Parser Combinators

A program which decides for a give word w entscheidet, whether it can is in the language
of a given context-free grammar G is called parser for G. In addition to this yes/no
answer, it is useful that the parser yields further information, like a left-derivation or a
syntax tree.

There are different approaches to implement parsers:

o Parser-generators like YACC (for C) or Happy (for Haskell) take a textual
representation of the grammar and produce a parser program for this grammar.

e Recursive-decent parsers can be defined by alternating, recursive functions -
one function for every non-terminal of the grammar.

« Parser combinators allow the definition of recursive-decent parsers in a grammar
like notation. Hence parser combinators define parsers, which can directly be
executed and applied as parser.

In the following we deal with the usage and implementation of such parser combinators.

Using Parser Combinators

A Parser (combinator) is a value of type Parser a and can be applied to a string by
means of the function parse.

parse :: Parser a -> String -> Maybe a

The type a contains additional information, which are returned in case of a successful
parse. A parser which only decides, whether a word can be derived is of type Parser ().
A simple parser, matching a given character is of type

char :: Char -> Parser ()
and can be used as follows:

ghci> parse (char 'a') "a"
Just O

For other Strings we obtain Nothing.

ghci> parse (char 'a') ""

Nothing
ghci> parse (char 'a') "b"
Nothing
ghci> parse (char 'a') "ab"
Nothing



Simple parser can be combined to complex parsers by means of parser combinators. The
first one is

(¥>) :: Parser a —> Parser b -> Parser b

which executes two parsers after each other and returns the result of the second parser.
Using this combinator we can define a parser which only matches the String “()”:

parens = char '(' *> char ')'
The corresponding grammar (in Backus-Naur Form, BNF) is:
Parens ::= '(' ')

At the moment we do not consider the result of a parser. However, there is also another
combinator which yields the result of the first parser and drops the result of the second
parser:

(<*) :: Parser a -> Parser b -> Parser a

Note that in both combinators the first parser argument is used before the second parser.
Hence, in general it is not true, that (<x) = flip (*>).

Since our parser at the moment only base on the atomic char-parser, every parser yields
O as a result.

ghci> parse parens "()"
Just )

Now lets extend the parser, such that it can parse arbitrary nested expressions with
brackets. The corresponding BNF is:

Nested ::= '(' Nested ')' Nested
|

Here the second alternative means, that an nested bracket expression may also be the
empty word. Furthermore, the definition is recursively. The non-terminal Nested occurs
in the right-hand side of the first rule.

In Haskell we can define this parser similarly:

nested
= char '(' *> nested *> char ')' *> nested
<|> empty

We use the combinator
(<|>) :: Parser a -> Parser a -> Parser a
which combines two alternative parsers and

empty :: Parser ()



as a parser, which matches the empty word. Again we can test this parser using the
function parse:

ghci> parse nested "(O) (O O))"
Just ()

ghci> parse nested "(() ()"
Nothing

Hence, our parsers fulfill the following laws:

empty *> p
p <x empty

p
p

Furthermore, a distributive law holds for a sequence operator and the alternative:

(p <I>q) = r
p *> (q <|> 1)

(p *> r) <|> (q *> 1)
(p *> q) <I> (p *> 1)

All binary combinators are assosiative, for instance
(p<I>q) <I>r = p<I>(q<I>0r
and there is also a neutral element
failure :: Parser a
for the <|>-Kombinator. failure which does not match any string, i.e. it parses the
empty language.

By means of the presented technique, every context-free grammar can be expressed with
parser combinators. A problem, however, are grammar, which contain left-recursion.

Translating the following grammar for the language _a*

AStar ::= AStar 'a'
[

in parser-combinators

aStar = aStar *> char
<|> empty

a

we obtain a non-terminating parser, applying the parser by the parse function:

ghci> parse aStar "aaa"
**%*x Exception: stack overflow

As a solution, it is possible, to eliminate left-recursion. For instance, we can transform
the grammar to > aStar = char ‘a’ *> aStar > <|> empty

Now parse terminates for all inputs

ghci> parse aStar "aaa"
Just ()



In general, the elimination of left-recursion can be difficult, see lecture on compiler
construction.

