
Run-Time Profiling of
Functional Logic Programs?

B. Brassel1, M. Hanus1, F. Huch1, J. Silva2, and G. Vidal2

1 Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
{bb,mh,fhu}@informatik.uni-kiel.de

2 DSIC, Tech. University of Valencia, Camino de Vera s/n, E-46022 Valencia, Spain.
{jsilva,gvidal}@dsic.upv.es

Abstract. In this work, we introduce a profiling scheme for modern
functional logic languages covering notions like laziness, sharing, and
non-determinism. Firstly, we instrument a natural (big-step) semantics
in order to associate a symbolic cost to each basic operation (e.g., variable
updates, function unfoldings, case evaluations). While this cost seman-
tics provides a formal basis to analyze the cost of a computation, the
implementation of a cost-augmented interpreter based on it would incur
into a huge overhead. Therefore, we also introduce a sound transfor-
mation that instruments a program such that its execution—under the
standard semantics—outputs not only the corresponding results but also
the associated costs. Finally, we describe a prototype implementation of
a profiler based on the developments in this paper.

1 Introduction

The importance of profiling in improving the performance of programs is widely
recognized. Profiling tools are essential for the programmer to analyze the effects
of different source-to-source program manipulations (e.g., partial evaluation, spe-
cialization, optimization, etc). Despite this, one can find very few profiling tools
for modern declarative languages. This situation is mainly explained by the diffi-
culty to correctly map execution costs to source code, which is much less obvious
than for imperative languages. In this work, we tackle the definition of a profil-
ing scheme for modern functional logic languages covering notions like laziness,
sharing, and non-determinism (like Curry [5] and Toy [11]); currently, there is
no profiling tool practically applicable for such languages.

When profiling the run time of a given program, the results highly depend on
the considered language implementation. However, computing actual run times
is not always the most useful information for the programmer. Run times may
help to detect that some function is expensive but they do not explain why it is
expensive (e.g., is it called many times? Is it heavily non-deterministic?).

? This work has been partially supported by CICYT TIC 2001-2705-C03-01, by the
Generalitat Valenciana GRUPOS03/025, by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054, and by the MCYT HU2003-0003.



In order to overcome these drawbacks, we introduce a symbolic profiler which
computes the number of basic operations performed. For this purpose, we start
from a natural semantics for functional logic programs [1] and instrument it
with the computation of symbolic costs associated to the basic operations of the
semantics: variable lookups, function unfoldings, case evaluations, etc. These
operations are performed, in one form or another, by likely implementations
of modern functional logic languages. Our cost semantics constitutes a formal
model of the attribution of costs in our setting and it is useful not only as a basis
to develop profiling tools but also to analyze the costs of a program computation
(e.g., to formally prove the effectiveness of some program transformation).

Trivially, one can develop a profiler by implementing an instrumented in-
terpreter which follows the previous cost semantics. However, this approach is
not practicable as it demands a huge overhead, making the profiling of realis-
tic programs impossible. Thus, in a second step, we design a source-to-source
transformation that instruments a program such that its execution—under the
standard semantics—outputs not only the corresponding results but also the as-
sociated costs. We formally prove the correctness of our transformation (i.e., the
costs computed in a source program w.r.t. the cost semantics are equivalent to
the costs computed in the transformed program w.r.t. the standard semantics)
and, finally, we discuss the prototype implementation of a profiler based on the
developments in this paper.

The paper is organized as follows. In the next section, we recall some founda-
tions for understanding the subsequent developments. Section 3 informally intro-
duces our model for profiling functional logic computations. Section 4 formalizes
an instrumented (natural) semantics which also computes cost information. Sec-
tion 5 introduces a transformation instrumenting programs to compute symbolic
costs. Section 6 describes an implementation of a profiler for Curry programs.
Finally, Section 7 includes a comparison to related work and concludes. The
proof of correctness for the program transformation is included in the appendix.

2 Flat Programs

In this work, we consider flat programs [8], a convenient standard representation
of functional logic programs which makes explicit the pattern matching strategy
by case expressions. This flat representation constitutes the kernel of modern
functional logic languages like Curry [7, 5] or Toy [11]. We assume that flat pro-
grams are normalized, i.e., let constructs are used to ensure that the arguments
of function and constructor calls are always variables (not necessarily pairwise
different). As in [10], this is essential to express sharing without the use of com-
plex graph structures. A normalization algorithm can be found in [1]. Basically,
normalization introduces one new let construct for each non-variable argument,
e.g., f(e) is transformed into “let x = e in f(x).”

The syntax for normalized flat programs is shown in Figure 1, where we write
on for the sequence of objects o1, . . . , on. A program consists of a sequence of
function definitions such that the left-hand side has pairwise different variable



P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)
| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let x = e1 in e2 (let binding) f, g, h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) p1, p2, p3, . . . ∈ Pat (Patterns)
| case x of {pk → ek} (rigid case)
| fcase x of {pk → ek} (flexible case)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

arguments. The right-hand side is an expression composed by variables, data
constructors, function calls, let bindings (where the local variable x is only visible
in e1, e2), disjunctions (e.g., to represent non-deterministic operations), and case
expressions of the following form (we write (f)case for either fcase or case):

(f )case x of {c1(xn1)→ e1; . . . ; ck(xnk
)→ ek}

where x is a variable, c1, . . . , ck are different constructors, and e1, . . . , ek are
expressions. The pattern variables xni are locally introduced and bind the cor-
responding variables of the subexpression ei. The difference between case and
fcase only shows up when the argument x evaluates (at run time) to a free vari-
able: case suspends whereas fcase non-deterministically binds this variable to
the pattern in a branch of the case expression.

