
The type constructor class Monad

-- Imports necessary to compile this file in ghc
import Prelude hiding (Monad(..), Applicative(..), sequence, sequenceA,

sequence_, mapM, mapM_, guard, (<$>))

In the last chapter we learned how constructor classes can be defined and used. Now the
question is: are there other useful type constructor classes? Therefore lets look at the IO
type again. There are the following laws, which should be valid for IO.

return () >> m = m
m >> return () = m
m >> (n >> o) = (m >> n) >> o

They express that (>>) is associative and return () is a neutral element. Hence IO
with these two operations is a Monoid.

Corresponding laws hold for return and (>>=):

return v >>= \x -> m = m[x/v]
m >>= \x -> return x = m
m >>= \x -> (n >>= \y -> o) = (m >>= \x -> n) >>= \y -> o

For the last rule, we have to restrict, that the variable x may not occur in o as a free
variable. 1.

Such a structure is called a Monad. The expression Monad comes from category theory,
where they speak more generally of a functor and two natural transformations, which
have to fulfil the monad laws2. The word Monad comes from Leibniz3.

In Haskell a Monad is a unary type constructor m with the operations return, (>>=)
(and fail), which fulfil the properties from above. They are represented by the class
Monad defined as follows.

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

fail :: String -> m a
fail s = error s

1The occurrence of a variable is free, if it was not introduced by a lambda. We will define this formally
in the context of the lambda calculus.

2http://en.wikipedia.org/wiki/Monad_(category_theory)
3The word monad comes from Greek an means a single one. It was used in Leibniz’ philo-
sophical idea of Monadology, which tries to explain how the hole universe (everything) can
be explained on basic, everlasting, impartial, unique spiritual atoms, called monads. See:
https://en.wikipedia.org/wiki/Monadology
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(>>) :: m a -> m b -> m b
p >> q = p >>= \_ -> q

The do-Notation is syntactic sugar for all monads, not just for IO. So the next thing on
our agenda is to get to know other monads.

The Maybe-Monad

Maybe is also a unary type constructor and (as for IO), there is a Functor instance for
Maybe. Can we also define an instance for the class Monad?

data Maybe a = Nothing | Just a

As an example we consider arithmetic expressions and want to evaluate them. Arithmetic
expressions can be represented by the following algebraic data type.

data Expr = Expr :+: Expr
| Expr :/: Expr
| Num Int

Unfortunately, the evaluation of an arbitrary expression may yield a run time error, if we
have to divide by zero. Hence, evaluating such an expression should yield a Maybe value,
as follows.

eval (Num 3 :+: Num 4 ) -> Just 7
eval (Num 3 :/: (Num (-1) :+: Num 1)) -> Nothing

With this idea in mind, we define the function eval.

eval :: Expr -> Maybe Int
eval (Num n) = Just n
eval (e1 :+: e2) = case eval e1 of

Nothing -> Nothing
Just n1 -> case eval e2 of

Nothing -> Nothing
Just n2 -> Just (n1 + n2)

eval (e1 :/: e2) = case eval e2 of
Nothing -> Nothing
Just 0 -> Nothing
Just n2 -> case eval e1 of

Nothing -> Nothing
Just n1 -> Just (n1 `div` n2)

The implementation becomes much simpler using Maybe as a Monad. The idea is, that
the fault case Nothing stops the computation and yields Nothing independent of any
other computation.
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instance Monad Maybe where

Nothing >>= k = Nothing
Just x >>= k = k x

return = Just

fail _ = Nothing

Using the instance, it is much easier to define the eval function from above.

eval :: Expr -> Maybe Int
eval (Num n) = return n
eval (e1 :+: e2) = do

n1 <- eval e1
n2 <- eval e2
return (n1 + n2)

eval (e1 :/: e2) = do
n2 <- eval e2
if n2==0

then Nothing
else do

n1 <- eval e1
return (n1 `div` n2)

or without do-Notation:

eval (Num n) = return n
eval (e1 :+: e2) =

eval e1 >>= \n1 ->
eval e2 >>= \n2 ->
return (n1 + n2)

eval (e1 :/: e2) =
eval e2 >>= \n2 ->
if n2==0

then Nothing
else eval e1 >>= \n1 ->

return (n1 `div` n2)

To prove the monad laws for Maybe is a simple exercise.

Before ghc 8, the class Monad was defined, as we introduced it in the last chapter.
However, there exists a connection between the classes Functor, Monad and a class
Applicative, which lays in some sense between these two classes. To understand this,
let us first look at the connection between Functor and Monad. Is it possible, to defined
the function fmap by means of the monad functions? At least for Maybe, we can define
fmap as follows.

fmap f ma = ma >>= \x -> return (f x)
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or

fmap f ma = ma >>= return . f

Executing this code for other Monad instances, like IO, works as well. This definition is
correct for arbitrary Monad instances and therefore, using this definition, the Monad laws
imply the Functor laws.

