
Non-Strict Evaluation in Strict Languages

Lazy evaluation in Haskell is very useful in many cases. Especially, defining lazy data
structures, like infinite lists can be useful in practice. In this chapter, we present a
technique, which allows the use of non-strict evaluation within strict languages. The idea
is the use of functions to suspend evaluations of data structures. For simplicity, we use
functions which take an argument of type unit (()), since the argument is only used to
suspend the evaluation.

To enforce the evaluation of a suspended a suspended function (to head normal form),
we can then simply apply this function to (). As an example, we consider non-strict lists.
The two list constructors can be represented by the following functions:

• x : xs is represented by \() -> x : xs
• [] is represented by \() -> []

In strict languages, functions are also values and a reduction underneath a lambda is
not performed. Therefore, the computation is guarded from further evaluation be this
construction. In this representation the second argument xs of the case for non-empty
lists, is again supposed to be a function. Therefore it is not possible to reuse the standard
list constructors. Instead we define a new data type as follows:

type List a = () -> ListD a
data ListD a = Nil | Cons a (List a)

-- head :: [a] -> a
headL :: List a -> a
headL xs = let (Cons y _) = xs () in y

-- tail :: [a] -> [a]
tailL :: List a -> List a
tailL xs = let (Cons _ ys) = xs () in ys

-- null :: [a] -> Bool
isNil :: List a -> Bool
isNil xs = case xs () of

Nil -> True
_ -> False

-- (++) :: [a] -> [a] -> [a]
app :: List a -> List a -> List a
app xs ys = if isNil xs

then ys
else \\() -> Cons (headL xs)

(app (tailL xs) ys)

1

-- enumFrom
from n = \() -> Cons n (from (n + 1))

-- take :: Int -> [a] -> [a]
takeL n xs =

if isNil xs || n==0
then \() -> Nil
else \() -> Cons (headL xs) (takeL (n-1) (tailL xs))

showL :: Show a => List a -> String
showL xs =

if isNil xs
then "[]"
else show (headL xs) ++ ":" ++ showL (tailL xs)

A strict evaluation of a the expression head (from 1) behaves as follows:

head (from 1)
~> let (Cons x _) = from 1 () in x
~> let (Cons x _) = (\() -> Cons 1 (from (1 + 1)) () in x
~> let (Cons x _) = Cons 1 (from 2) in x
~> let (Cons x _) = Cons 1 (\() -> Cons 2 (from 2)) in x
~> 1

Note, however, that abbreviatory function definitions for \() -> Cons x xs, like

cons x xs = \x -> Cons x xs

from n = cons n (from (n+1))

are not possible. In a strict language, the arguments of these function will still be
evaluated, before cons is reduced to its right-hand side and the definition for from 1
would not terminate:

isNil (from 1)
~> isNil (cons 1 (from (1+1))
~> isNil (cons 1 (from 2))
~> isNil (cons 1 (cons 2 (from (2+1)))
~> ...

With this technique, it is possible, to program in a non-strict manner. Unfortunately, this
is less convenient than directly using a lazy language. Furthermore, this technique does
not provide sharing and non-strictness is restricted to parts of your data structures. The
technique has to be used in every part, which is expected to be non-strict. By default,
the list elements in the definition above are still evaluated in a strict manner.

However, many strict language provide libraries for non-strict data structures. In Java

2

and Scala these are the Stream library. There usage is a bit more elegant, in comparison
to the code from above. By means of class methods, to avoid strict evaluation, like it
occurred with the definitions of a cons function.

For learning this technique, it is not useful to use Haskell, since mistakes will not become
relevant, because of the non-strict evaluation within Haskell. You should use a strict
language. Good candidate are Elm (similar syntax as Haskell), Erlang or Ruby.

3

	Non-Strict Evaluation in Strict Languages