Laziness of computations will show up in the description of the behavior of
function calls and case expressions. In a function call, parameters are not eval-
uated but directly passed to the body of the function. In a case expression, the
outermost symbol of the case argument is required. Therefore, the case argument
should be evaluated to head normal form [4] (i.e., a variable or an expression
with a constructor at the outermost position). Consequently, our operational
semantics will describe the evaluation of expressions only to head normal form.
This is not a restriction since the evaluation to normal form or the solving of
equations can be reduced to head normal form computations (see, e.g., [8]).

Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by flexible case
expressions. In the following, we assume that all extra variables x are explicitly
introduced in flat programs by a direct circular let binding of the form “let x =
x in e”. We call such variables which are bound to themselves logical variables.

We assume that computations always start from the distinguished function
main which has no arguments.

3 A Run-Time Profiling Scheme

Traditionally, profiling tools attribute execution costs to the functions or proce-
dures of the considered program. Following [2, 12], in this work we take a more



flexible approach which allows us to associate a cost center with any expres-
sion of interest. This allows the programmer to choose an appropriate granu-
larity for profiling, ranging from whole program phases to single subexpressions
in a function. Nevertheless, our approach can easily be adapted to work with
automatically instrumented cost centers; for instance, if one wants to use the
traditional approach in which all functions are profiled, each function can be au-
tomatically annotated by introducing a cost center for the entire right-hand side.
Cost centers are marked with the (built-in) function scc (for set cost center).

Given an expression “scc(cc, e)”, the costs attributed to cost center cc are
the entire costs of evaluating e as far as the enclosing context demands it, in-
cluding the cost of
– evaluating any function called by the evaluation of the expression e,

but excluding the cost of
– evaluating the free variables of e (i.e., not bound by a let binding) and
– evaluating any scc-expressions within e or within any function called from e.

The following program contains two versions of a function to compute the length
of a list (for readability, we show the non-normalized version of function main):

len(x) = fcase x of { [] → 0
; (y:ys) → let z = 1, w = len(ys) in z + w }

len2s(x) = fcase x of { [] → 0
; (y:ys) → fcase ys of

{ [] → 1
; (z:zs) → let w = 2,

v = len2s(zs)
in w + v } }

main = let list = scc("list",[1..5000])
in scc("len",len(list)) + scc("len2s",len2s(list))

Here, main computes twice the length of the list [1..5000], which is a standard
predefined way to define the list [1,2,3,...,4999,5000]. Each computation
of the length uses a different function, len and len2s. Intuitively, len2s is
more efficient than len because it performs half the number of function calls
(indeed, len2s has been obtained by unfolding function len). This is difficult
to check with traditional profilers because the overhead introduced to build the
list hides the differences between len and len2s. For instance, the computed
run times in the PAKCS environment [9] for Curry are 9980 ms and 9990 ms for
len([1..5000]) and len2s([1..5000]), respectively.3

Should one conclude that len and len2s are equally efficient? In order to
answer this question, a profiler based on cost centers can be very useful. In
particular, by including the three cost centers shown in the program above,
the costs of len, len2s, and the construction of the input list can be clearly
distinguished. With our execution profiler which distributes the execution time
3 The slow execution is due to the fact that experiments were performed with a version

of the above program that uses numbers built from Z and Succ (to avoid the use of
built-in functions).



Table 1. Basic costs

Cost criteria Symbol Cost criteria Symbol Cost criteria Symbol
Function unfolding F Allocating a heap object H Case evaluation C
Variable update U Non-deterministic choice N Variable lookup V
Entering an scc E Binding a logical variable B

to different cost centers (its implementation is discussed in Section 6.1), we have
experimentally checked that both functions are not equally efficient:

cost center main list len len2s
run times 17710 7668966 1110 790

Here, run times are expressed in a number of “ticks” (a basic time unit). Thanks
to the use of cost centers, we can easily check that len2s is an improvement of
len. However, what is the reason for such an improvement? We introduce sym-
bolic costs—associated with the basic operations of the language semantics—so
that a deeper analysis can be made. The considered kinds of costs are shown
in Table 1. For the example above, our symbolic profiler returns the following
results (only the most relevant costs for this example are shown):

main list len len2s
H 5000 61700 5100 5100
V 5100 280400 5100 5100
C 5100 280400 5100 5100
F 5300 168100 5100 2600

From this information, we observe that only function unfoldings (F ) are halved,
while the remaining costs are equal for both len and len2s. Therefore, we can
conclude that unfolding a function (with no known data) only improves cost F
(which has a small impact on current compilers, as it has been shown before).