Functor seems to be in some sense a smaller type class then Monad, which could be
represented in the definition of the type constructor class Monad.

class Functor m => Monad m where

However, in ghc 8 the type hierarchy is a bit more complex and they introduced the class
Applicative for Applicative Functors in between.

To understand the idea of Applicative, let us again consider the evaluation for the type
Expr. A task in the eval function was the application of the function (+) to two values
of type Maybe. Using fmap, we can only apply unary functions to values of type Maybe.
Functions of arity two are not possible. Generalising the function fmap to a function of
arity two would result in a function of the following type.

fmap2 :: Functor f => (a -> b -> c) -> f a -> f b -> f c

Unfortunately, this will not scale well, as we would get the following function for a
function of arity three.

fmap3 :: Functor f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d

Currying does not help us, representing the general case in one function. A solution is to
pack or lift the function into the Functor class as well. This results into the operator
(<*>).

(<*>) :: Functor f => f (a -> b) -> f a -> f b

Using this operator, it is then possible, to add two Maybe values

Just (+) <*> ma <*> mb

where ma and mb are two arbitrary Maybe values. Note, that <*> binds left-associative.
The function in the Functor class is successively applied to values in the Functor class.
Curried functions of higher arity can successively be applied to there arguments within
the same functor class.

Using this, we can redefine the eval-Function for the :+: case as follows.

eval (e1 :+: e2) = Just (+) <*> eval e1 <*> eval e2

To be more general, we can also generalise the function Just to a function like return,
which in the context of applicative functors is called pure.

eval (e1 :+: e2) = pure (+) <*> eval e1 <*> eval e2

4



Combining all this, we obtain the class Applicative

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

and the corresponding Maybe instance

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

as well as the following laws that have to hold for applicative functors.

pure id <*> v = v -- Identity
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure ($ y) <*> u -- Interchange
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) -- Composition

Proving these laws for Maybe is simple, and can be left as an exercise.

Similar to defining fmap by means of the monad functions, it is again possible to define
fmap by means of the applicative functor

fmap f ma = pure f <*> ma

and again the Functor laws follow from the Applicative laws. Furthermore, there exists
a synonym for fmap, called (<$>) which can be useful as an infix operator in the content
of applicative functors, as we see in the definition of eval for the case (:+:).

(<$>) :: Applicative f => (a -> b) -> f a -> f b
f <$> fx = pure f <*> fx

eval (e1 :+: e2) = (+) <$> eval e1 <*> eval e2

To show, that Applicative lays between Functor and Monad, we should now give
definitions for the applicative function by means of the monadic functions. But again
that is simple.

pure = return
mf (<*>) ma = mf >>= \f ->

ma >>= \a ->
return (f a)

For arbitrary monads, this function is defined in module Control.Monad as function ap.
It can be used to avoid redundant definitions for the definitions of instances for Functor,
Applicative and Monad within the same module.

However, it is not possible, to define the function eval in applicative style for the case
(:/:). The whole result depends on the result of the computation of eval e2. Hence,
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from an imperative point of view, the control flow depends on the result of eval e2.
Applicative functors are not expressive enough to handle such situations, where the
control flow depends on a pure value, i.e., the result of a computation.

Hence, the more expressive Monad has to be used.

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

fail :: String -> m a
fail s = error s

(>>) :: m a -> m b -> m b
p >> q = p >>= \_ -> q

There are many useful functions defined for monads like sequence and sequence_.

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

where mcons p q = p >>= \x ->
q >>= \ys ->
return (x:ys)

sequence_ :: Monad m => [m a] -> m ()
sequence_ = foldr (>>) (return ())

sequence [getLine, getLine] >>= print
sequence [[1,2],[3,4]]
~> [[1,3],[1,4],[2,3],[2,4]]

And there is a variante working on Applicative.

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr appcons (pure [])

where appcons p q = (:) <$> p <*> q

It is also possible, to lift map to Monads.

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence_ (map f as)

mapM_ putStr ["Hallo ", "Leute"]
~> Hallo Leute
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mapM (\str -> putStr (str ++ ": ") >>
getLine)

["Vorname", "Name"] >>= print
~> Vorname: $Frank$

Name: $Huch$
["Frank","Huch"]

Again it is also possible to define this for Applicative. This function is called traverse
and in ghc 8, it is combined with sequenceA and some other functions in the class
Traversable (for more details see the library documentation).

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f as = sequence (map f as)

Furthermore it is possible to define an if-then without else for Monads.

when :: Monad m => Bool -> m () -> m ()
when b a = if b then a else return ()

instance Monad IO where
(>>=) = (>>=)
return = return

main = do
str <- getLine
when (str == "Frank")

(putStrLn "Hi Frank, nice to meet you")
-- ...