The class of of context-free grammars, which can be parsed with parser combinators
is exactly the union of all LL(k) grammars for all natural numbers k. Hence, parser
combinators allow an arbitrary look-ahead, which may however be inefficient in some
situations. We will see this later, when we look at the implementation.

Now, lets investigate some further combinators, which allow the computation of further
syntax information. The simplest is

yield :: a -> Parser a
yield x is a parser, which matches the empty word and returns x as parse information.

As a more complex example, we extend our parser for bracket expressions with the
maximal nesting depth:

nesting :: Parser Int
nesting
= (\m n -> max (m+1) n)
<$> (char '(' *> nesting <* char ')')
<*> nesting
<|> yield 0

ghci> parse nesting "((O () O))"
Just 3

ghci> parse nesting ""

Just O

ghci> parse nesting "(OQO"
Nothing

The operator <$> allows the application of a function to parser, and we already know
this function from Applicative

In the definition of nesting we used two new combinators
(<$>) :: (a -> b) -> Parser a —-> Parser b

applies a function to the result of a parser. From the parsing perspective, the parser
stays unchanged, but yields a different result.

We now see, that parsers are applicative functors and the functions have already the
same names. We obtain the following instances:

instance Functor Parser where
fmap = (<$>)

with



id <$> P = P
£<$> (g<$>p) = (f.g <$> p

and an applicative instance, where

pure = yield

and

(<x>) :: Parser (a -> b) -> Parser a -> Parser b

Let us consider another example for a parser with result, using the following combinators:

anyChar :: Parser Char
check :: (a -> Bool) -> Parser a -> Parser a

The parser anyChar c reads a single character and returns this character. The function
check modifies a parser such that it checks whether the parse result fulfils a predicate.
If this is the case, the parse result stays unchanged. Otherwise the parser fails.

Hence we can express the char parser as follows:

char :: Char -> Parser ()
char c¢ = check (c==) anyChar *> empty

The final *> empty is used for converting the type to Parser ().

An advantage of parser combinators is, that we can define new combinators on top of
existing parsers. For instance, we can easily define a combinator many, which repeats the
application of another parser an arbitrary number of times.

many :: Parser a -> Parser [a]
many p = (:) <$> p <*> many p
<|> yield []

Hence, this operator behaves like a Kleene star and a string matches a parser many p if
it matches the empty string, or an arbitrary repetition of parser p. The parse results are
returned as a list. Note, however, that it does not make sense to apply the combinator
many to a parser, which also matches the empty string, since this parser could be applied
again and again, resulting in an infinite list and hence, parsing will not terminate.

Using this parser combinator, we can define a parser for palindroms:

palindrom
= check (\ (u,v) -> u == reverse V)
$ ()

<$> many anyChar
<*> many anyChar

This parser first recognizes two arbitrary words u and v and then tests, whether u is the
reverse of ‘v



ghci> parse palindrom "anna"
Just ("an",'"na"
ghci> parse palindrom "otto"
Just ("ot","to")

However, this parser does not recognise palindroms with an odd number of characters,
which can be easily fixed as an exercise.

This example shows, that the class of languages recognisable by our grammars is quite
large. Palindroms without marked middle are a context-free language. But they cannot
be recognized by means of a deterministic push-down automaton. The language is
inherent ambiguous. The reason is, that a push-down can not recognise the middle of the
word and has to guess. However, our parser combinators are able to parse this language,
but they search for the middle and the resulting parser is not very efficient.

Later we will however see that our parser combinators are also able to recognise languages
which are not context-free.

Implementation

We now implement these parser in Haskell.