4 Cost Semantics

In this section, we instrument a natural (big-step) semantics for functional logic
languages (defined in [1]) with the computation of symbolic costs. Figure 2 shows
the cost-augmented semantics. A heap, denoted by Γ,∆, or Θ, is a partial map-
ping from variables to expressions (the empty heap is denoted by [ ]). The value
associated to variable x in heap Γ is denoted by Γ [x]. Γ [x cc7→ e] denotes a
heap with Γ [x] = e and associated cost center cc, i.e., we use this notation ei-
ther as a condition on a heap Γ or as a modification of Γ . A logical variable
x is represented by a circular binding of the form Γ [x] = x. A value v is a
constructor-rooted term c(en) (i.e., a term whose outermost function symbol is
a constructor symbol) or a logical variable (w.r.t. the associated heap). We use
judgements of the form “cc, Γ : e ⇓θ ∆ : v, ccv” which are interpreted as “in
the context of heap Γ and cost center cc, the expression e evaluates to value v
with associated cost θ, producing a new heap ∆ and cost center ccv”.



(VarCons) cc, Γ [x
ccc7−→ c(xn)] : x ⇓{cc←V } Γ [x

ccc7−→ c(xn)] : c(xn), ccc

(VarExp)
cce, Γ : e ⇓θ ∆ : v, ccv

cc, Γ [x
cce7−→ e] : x ⇓{cc←V }+θ+{ccv←U} ∆[x

ccv7−→ v] : v, ccv

(where e is
not a value)

(Val) cc, Γ : v ⇓{ } Γ : v, cc (where v is a value)

(Fun)
cc, Γ : ρ(e) ⇓θ ∆ : v, ccv

cc, Γ : f(xn) ⇓{cc←F}+θ ∆ : v, ccv

(where f(yn) = e ∈ P
and ρ = {yn 7→ xn})

(Let)
cc, Γ [y

cc7−→ ρ(e′)] : ρ(e) ⇓θ ∆ : v, ccv

cc, Γ : let x = e′ in e ⇓{cc←H}+θ ∆ : v, ccv

(where ρ = {x 7→ y}
and y is fresh)

(Or)
cc, Γ : ei ⇓θ ∆ : v, ccv

cc, Γ : e1 or e2 ⇓{cc←N}+θ ∆ : v, ccv
(where i ∈ {1, 2})

(Select)
cc, Γ : x ⇓θ1 ∆ : c(yn), ccc cc, ∆ : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : (f )case x of {pk → ek} ⇓θ1+{cc←C}+θ2 Θ : v, ccv

(where pi = c(xn) and ρ = {xn 7→ yn})

(Guess)
cc, Γ : x ⇓θ1 ∆ : y, ccy cc, ∆[y

cc7→ ρ(pi), yn
cc7→ yn] : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : fcase x of {pk → ek} ⇓θ1+{cc←V,cc←U,cc←B,cc←n∗H}+θN +θ2 Θ : v, ccv

(where pi = c(xn), ρ = {xn 7→ yn}, yn are fresh variables,
and θN = {cc← N} if k > 1 and θN = { } if k = 1)

(SCC)
cc′, Γ : e ⇓θ ∆ : v, ccv

cc, Γ : scc(cc′, e) ⇓θ+{cc′←E} ∆ : v, ccv

Fig. 2. Rules of the cost semantics

In order to evaluate a variable which is bound to a constructor-rooted term
in the heap, rule VarCons reduces the variable to this term. Here, cost V is
attributed to the current cost center cc to account for the variable lookup (this
attribution is denoted by {cc← V } and similarly for the other cost symbols).

Rule VarExp achieves the effect of sharing. If the variable to be evaluated is
bound to some expression in the heap, then the expression is evaluated and the
heap is updated with the computed value; finally, we return this value as the
result. In addition to counting the cost θ of evaluating expression e, both V and
U are attributed to cost centers cc and ccv, respectively.

For the evaluation of a value, rule Val returns it without modifying the heap.
No costs are attributed in this rule since actual implementations have no coun-
terpart for this action.

Rule Fun corresponds to the unfolding of a function call. The result is ob-
tained by reducing the right-hand side of the corresponding rule (we assume
that the considered program P is a global parameter of the calculus). Cost F is
attributed to the current cost center cc to account for the function unfolding.



Rule Let adds its associated binding to the heap and proceeds with the eval-
uation of its main argument. Note that we give the introduced variable a fresh
name in order to avoid variable name clashes. In this case, cost H is added to
the current cost center cc.

Rule Or non-deterministically reduces an or expression to either the first or
the second argument. N is attributed to the current cost center to account for
a non-deterministic step.

Rule Select corresponds to the evaluation of a case expression whose argument
reduces to a constructor-rooted term. In this case, we select the appropriate
branch and, then, proceed with the evaluation of the expression in this branch
by applying the corresponding matching substitution. In addition to the costs
of evaluating the case argument, θ1, and the selected branch, θ2, we add cost C
to the current cost center cc to account for the pattern matching.

Rule Guess applies when the argument of a flexible case expression reduces
to a logical variable. It binds this variable to one of the patterns and proceeds
by evaluating the corresponding branch. If there is more than one branch, one of
them is chosen non-deterministically. Renaming the pattern variables is neces-
sary to avoid name clashes. We also update the heap with the (renamed) logical
variables of the pattern. In addition to counting the costs of evaluating the case
argument, θ1, and the selected branch, θ2, we attribute to the current cost cen-
ter cc costs V (for determining that y is a logical variable), U (for updating the
heap from y 7→ y to y 7→ ρ(pi)), B (for binding a logical variable), n ∗ H (for
adding n new bindings into the heap) and, if there is more than one branch, N
(for performing a non-deterministic step). Note that no cost C is attributed to
cost center cc (indeed, cost B is alternative to cost C).

