then st := !st - n
else ();

fun Charge (n : int) : unit =
st := !st - n;

end;

Structurally, this SML-code is very similar to the code in Java, as
the following Java-class Account for bank accounts shows:

2 In [14] SML-functors are even considered as a generalization of the idea
of templates in C++, i.e., parameterized classes. We will descend to this at
the end of Section 4.

class Account {
private int st;
private int cr;

public int Available () {
return st + cr; }

public int AccountBalance () {
return st; }

public void SetOverdraft (int n) {
cr = n; }

public void Deposit (int n) {
st = st + n; }

public void Withdraw (int n) {
if (n <= st + cr) st = st - n; }

public void Charge (int n) {
st = st - n;}

}

Using the above SML-functor new Account, it is possible to gen-
erate accounts by structure declarations with simple functor calls
as right-hand sides. A manipulation of instances then is possible by
calls of the functions of the declared structures in statement lists, as
the following simple example shows:

structure A1 : Account = new_Account();
A1.SetOverdraft(100);
A1.Deposit(100);
structure A2 : Account = new_Account();
A2.SetOverdraft(500);
A1.Withdraw(50);

We generate an account A1, put its overdraft to 100 units of money,
and deposit 100 units of money. Then we generate a new account
A2 and put the overdraft of A2 to 500 units of money. Finally, we
withdraw 50 units of money from the first account A1.

Comparing this code with the following corresponding code in
Java, the similarity becomes even more evident than in the case of
classes; only the generation of the two instances syntactically differ.

Account A1 = new Account();
A1.SetOverdraft(100);
A1.Deposit(100);
Account A2 = new Account();
A2.SetOverdraft(500);
A1.Withdraw(50);

So far, we only considered parameterless functors. If we change to
functors with parameters, then we are even able to model parame-
terized classes. This can be explained by our bank account example
as well.

In the previous modeling of bank accounts the generation of a
new account comes along with an overdraft agreement of 0 units
of money. In practice, however, usually the opening of a new bank
account is combined with a specific overdraft agreement. Taking
the initialization of the overdraft as parameter, this can be modeled
by a parameterized class. Then, instantiation means not only to
create a new account but also to designate a particular value to its
initial overdraft.

In SML a parameterization of a class can be modeled by a func-
tor containing structures as parameters. In the case of the account
example, name and type of the initial overdraft are specified by the
signature of the parameter structure, for example, as follows:

signature Param =
sig
val o : int;

end;

5

The modeling functor itself is obtained from the previous functor
new Account by adding a parameter of signature Param, say P, and
changing the initialization of cr from 0 to P.o. Hence, we have:

functor new_Account1 (P : Param) : Account =
struct
val st : int ref = ref 0;
val cr : int ref = ref P.o;

fun Available () : int =
!st + !cr;

fun AccountBalance () : int =
!st;

fun SetOverdraft (n : int) : unit =
cr := n;

fun Deposit (n : int) : unit =
st := !st + n;

fun Withdraw (n : int) : unit =
if n <= Available() then st := !st - n

else ();
fun Charge (n : int) : unit =

st := !st - n;
end;

If we call this functor, for example, with the anonymous structure

struct
val o : int = 500;

end

as argument, then an instance is created with 500 as intital value of
cr. In words this means that a new bank account is opened and this
is combined with an overdraft agreement of 500 units of money.

It is obvious, how to change the signature Param and the functor
new Account1 to obtain besides an initial overdraft agreement also
an initial deposit when opening a new bank account.

5. Modeling Inheritance
Having demonstrated how to model objects and classes in the lan-
guage SML, it remains to show that this approach is appropriate
for modeling inheritance as well. Inheritance is the third central
concept of object-orientation and describes the deduction of new
classes (the subclasses) from given ones (the superclasses) to deal
with specific cases in adequate manner. We believe that inheri-
tance is best explained to beginners by concrete examples which
frequently occur in practice. Most of these examples are based on
specialization by inheritance, that is the adaption of an existing
general framework to a particular situation , since this is the central
technique of object-orientation (see [11] for more details).