Since parse is the only function working with parsers, we can try to use the type of this
function for the implementation:

type Parser a = String -> Maybe a

parse :: Parser a -> String -> Maybe a

parse p = p

However, this implementation is too simple, as we see, when we try to implement (*>):
(*>) :: Parser a -> Parser b -> Parser b

P*>q=\s >ps 7?7 qs

We cannot give a reasonable implementation, since the second parser may not be applied
to the whole string, as the first parser. Instead, we need the information, how much
input was consumed by the first parser. This reminds to the state parser and we try a
similar type:

type Parser a = String -> Maybe (a,String)

Now, every parser yields in addition to the parse result, the remaining string, for further
parsing. Hence, we have to modify the definition of parse:

parse :: Parser a -> String -> Maybe a
parse p s = case p s of



Just (x,"") -> Just x
-> Nothing

parse only yileds a result, if the parser consumes the whole input, i.e. the remaining
string is empty. Now it is easy to define *>:

(*>) :: Parser a -> Parser b -> Parser b
p *> q = \s -> case p s of
Just (_,s') -> q s'
Nothing -> Nothing

We ignore the result of the first parser and simply return the result of the second parser
applied to the string remaining from the first parse.

Now, let us define the other combinators:

empty :: Parser ()
empty = \s —> Just ((Q),s)

char :: Char -> Parser ()
char x (c:cs) | x == = Just (c,cs)
| otherwise = Nothing

For the definition of <|> for alternativs, we first parse with the first parser. If this parser
fails, we try the second parser:

(<|>) :: Parser a -> Parser a —-> Parser a
p <I>q=\s -> case p s of
Just xs -> Just xs
Nothing -> q s

However, this implementation does not fulfil the distributivity law, as we already expected,
since we use Mabye as the incorrect MonadPlus instance:

testl (empty <|> char 'a') *> char 'b'

test2 = (empty *> char 'b')
<|> (char 'a' *> char 'b')
The first parser does not recognise "ab", while the second does.

ghci> parser testl "ab"
Nothing
ghci> parser test2 "ab"
Just )

To obtain a correct search, we have to use a correct type, which correctly implements
the laws for MonadPlus, which is for instance the list type:

type Parser a = String -> [(a,String)]



The continuation based variant of Maybe CMaybe would also work.

Using lists, a parser can produce several results and for each result, a different part of
the input can be consumed, i.e. every result has its own remaining string.

As a consequence the parse-function has to test whether there is a result, which returns
the empty string. This can also be another than the first parser result within the list.

parse :: Parser a -> String -> Maybe a
parse p s = case filter (null.snd) $ p s of
(x, ):_ -> Just x
_ -> Nothing

If there exist more than one successful result, we simply return the first one.
Reengineering the definitions, we obtain:

empty :: Parser ()
empty = \s -> [((),s)]

char :: Char -> Parser ()

char x (c:cs) | x == ¢ = [((O,cs)]

char x _ =[]

anyChar :: Parser Char

anyChar [] =[]

anyChar (c:cs) = [(c,cs)]

check :: (a->Bool) -> Parser a -> Parser a

check ok p = filter (ok . fst) . p

char :: Char -> Parser ()
char ¢ = check (c==) anyChar *> empty

(¥>) :: Parser a -> Parser b -> Parser b
P *> q =

\s > [xs | (_,s') <~ ps, xs <-qs']
This can be generalised by the operator (<*>):

(<*¥>) :: Parser (a->b) -> Parser a -> Parser b
P <k> q =
\s > [ (f x,82) | (£f,81) <-p s,
(x,82) <- q s1 ]

and we also have

(<*) :: Parser a -> Parser b -> Parser a
p <* q = const <$> p <x> g



<$> can be defined by <*>:

(<$>) :: (a -> b) -> Parser a -> Parser b
f <$> p = yield £ <x> p

yield :: a -> Parser a
yield x = \s -> [(x,s)]

Using these combinators becomes clear from the following example:

ghci> let ¢ = yield const
ghci> :t c

Parser (a -> b -> a)

ghci> let a = c <*> anyChar
ghci> :t a

Parser (b -> Char)

ghci> let ab = a <*> anyChar
ghci> :t ab

Parser Char

ghci> ab "abc"

[Ca',"c™)]

The <*> combinator successively applies the function const to the results of the two
anyChar Parsers. So the result is the symbol 'a' with remaining input "c".