Finally, rule SCC evaluates an scc-expression by reducing the expression e
in the context of the new cost center cc′. Accordingly, cost E is added to cost
center cc′.

A proof of a judgement corresponds to a derivation sequence using the rules of
Figure 2. Given a program P , the initial configuration has the form “ccmain, [ ] :
main”, where ccmain is a distinguished cost center. If the judgement

ccmain, [ ] : main ⇓θ Γ : v, ccv

holds, we say that main evaluates to value v with associated cost θ. The com-
puted answer can be extracted from the final heap Γ by a simple process of
dereferencing.

Obviously, the cost semantics is a conservative extension of the original big-
step semantics of [1], since the computation of cost information imposes no
restriction on the application of the rules of the semantics.

5 Cost Instrumentation

As mentioned before, implementing an interpreter for the cost semantics of Fig-
ure 2 is impracticable. It would involve too much overhead to profile any realistic
program. Thus, we introduce a transformation to instrument programs in order
to compute the symbolic costs:



[[x]]cc = Vcc(x)

[[c(x1, . . . , xn)]]cc = c(cc, x1, . . . , xn)

[[f(x1, . . . , xn)]]cc = fcc(x1, . . . , xn)

[[let x = e′ in e]]cc = Hcc

 let x = x in [[e]]cc) if e′ = x
let x = [[e′]]cc in [[e]]cc if e′ = c(yn)
let x = update([[e′]]cc) in [[e]]cc otherwise


[[e1 or e2]]cc = Ncc([[e1]]cc or [[e2]]cc)

[[case x of {pk → ek}]]cc = case [[x]]cc of {p′k → Ccc([[ek]]cc)}
where p′i = c(cc, yn) for all pi = c(yn)

[[fcase x of {pk → ek}]]cc

= if isVar(x)

then Vcc(Ucc(Bcc(θN (fcase [[x]]cc of {p′k → |pk| ∗Hcc([[ek]]cc)}))))
else fcase [[x]]cc of {p′k → Ccc([[ek]]cc)}

where p′i = c(cc, yn) for all pi = c(yn) and θN (e) =

{
e if k = 1
Ncc(e) if k > 1

[[scc(cc′, e)]]cc = Ecc′([[e]]cc′)

Here, |p| denotes the arity of pattern p, i.e., |p| = n if p = c(xn), and the auxiliary
function update is used to attribute cost U to the cost center of the computed value:

update(x) = case x of {ck(cck, xnk )→ Ucck (ck(cck, xnk ))}
where c1, . . . , ck are the program constructors.

Fig. 3. Cost transformation [[ ]]cc for instrumenting expressions

Definition 1 (cost transformation). Given a program P , its cost instru-
mented version cost(P ) is obtained as follows: for each program rule

f(x1, . . . , xn) = e

cost(P ) includes one transformed rule for each cost center cc in P of the form

fcc(x1, . . . , xn) = Fcc([[e]]cc)

where Fcc(e) is the identity function on e. Counting the calls to Fcc in the proof
tree corresponds to the number of F ’s accumulated in cost center cc. Function
[[ ]] (shown in Figure 3) is used to instrument program expressions.

Observe that, in the transformed program, we have as many variants of each
function of the original program as the number of different cost centers. Seman-
tically all these variants are equivalent; the only difference is that, by counting
the calls to the different cost center identity functions (like Fcc), we obtain the
costs of the computation.

Program instrumentation is mainly performed by function [[ ]]cc, where cc
denotes the current cost center. Let us informally explain how the transformation
proceeds. We distinguish the following cases depending on the value e in a call
of the form [[e]]cc:



– If e is a variable, a call to function Vcc is added to attribute cost V to cost
center cc.

– If e = c(xn) is a constructor-rooted term, we add a new argument to store the
current cost center. This is necessary to attribute cost U to the appropriate
cost center (i.e., to the cost center of the computed value, see Figure 2).

– A call to a function e = f(xn) is translated to a call to the function variant
corresponding to cost center cc.

– If e = (let x = e1 in e2) is a let expression, a call to function Hcc is always
added to attribute cost H to cost center cc. Additionally, if the binding is
neither a logical variable nor a constructor-rooted term, the cost center cci,
1 ≤ i ≤ k, of the computed value is determined (by means of an auxiliary
function update, see Figure 3) and a call to Ucci is added to attribute cost
U to that cost center.

– If e = (e1 or e2) is a disjunction, a call to Ncc is added to attribute N to
cost center cc.

– If e = case x of {pk → ek} is a rigid case expression, we recursively transform
both the case argument and the expression of each branch, where a call to
Ccc is added to attribute cost C to cost center cc. Observe that the cost
center of the patterns is not used (it is only needed in the auxiliary function
update).

– If e = fcase x of {pk → ek} is a flexible case expression, a run time test
(function isVar) is needed to determine whether the argument evaluates to
a logical variable or not. This function can be found, e.g., in the library
Unsafe of PAKCS. If it does not evaluate to a logical variable, we proceed
as in the previous case. Otherwise, we add calls to functions Vcc, Ucc, Bcc,
and Ncc (if k > 1). Also, in each case branch, calls to Hcc are added to
attribute the size of the pattern to cost center cc.