Monad with a Plus

Another view on the data type Maybe is, that Maybe is a container, which can at most
take one value. From this perspective, lists are a generalisation of Maybe, since they are
containers of arbitrary capacity. It is also possible to define a Monad instance for lists:

instance Monad [] where
return x = [x]
-- return = (:[])

(x:xs) >>= f = f x ++ (xs >>= f)
[] >>= f = []
-- (>>=) = flip concatMap

fail _ = []
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Then we get

[1,2,3] >>= \x -> [4,5] >>= \y -> return (x, y)
~> [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

and translated in do-notation.

do x <- [1,2,3]
y <- [4,5]
return (x, y)

The representation reminds strongly to list comprehensions, and in fact they are only
syntactic sugar for the list monad.

[ (x, y) | x <- [1,2,3], y <- [4,5] ]

Another property of the list monad is, that the empty list is the zero of the structure.

m >>= \_ -> [] = []
[] >>= \_ -> m = []

Furthermore there is one distinguished, associative function (++) that holds the following
law.

(m ++ n) ++ o = m ++ (n ++ o)

These two function can be combined in the class MonadPlus:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

For lists we get the instance:

instance MonadPlus [] where
mzero = []

[] `mplus` ys = ys
(x:xs) `mplus` ys = x : (xs `mplus` ys)
-- mplus = (++)

We can also define an instance for Maybe:

instance MonadPlus Maybe where
mzero = Nothing

Nothing `mplus` m = m
(Just x) `mplus` _ = Just x
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Searching with the List Monad

As we saw before, the monad list and list comprehensions are similar structures. So far,
we do not know, how to express boolean conditions in the list monad, as we do using list
comprehensions.

[ (x, y) | x <- [1,2,3], y <- [2,3,4], x==y ]

To implement such a condition, we can use the function guard.

guard :: Bool -> [()]
guard False = [] -- zero
guard True = [()] -- one

Thinking in backtracking or a search algorithm, the function guard restricts the search
and cuts a possible branch.

To understand, how guard works, let us consider the following example

return False >>= guard >> return 42

which is reduced as

guard False >> return 42
= [] >> return 42
= []

in contrast the expression

return True >>= guard >> return 42

reduces as follows.

guard True >> return 42
= [()] >> return 42
= return 42
= [42]

Hence, with guard it is possible to refuse a result in dependence of a (sub-)result. This
reminds us of the filter function, which can easily be defined using guard.

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = do x <- xs

guard (p x)
return x

Usually, guard is used to select valid results from a larger search space. For instance, a
program for computing Pythagorean triples can be defined as follows.

pytriples :: Int -> [(Int,Int,Int)]
pytriples max = do a <- [1..max]
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b <- [a..max]
c <- [b..max]
guard (a*a + b*b == c*c)
return (a,b,c)

The call pytriples 10 yields [(3,4,5),(6,8,10)].

In fact, it is possible to translate arbitrary list comprehensions into do-notation (exercise).

The guard function is defined for arbitrary instances of class MonadPlus.

guard :: MonadPlus m => Bool -> m ()
guard False = mzero
guard True = return ()

With this generalised type, we also get a generalised type for the Pythagorean triples

pytriples :: MonadPlus m => Int -> m (Int,Int,Int)

and can execute the function in any MonadPlus instance.

Laws for MonadPlus

So far, we defined the laws for MonadPlus only for lists. In general they are:

m >>= \_ -> mzero = mzero
mzero >>= \_ -> m = mzero

(m `mplus` n) `mplus` o = m `mplus` (n `mplus` o)

mzero und mplus built a monoid. However, there is another property you expect for
MonadPlus instances. For every function f the usage of (>>= f) should distribute with
respect to mzero und mplus (so in some sense be a MonadPlus homomorphism):

mzero >>= f = mzero
(a `mplus` b) >>= f = (a >>= f) `mplus` (b >>= f)

This distributive law, guarantees, that during the computation no results get lost.
Unfortunately, they are not fulfilled for every predefined MonadPlus instance. For example,
the implementation for Maybe does not fulfill the distributivity law for MonadPlus. For a
= return False, b = return True and f = guard, we get:

(return False `mplus` return True) >>= guard
= (Just False `mplus` Just True) >>= guard
= Just False >>= guard
= guard False
= Nothing

but
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(return False >>= guard) `mplus` (return True >>= guard)
= guard False `mplus` guard True
= Nothing `mplus` Just ()
= Just ()

As a consequence, using the Maybe monad to solve search problems does not always work.
For instance, executing the Pythagorean triples in the Maybe monad, we obtain the result
Nothing instead of Just (3,4,5).
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