In the context of our running bank account example, a first kind
of specialization is given by student accounts which are free of
charge. For our SML model this means that we have to override the
function Charge of the functor new Account in such a way that a
call of the new version does not collect charges, i.e., is without any
effect. The result is the following functor:

functor new_StudAccount () : Account =
struct
structure A : Account = new_Account();
open A;

fun Charge (n : int) : unit =
();

end;

In the structure specification forming the body of the functor
new StudAccount, we use a structure declaration in combina-
tion with the opening of the declared structure A via open A as a

comfortable way to include the constituents of new Account into
the structure of new StudAccount. Then the definition of Change
from the structure A is overriden by a redefinition of the function.
As the functor declaration shows, student accounts possess the
same interface/signature as general bank accounts.

Another example of specialization by inheritance, which usu-
ally involves a modification of the signature, is to add specific func-
tionality to a class. In this case it is sufficient just to add the new
functionality. we will explain this again by means of our running
examnple.

For bank accounts an additional functionality may be the pos-
sibility of online banking. In the most simple case this means to
have an additional hidden Boolean attribute and an additional vis-
ible method with a truth value as argument such that a call of the
method enables or disables online banking by changing the value of
the hidden Boolean attribute accordingly. For our SML model this
involves an extension of the signature Account by the name and
functionality of the new method and an extension of the functor
new Account by its implementation, which uses a hidden refer-
ence declaration for implementing the new attribute. In the follow-
ing SML-code the include-operation is used as a comfortable way
to include the constituents of a signature in another one, and for the
inclusion of constituents of a structure in an another structure again
the open-operation is applied.

signature ExtAccount =
sig
include Account;
val SetOnlinebanking : bool -> unit;

end;

functor new_ExtAccount () : ExtAccount =
struct
structure A : Account = new_Account();
open A;
val ob : bool ref = ref false;

fun SetOnlinebanking (b : bool) : unit =
ob := b;

end;

Because of the initialization of the reference ob by false, online
banking is not possible for a newly opened bank account.

At this place it also should be remarked that a functor with a
parameter of signature Account can be applied to a structure of the
more general signature ExtAccount without previous conversion.
We use this property of the ML module system to introduce the
notion of subtyping to the students.

Here is the extension of the former Java-class Account to a sub-
class ExtAccount which models bank accounts with the possibility
of online banking.

class ExtAccount extends Account {
private bool ob;

public void SetOnlinebanking (bool b) {
ob = b;

}
}

Since in Java the initial value of a Boolean variable is false, again
online banking is not possible for a newly opened bank account.

Of course, from a purely syntactic point of view the Java-class
ExtAccount is much more simple than the corresponding signa-
ture ExtAccount and functor new ExtAccount in SML. However,
structurally there is again a great similarity between the SML- and

6

the Java-code for the extended of bank accounts, and exactly this is
what we want to demonstrate.

6. Limitations of the Approach
In the preceeding sections we presented a way for changing from
functional SML-programming to object-oriented Java-program-
ming. It is especially tailored for beginners to make the transition
as smooth as possible. Due to this aim, of course, the approach has
its limitations and deficiencies if considered from a “mere object-
oriented” point of view. These limitations will be discussed in the
following.

The first limitation regards binding which we explain by an
example. Consider the following situation. From the Java-class Ac-
count of Section 4 it is obvious to derive the following subclass
StudAccount for student accounts which redefines the method
Charge for deducing charges according to the former SML-model:

class StudAccount extends Account {
public void Charge (int n) {
;}

}

Furthermore, let an instance A be generated. In Java then the class
name used in the new-operator determines binding, i.e., which
definition of the method name has to be used. A generation of A
via

StudAccount A = new StudAccount();

implies that the method A.Charge is bound to the Charge of the
subclass StudAccount if it is applied to an integer, whereas the
assignment

StudAccount A = new Account();

implies that A.Charge is bound to the Charge of the superclass
Account. In SML it is not easy to model this principle of dynamic
binding which is the basis of the object-orientated variant of poly-
morphism. One needs structures as constituents of signatures and
has carefully to follow the paths in the structures hierarchy.

We are also aware of the fact that our approach in some technical
details is inaccurate if considered under theoretical aspects. For
example, in object-oriented programming languages objects are
values and not first-order only entities as signatures, structures, and
functors in SML are.

Finally, we also know that we only introduce the core ideas
of object-orientation and only show the students how the central
concepts objects, classes, and inheritance can be modeled in SML.
This also includes some small example programs but, of course, not
a fundamental introduction into the development of programs in an
object-oriented manner.