– Finally, if e = scc(cc′, e′) is an scc-expression, a call to function Ecc is added.
More importantly, we update the current cost center to cc′ in the recursive
transformation of e′.

Derivations with the standard semantics (i.e., without cost centers) are denoted
by ([ ] : main ⇓ Γc : v). Given a heap Γ , we denote by Γc the set of bindings
x 7→ e′ such that x

cc7−→ e belongs to Γ , where e′ = e if e is a logical variable,
e′ = [[e]]cc if e = c(xn), or e′ = update([[e]]cc) otherwise. Also, in order to make
explicit the output of the instrumented program with the standard semantics,
we write ([ ] : main ⇓θ Γc : v), where θ records the set of calls to cost functions
(e.g., Hcc, Fcc, etc).

The correctness of our program instrumentation is stated as follows (the
proof can be found in the appendix):

Theorem 1 (correctness). Let P be a program and cost(P ) be its cost instru-
mented version. (ccmain, [ ] : main ⇓θ Γ : v, cc) in P iff ([ ] : mainccmain

⇓θ

Γc : v′) in cost(P ), where v = v′ (if they are variables) or v = c(xn) and
v′ = c(cc, xn).



6 Implementation

The main purpose of profiling programs is to increase run-time efficiency. How-
ever, in practice, it is important to obtain symbolic profiling information as well
as measuring run times. As discussed before, we want to provide cost centers for
both kinds of profiling in order to be able to analyze arbitrary sub-computations
independently of the defined functions. For the formal introduction of costs and
correctness proofs, symbolic costs are the appropriate means. Therefore, we in-
troduced a program transformation dealing with symbolic costs. However, the
presented program transformation can easily be extended for measuring run
times and distribute them through cost centers. In this section, we first present
our approach to measure run times and function calls (Sect. 6.1) and, then,
describe the extensions to obtain symbolic profiling (Sect. 6.2).

6.1 Measuring Run Times

When trying to measure actual run times, the crucial point is to alter the run
time behavior of the examined program as little as possible. If the program
instrumented for profiling runs 50% slower or worse, one profiles the process of
profiling rather than the program execution. Because of this, measuring actual
run times is a matter of low-level programming and, thus, highly depending on
the actual language implementation.

Our approach is specific to the Curry implementation PAKCS [9]. In this
programming environment, Curry programs are compiled by transforming flat
programs (cf. Section 2) to SICStus Prolog (see [3] for details about this trans-
formation). Note, however, that in contrast to Section 2 the programs are not
necessarily normalized. In order to provide low-level profiling for PAKCS, we
instrument the program with the profiling mechanisms offered by SICStus Pro-
log. Fortunately, SICStus Prolog features low-level profiling instruments which
create an overhead of approximately 22%. The Prolog tools provide precise mea-
suring of the number of predicate and clause calls. For measuring run time, a
number of synthetic units is given which is computed according to [6].

The main challenge was to introduce the cost centers into Prolog profiling.
Luckily, we found a way to do this without further slowing down the execution of
the program being profiled. The only overhead we introduce is code duplication,
since we introduce a different version of each function for each cost center, as in
the program transformation described above. Thus, for the program

main = SCC "len" (length (SCC "list" (enumFromTo 1 10)))

function main does not call a function length but a variant with the name
“length{len}” and also a function named “enumFromTo{list}”. Gathering all
run times for functions with the attachment {cc}, one gets the run time belonging
to that cost center. An obvious optimization is to eliminate unreachable functions
like length{list} in the example.



6.2 Extension for Symbolic Profiling

Our approach to symbolic profiling exactly represents the idea described in Sec-
tion 5 above. For each cost, we introduce a new function, e.g., var lookup for
cost V . There are variations of these functions for the different cost centers, e.g.,
var lookup{list} like in Section 6.1. After the execution of the transformed
program, we simply count each call to var lookup{list} to get the sum of
costs V attributed to the cost center list.

The advantage of this method is its simplicity. The demands to use our
transformation for profiling with any implementation of Curry are not very high.
The run-time system must only be able to count the number of calls to a certain
function which is easy to implement. The disadvantage is the considerable (but
still practicable) slowdown as we are not only introducing new functions but also
new function calls.

It is worthwhile to note that, although the program transformation of Fig. 3
is equivalent to the cost semantics of Fig. 2 for particular computations (as stated
in Theorem 1), there is one important difference:

While the cost semantics is don’t-care non-deterministic, the instru-
mented programs accumulate all costs according to the search strategy.

For instance, the cost for a failing derivation is also accumulated in the cost of
the results computed afterwards. Furthermore, completely failing computations
also have an associated cost while no proof tree (and thus no costs) can be
constructed in the big-step semantics. From a practical point of view, this is an
advantage of the program transformation over the cost semantics, since the cost
of failing derivations is relevant in the presence of non-deterministic functions.