It remains the definition of the combinator <|> for the definition of alternatives within
the grammar. <|> applies both parsers to the input an appends their results.

(<|>) :: Parser a -> Parser a -> Parser a
p<l>qg=\s >ps++qgs
The following example shows the results of it’s application:

ghci> (empty <|> char 'a') "abc"
[CO,"abe), (O, "bc")]

This parser either returns () without consuming a symbol from the input or reads an
'a' from the input and returns the remaining string "bc".

The parser failure behaves neutral with respect to <|> since it does not yield a result:

failure :: Parser a
failure _ = []

The definition of <|> ising lists now (in contrast to the Maybe version) fulfils the distribu-
tivity law. Hence, a parser tries all possible matchings by means of backtracking. This
is, for instance, mecessary for the palindrom parser, which did not work in the Maybe
variant.



Unfortunately, backtracking can result in efficiency problems in some sitations. As a
solution, we provide an alternative alternativ combinator <!>, which does not introduce
backtrack points for every possible mathcing of the first parser. Like the Maybe parser it
only executes the second parser if the first parser did not succeed:

(<!>) :: Parser a -> Parser a —-> Parser a
p <!>q=\s -> case p s of

1 ->qs

Xs —> xs8

Like <|> the operator <!> is also associative with neutral element failure. Instead of
the distributivity law it holds, that:

yield x <!> p = yield x

In practice you usually use this operator, when you are sure that the second alternative
will not succeed if the first one succeeds. Hence in non-overlapping cases.

The following parser for binary number in LSB representation (least significant bit first)
demonstrates once again the usage of the defined combinators:

binary = (\b n -> 2*n + b) <$> bit <*> binary
<1> yield 0
bit = <char '0' *> yield O

<!> char '1' *> yield 1

The binary parser reads sequences of zeros and ones and computes the corresponding
value of the binary number. For this, we apply the function (\b n -> 2*n + b) by
means of <$> and <*> to the results of the parsers bit and binary. If no symbol is left,
binary returns zero. These two alternatives exclude each other in this example and we
use <!> instead of <|>.

Here are some example calls:

ghci> parse binary ""

Just 0

ghci> parse binary "O"
Just O

ghci> parse binary "1"
Just 1

ghci> parse binary "10"
Just 1

ghci> parse binary "01"
Just 2

ghci> parse binary "110"
Just 3

ghci> parse binary "1101"

10



Just 11
ghci> parse binary "010101"
Just 42

A simple generalisation of the parser type is to use arbitrary lists of token instead of
Strings:

type Parser tok a = [tok] -> [(a, [tok])]

All definition can easily be transferred. In practice this is especially useful, if the parse
process is divided into a scanner and a parser (see Compiler construction).

So far we defined the parser type as a type synonym. Instead we should (like in many
other cases before) use a newtype definition.

Parsing non-context-free languages

For parsing non-context-free languages, we can use different approaches. First of all, it is
possible to parse the language a*b*c* and return (as some kind of AST) the number of
the occurences of the different letters. Then we can use the check function to compare
the results and finally project to one of these, to return the $n§:

anbncn :: Parser Int
anbncn =
A\ (x,_,_) > x) <$>

(check (\(n,m,k) —> n==m && m==k) ((,,) <$> star 'a' <*> star 'b' <*> star 'c'))

Here a star parser behaves similar to many (char c¢), but returns the number of
occurences instead of a list of ()s:

star :: Char -> Parser Int
star ¢ = (+1) <$> (char c *> star c)
<|> yield O

Anoth approach is the construction of a parser, which has an infinite number of rules.
Therefore, we start with an enumeration of all accepted words:

epsilon | abc | aabbcc | aaabbbecc | ...

Simply enumerating all these rules would on the one hand produce a correct parser and
all words of the form a"b"c¢™ would be recognized. However, for words with different
numbers of as, bs and c¢s, the parser would not terminate. The parser never knows, that
all alternatives will only match longer words.