We do not regard these limitations and deficiencies as a disad-
vantage. Our approach never has been intended to be a detailed
introduction in object-oriented analysis, design, and programming
and further central concepts like frameworks or the well-known
design patterns work orginating from [7]. This would be far be-
yond the possibilities of an introductionary course in programming.
It is only supposed to smooth the transition from functional to
object-oriented programming to help students of a first university
course getting started with object-orientation and programming in
Java. The second semester course on algorithms and data structures
and subsequent specific lectures on software-engineering, object-
orientation etc. together with their accompanying practical exer-
cises then have to undertake the task of a detailed treatment of im-
perative and object-oriented programming in Java.

7. Conclusion
In this paper we have presented a new approach for a smooth tran-
sition from functional programming in SML to object-oriented pro-
gramming in Java. It is especially designed for beginners in Com-
puter Science at universities and has been tested at the University
of Kiel in the winter semester 2004/05. We are highly pleased with
the result. The preparation of object-orientation still in SML (and
additional material in the lecture notes on the web) led to the fact
that at the end of the semester most of the students had understood
the basic principles of object-orientation and had been able to write
(of course, not too large) Java programs. The proposed approach
avoided many difficulties which appeared during an earlier course,
where we started with Java from scratch. As a by-product, our ap-
proach leads to a deeper understanding of the module system of
SML.

There exists an object-oriented ML-dialect, called OCaml [12].
Hence, the question arises: Why not start with OCaml instead of
SML? Reasons for our use of SML are that it is the most popular
member of the ML family, used in all well-established textbooks,
and excellent public domain implementations exist. Furthermore,
we want to place emphasis on modularization and encapsulation.
This is adequately supported by the module system of SML. On the
basis of the restricted time available for its treatment, we believe
that our approach leads to a deeper understanding than a separa-
tion of modularization, encapsulation, and object-orientation using
OCaml.

Our approach is based on special features of the SML program-
ming language, especially its module system. Hence, the question
arises whether it can be translated to other functional programming
languages, especially Haskell [9, 4] and Scheme [1, 13]) which fre-
quently are used for the introduction to functional programming at
universities. We have not investigated this in great detail, but be-
lieve that in both cases the answer is “in principle ‘yes’, but . . . ”.
Concerning Haskell, we can use I/O-monads and IORefs to model
attributes/variables and functions to change their values. Based on
this, it seems to be possible to model objects and classes by func-
tions, too. But we assume that the resulting model is rather com-
plex and far beyond the possibilities of beginners. In contrast to
Haskell, it is very easy to model attributes/variables and the change
of their values in Scheme using the assignment-operation !set and
the two special procedures set-car! and set-cdr!. But, to our
best knowledge, in the standard of the language (as e.g., described
in the language report [13]) there are no constructs for data abstrac-
tion and modularization. Hence, we believe that also Scheme is not
appropriate for our approach.

Acknowledgement
We thank the referees for valuable remarks.

References
[1] Abelson H., Sussman G.J., Sussmann J.: Structure and interpretation

of computer programs. MIT Press, 1999.
[2] Arnold K., Gosling J.: The Java programming language. Addison-

Wesley, 1996.
[3] Berghammer R.: Informatik I (Programmierung). Lecture notes,

University of Kiel, Inst. of Computer Science, available via URL
www.informatik.uni-kiel.de/inf/Berghammer/teaching, 2005.

[4] Bird R.S.: Introduction to functional programming using Haskell. 2nd
edition, Prentice Hall, 1998.

[5] Böszörmenye L.: Why Java is not my favorite first-course language.
Software – Concepts & Tools 19, 141-145, 1998.

[6] Deitel H.M., Deitel P.J.: Java: How to program. 6th edition, Pearson
Education International, 2005.

7

[7] Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns:
Elements of reusable object-oriented software. Addison Wesley,
1995.

[8] Harper R., Milner R., Tofte M.: The definition of Standard SML. MIT
Press, 1991.

[9] Hudak P., Preyton-Jones S.L., Wadler P. (eds.): Report on the
programming language Haskell. ACM SIGPLAN Notices 27(5),
1992.

[10] Loeckx J., Sieber K.: The foundations of program verification. Wiley,
1984.

[11] Poetzsch-Heffter A.: Konzepte objektorientierter Programmierung.
Springer, 2000.

[12] Remy D., Vouillon J.: Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems 4 (1), 27-50
1998.

[13] Rees J., Clinger W. (eds.): The revised report on the algorithmic
language Scheme. Lisp Pointers 4(3), 1991.

[14] Ullmann J.D.: Elements of ML programming, SML97 edition.
Prentice Hall, 1998.

8