7 Related Work and Conclusions

The closest approaches to our work are [12] and [2]. On the one hand, [12]
presents a formal specification of the attribution of execution costs to cost cen-
ters by means of an appropriate cost-augmented semantics in the context of
lazy functional programs. A significant difference from our work is that our flat
representation of programs allows logical features (like non-determinism) and
that we also present a formal transformation to instrument source programs. On
the other hand, [2] introduces a symbolic profiling scheme for functional logic
languages. However, the approach of [2] does not consider sharing (an essen-
tial component of lazy languages) and, thus, it is not an appropriate basis for
the development of profiling tools for current implementations of lazy functional
logic languages. Also, we introduced a program transformation that allows us to
compute symbolic costs with a reasonable overhead. Finally, in the context of
the PAKCS environment for Curry, we showed how actual run times can also be
computed by reusing the SICStus Prolog profiler.



References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Functional Logic Languages. In Proc. of the Int’l Workshop on Functional
and (Constraint) Logic Programming (WFLP’02), volume 76 of Electronic Notes
in Theoretical Computer Science, 2002.

2. E. Albert and G. Vidal. Symbolic Profiling of Multi-Paradigm Declarative Lan-
guages. In Proc. of Int’l Workshop on Logic-based Program Synthesis and Trans-
formation (LOPSTR’01), pages 148–167. Springer LNCS 2372, 2002.

3. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. of the Int’l Workshop on Frontiers of Combining Systems (Fro-
CoS’2000), pages 171–185. Springer LNCS 1794, 2000.

4. H.P. Barendregt. The Lambda Calculus—Its Syntax and Semantics. Elsevier, 1984.
5. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at:

http://www.informatik.uni-kiel.de/~curry/.
6. M. Gorlick and C. Kesselman. Timing Prolog Programs without Clock. In Proc.

of the 4th Symposium on Logic Programming (SLP’87), pages 426–434, 1987.
7. M. Hanus. A Unified Computation Model for Functional and Logic Program-

ming. In Proc. of the 24th ACM Symp. on Principles of Programming Languages
(POPL’97), pages 80–93. ACM, New York, 1997.

8. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33–75, 1999.

9. M. Hanus (ed.), S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS 1.6.0: The Portland Aachen Kiel Curry System—User
Manual. Technical report, University of Kiel, Germany, 2004.

10. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL’93), pages 144–154. ACM
Press, 1993.

11. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of the 10th Int’l Conf. on Rewriting Techniques and Applications
(RTA’99), pages 244–247. Springer LNCS 1631, 1999.

12. P.M. Sansom and S.L. Peyton-Jones. Formally Based Profiling for Higher-Order
Functional Languages. ACM Transactions on Programming Languages and Sys-
tems, 19(2):334–385, 1997.



A Proof of Theorem 1

Theorem 1 (correctness). Let P be a program and cost(P ) be its cost instru-
mented version. (ccmain, [ ] : main ⇓θ Γ : v, cc) in P iff ([ ] : main(ccmain) ⇓θ

Γc : v′) in cost(P ), where v = v′ (if they are variables) or v = c(xn) and
v′ = c(cc, xn).

Proof. We prove a more general claim: for each cost-augmented derivation

cce, Γ : e ⇓θ ∆ : v, ccv

in P , there exists a standard derivation

Γc : e′ ⇓θ ∆c : [[v′]]ccv

in cost(P ) and vice versa, where e′ is either a logical variable (according to Γc)
or e′ = [[e]]cce

, and v = v′ (if they are variables) or v = c(xn) and v′ = c(cc, xn).

(=⇒) We prove the claim by induction on the depth m of the derivation.
(Base case m = 0) In this case, only two rules can be applied:

– If e is a logical variable (i.e., a variable x such that Γ [x] = x) then, by rule
Val of the cost-augmented semantics, we have (cce, Γ : x ⇓{} Γ : x, cce) in
the original program P . Since e is a logical variable, e′ = e and, by rule Val
of the standard semantics, we also have (Γc : x ⇓{} Γc : x) in cost(P ).
Similarly, if e = c(xn), only rule Val can be applied: (cce, Γ : c(xn) ⇓{}
Γ : c(xn), cce). Thus, e′ = [[c(xn)]]cce

= c(cce, xn) and, by rule Val of the
standard semantics, we also have (Γc : c(cce, xn) ⇓{} Γc : c(cce, xn)).

– Otherwise, e = x is a variable with Γ = Γ [x ccc7−→ c(xn)] and rule VarCons of
the cost-augmented semantics is applied in program P :

cce, Γ [x ccc7−→ c(xn)] : x ⇓{cce←V } Γ [x ccc7−→ c(xn)] : c(xn), ccc

Therefore, in the instrumented program, cost(P ), we have Γc[x 7→ [[c(xn)]]ccc
] :

[[x]]cce
= Γc[x 7→ c(ccc, xn)] : Vcce

(x) and, thus, the following derivation holds
by applying rules Fun (to unfold Vcce

) and VarCons:

Γc[x 7→ c(ccc, xn)] : x ⇓{ } Γc[x 7→ c(ccc, xn)] : c(ccc, xn)
Γc[x 7→ c(ccc, xn)] : Vcce

(x) ⇓{cce←V } Γc[x 7→ c(ccc, xn)] : c(ccc, xn)

(Inductive case m > 1) In this case, rules VarExp, Fun, Let, Or, Select, Guess,
and SCC are applicable. We consider each case separately.