On the other hand, it is possible to define an equivalent (infinite) regular expression,
which make the decision whether wether we continue parsing in dependence of the first
letter beeing an

a
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or

epsilon | a(bc | a(bbcee | a(bbbece | a(bbbbecece | ...))))
This can be realized by means of our parser combinators as follows:

anbncn2 :: Parser Int
anbncn2 = let bs n = foldr (*>) (yield n) (replicate n (char 'b'))
cs n = foldr (*>) (yield n) (replicate n (char 'c'))
bcs n =bsn *> csn
abc n = char 'a' *> ((bcs n) <[> abc (n+1)) in
yield 0 <|> abc 1

A third, even more elegant approach is first parsing the context-free language o™ and
then construct an appropriate ¢ parser. Hence, the ¢" parser depends on the parse
result of the first parser, which leads us to monadic parsers.

Monadic Parser

First of all we need a sequence operator for parser, which parameterizes the second parser
by the parse result of the first parser. The combinator *>= passes the result of one parser
to a function which yields another parser:

(¥>=) :: Parser a -> (a -> Parser b) -> Parser b

Using this operator, all parsers can be defined and the monadic parser is a simple
extension of the previously defined state parser. For the the palindrome example, this
looks like this:

palindrome =
many anyChar *>= \u ->
(empty <[> anyChar *> empty) *>
word (reverse u)

After parsing the first half of the palindrome and returning the String as the monadic
result, we construct a parser which expects the revers of this word.

word :: String -> Parser ()
word [] = empty
word (c:cs) = char c *> word cs

For palindromes of odd length it is necessary to conditionally accept one additional letter
in the middle. Hence, we should add the rule (empty <|> anyChar *> empty) *> to
its definition. Here the part *> empty is only necessary to construct the same type to
both alternatives.
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Since, the word combinator yields (), also the palindrome parser yields ():

ghci> parse palindrome "anna"

Just O

ghci> parse palindrome "rentner"
Just O

ghci> parse palindrome "hans"
Nothing

The combinator *>= has exactly the type of the monadic bind operator >>=. Furthermore,
yield relates to return. Also the monad laws are fulfilled for the parser combinators
and we can make parsers and instance of class Monad:

instance Monad Parser where
return = yield
(>>=) = (x>=)

This instance allows the definition of parsers using the do notation. For instance, the
parser for arbitrary nested brackets can be defined as follows:

nested
= do char '('
nested
char ')
nested
<|> empty

Parser which are anotated after each other in the do block will be executed sequentially.
The results of each parser can be accessed by using the left arrow :

nesting
= do char '('
m <- nesting
char ')
n <- nesting
return (max (m+1) n)
<|> return 0O

Using do it is simple to access exactly the parser results we are interested in. Using
special combinators like *> and <* is not necessary.

Finally, we can also define the palindrome parser in do notation:

palindrom = do u <- many anyChar
empty <|> anyChar *> empty
word (reverse u)
<|> empty

It remains to give the implementation of the combinator *>=:
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(¥>=) :: Parser a -> (a-> Parser b) -> Parser b
p *x>=f =
\s > [ (y,s2) | (x,s1) <-p s,
(y,s2) <- f x s1]

The result x of the parser p is passed to the function £. This application yields the second
parser, which can be applied to the remaining input string.

The combinator *>= is the most powerful combinator. All other combinators can be
expressed using this combinator. This relates the hierarchy between Functor, Applicative
Functor and Monad. For instance the operator <x> can be defined as follows:

p<¥>q = p*=\f -> g *>= \x -> yield (f x)

As a further application of the monadic parser combinar, we again consider the language
a™b™c”.
abcn3 = do

n <- anbn

foldr (*>) empty (replicate n (char 'c'))

return n

anbn = yield O
<|> (+1) <$> (char 'a' *> anbn <* char 'b')

Applikative Functor

We have already seen that <$> is the function fmap from the Functor class. Furthermore,
yield and*> =correspond to the Monad operationsreturn and >>=. Also <*>' and its
variants are abstracted in classApplicative‘:

class Functor f => Applicative f where

pure :: a -> f a

(<x¥>) :: f (a->b) >fa->1fhb
(x>) ::fa->fb->fb

(<x) :::fa->fb->fa
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