(VarExp) Then, e is a variable with Γ [x] 6= x and we performed the following
derivation step in P (with the cost-augmented semantics):

cce1 , Γ : e1 ⇓θ ∆ : v, ccv

cce, Γ [x
cce17−→ e1] : x ⇓{cce←V }+θ+{ccv←U} ∆[x ccv7−→ v] : v, ccv

In the instrumented program, cost(P ), we have e′ = [[x]]cce
= Vcce

(x) (since
x is not a logical variable) and [[e1]]cce1

= update([[e1]]cce1
) (since e1 is neither



x nor a constructor-rooted term). Therefore, the following derivation holds
in cost(P ) by applying rules Fun and VarExp:

Γc[x 7→ update([[e1]]cce1
)] : [[e1]]cce1

⇓θ ∆c[x 7→ [[v]]ccv
] : [[v]]ccv

Γc[x 7→ update([[e1]]cce1
)] : update([[e1]]cce1

) ⇓θ+{ccv←U} ∆c[x 7→ [[v]]ccv
] : [[v]]ccv

Γc[x 7→ update([[e1]]cce1
)] : x ⇓θ+{ccv←U} ∆c[x 7→ [[v]]ccv

] : [[v]]ccv

Γc[x 7→ update([[e1]]cce1
)] : Vcce

(x) ⇓{cce←V }+θ+{ccv←U} ∆c[x 7→ [[v]]ccv
] : [[v]]ccv

Finally, the topmost judgement follows by the inductive hypothesis.
(Fun) Then, e is a function call and we performed the following derivation step

in P (with the cost-augmented semantics):

cce, Γ : ρ(e1) ⇓θ ∆ : v, ccv

cce, Γ : f(xn) ⇓{cce←F}+θ ∆ : v, ccv

where f(yn) = e1 ∈ P and ρ = {yn 7→ xn}. Therefore, e′ = [[f(xn)]]cce
=

fcce
(xn) and the following subderivation holds in cost(P ) by applying twice

rule Fun of the standard semantics:
Γc : [[ρ(e1)]]cce

⇓θ ∆c : [[v]]ccv

Γc : Fcce
(ρ([[e1]]cce

) ⇓{cce←F}+θ ∆c : [[v]]ccv

Γc : fcce(xn) ⇓{cce←F}+θ ∆c : [[v]]ccv

since, by definition of cost transformation, fcc(yn) = Fcc([[e1]]cc) ∈ cost(P ).
Finally, the claim follows by applying the inductive hypothesis to the topmost
judgement.

(Let) Then, e = (let x = e1 in e2) is a let expression and we performed the
following derivation step in P (with the cost-augmented semantics):

cce, Γ [y cce7−→ ρ(e1)] : ρ(e2) ⇓θ ∆ : v, ccv

cce, Γ : let x = e1 in e2 ⇓{cce←H}+θ ∆ : v, ccv

where ρ = {x 7→ y}. Now, we consider three cases, depending on whether
e1 = x (a logical variable), e1 = c(xn), or e1 is any other expression:
– If e1 = x, then e′ = [[let x = e1 in e2]]cce

= Hcce
(let x = x in [[e2]]cce

)
and the following subderivation holds in cost(P ) by applying rules Fun
and Let of the standard semantics:

Γc[y 7→ y] : [[ρ(e2)]]cce
⇓θ ∆c : [[v]]ccv

Γc : let x = x in [[e2]]cce
) ⇓θ ∆c : [[v]]ccv

Γc : Hcce(let x = x in [[e2]]cce
) ⇓{cce←H}+θ ∆c : [[v]]ccv

and the claim follows by applying the inductive hypothesis to the top-
most judgement.

– If e1 = c(xn), then e′ = [[let x = e1 in e2]]cce
= Hcce

(let x = [[e1]]cce
in [[e2]]cce

)
and the following subderivation holds in cost(P ) by applying rules Fun
and Let of the standard semantics:

Γc[y 7→ ρ([[e1]]cce
)] : [[ρ(e2)]]cce

⇓θ ∆c : [[v]]ccv

Γc : let x = [[e1]]cce
in [[e2]]cce

) ⇓θ ∆c : [[v]]ccv

Γc : Hcce
(let x = [[e1]]cce

in [[e2]]cce
) ⇓{cce←H}+θ ∆c : [[v]]ccv



and the claim follows by applying the inductive hypothesis to the top-
most judgement.

– Finally, if e1 is any other expression, we have e′ = [[let x = e1 in e2]]cce
=

Hcce
(let x = update([[e1]]cce

) in [[e2]]cce
) and the following subderivation

holds in cost(P ) by applying rules Fun and Let of the standard semantics:
Γc[y 7→ ρ(update([[e1]]cce

))] : [[ρ(e2)]]cce
⇓θ ∆c : [[v]]ccv

Γc : let x = update([[e1]]cce
) in [[e2]]cce

) ⇓θ ∆c : [[v]]ccv

Γc : Hcce(let x = update([[e1]]cce
) in [[e2]]cce

) ⇓{cce←H}+θ ∆c : [[v]]ccv

and the claim follows by applying the inductive hypothesis to the top-
most judgement.

(Or) Then, e is a disjunction and we performed the following derivation step in
P (with the cost-augmented semantics):

cce, Γ : ei ⇓θ ∆ : v, ccv

cce, Γ : e1 or e2 ⇓{cce←N}+θ ∆ : v, ccv

where i ∈ {1, 2}. Therefore, e′ = [[e1 or e2]]cce
= Ncce

([[e1]]cce
or [[e2]]cce

) and
the following subderivation holds in cost(P ) by applying rules Fun and Or
of the standard semantics:

Γc : [[ei]]cce
⇓θ ∆c : [[v]]ccv

Γc : [[e1]]cce
or [[e2]]cce

⇓θ ∆c : [[v]]ccv

Γc : Ncce([[e1]]cce
or [[e2]]cce

) ⇓{cce←N}+θ ∆c : [[v]]ccv

and the claim follows by applying the inductive hypothesis to the topmost
judgement.

(Select) Then, e = (f )case x of {pk → ek} is a case expression and we performed
the following derivation step in P (with the cost-augmented semantics):

cce, Γ : x ⇓θ1 ∆ : c(yn), ccc cce,∆ : ρ(ei) ⇓θ2 Θ : v, ccv

cce, Γ : (f )case x of {pk → ek} ⇓θ1+{cce←C}+θ2 Θ : v, ccv

where pi = c(xn), i ∈ {1, . . . , n}, and ρ = {xn 7→ yn}. Therefore, since x eval-
uates to a non-variable expression, we have that e′ = [[(f )case x of {pk → ek}]]cce

=
(f )case [[x]]cce

of {p′k → Ccce
([[ek]]cce

)} (we omit the evaluation of isV ar(x)
for clarity), where p′i = c(cc, zl) for all pi = c(zl), i = 1, . . . , k. Then, the
following subderivation holds in cost(P ) by applying rules Select and Fun of
the standard semantics:

Γc : [[x]]cce
⇓θ1 ∆c : [[c(yn)]]ccc

∆c : [[ρ(ei)]]cce
⇓θ2 Θ : [[v]]ccv

∆c : Ccce([[ρ(ei)]]cce
) ⇓{cce←C}+θ2 Θ : [[v]]ccv

Γc : (f )case [[x]]cce
of {p′k → Ccce(ek)} ⇓θ1+{cce←C}+θ2 Θc : [[v]]ccv

and the claim follows by applying the inductive hypothesis to the topmost
judgements.



(Guess) Then, e = fcase x of {pk → ek} is a flexible case expression and we
performed the following derivation step in P (with the cost-augmented se-
mantics):

cce, Γ : x ⇓θ1 ∆ : y, ccy cce,∆[y cce7→ ρ(pi), yn
cce7→ yn] : ρ(ei) ⇓θ2 Θ : v, ccv

cce, Γ : fcase x of {pk → ek} ⇓θ1+{cce←V,cce←U,cce←B,cce←n∗H}+θN+θ2 Θ : v, ccv

where pi = c(xn), ρ = {xn 7→ yn}, yn are fresh variables, and θN = {cce ←
N} if k > 1 and θN = { } if k = 1. Therefore, since x evaluates to a logical
variable, we have that e′ = [[fcase x of {pk → ek}]]cce

=

Vcce
(Ucce

(Bcce
(θNcce

((f )case [[x]]cce
of {p′k → |pk| ∗Hcce

([[ek]]cce
)}))))

(we omit the evaluation of isV ar(x) for clarity), where p′i = c(cc, zl) for all
pi = c(zl), i = 1, . . . , k. Then, the following subderivation holds in cost(P )
by applying rules Guess and Fun of the standard semantics:

Γc : [[x]]cce
⇓{cce←V }+θ1 ∆c : [[y]]ccy

∆c : [[ρ(ei)]]cce
⇓θ2 Θ : [[v]]ccv

∆c[y 7→ [[ρ(pi)]]cce
, yn 7→ [[yn]]cce

] :
n ∗Hcce([[ρ(ei)]]cce

)
⇓{cce←C,cce←n∗H}+θ2 Θc : [[v]]ccv

Γc : Ucce(Bcce(θNcce
(

(f )case [[x]]cce
of {p′k → |pk| ∗Hcce([[ek]]cce

)})))
⇓θ1+{cce←V,cce←U,cce←B,cce←|pk|∗H}+θN+θ2 Θc : [[v]]ccv

and the claim follows by applying the inductive hypothesis to the topmost
judgements.

(SCC) Then, e = scc(cc, e1) and we performed the following derivation step in
P (with the cost-augmented semantics):

cc, Γ : e1 ⇓θ ∆ : v, ccv

cce, Γ : scc(cc, e1) ⇓{cc←E}+θ ∆ : v, ccv

Therefore, e′ = [[scc(cc, e1)]]cce
= Ecc([[e1]]cc and the following subderivation

holds in cost(P ) by applying rules Fun and SCC of the standard semantics:

Γc : [[e1]]cc ⇓θ ∆c : [[v]]ccv

Γc : Ecc([[e1]]cc) ⇓{cc←E}+θ ∆c : [[v]]ccv

The claim follows by applying the inductive hypothesis to the topmost judge-
ment.

(⇐) This direction can be proved in a similar way as the previous direction by
induction on the depth of the proof for the instrumented program (and, then, a
case distinction on the applied rule).


