
The λ calculus

Frank Huch

Sommersemester 2018

Contents

1 Theoretical Foundations: the Lambda Calculus 1
1.1 Syntax of the lambda-calculus . 1
1.2 Substitution . 1
1.3 Reduction Rules . 2
1.4 data objects in the pure lambda calculus 5
1.5 Expressiveness of the lambda calculus . 6
1.6 Enriched lambda calculus . 7

1 Theoretical Foundations: the Lambda Calculus λ-calculus

The basic principle of functional programming languages is the λ-calculus, which was
developed in 1941 by Church. His motivation was the development of a basic principle
for mathematics and mathematical logic. In this context the notion of computability was
formed. Its equivalence to Turing-machines was shown, which resulted in the Church’s
Thesis (or Church-Turing-Thesis).
Important aspects are:

• functions as objects

• bound and free variables

• rduction strategies

1.1 Syntax of the λ-calculus

Let Var be an enumerable set of variables, Exp the set of expressions in the pure λ-calculus,
which are defined by (e ∈ Exp):

e ::= v (mit v ∈ Var) variable
| (e e′) (mit e, e′ ∈ Exp) application
| λv.e (mit v ∈ Var, e ∈ Exp) abstraction

We use the following conventions to omit brackets:

• Application binds left-associative, i.e. we write xyz instead of ((xy)z)

• The scope of a λ reaches as far as possible. This means λx.xy means λx.(xy) and
not ((λx.x)y)

• We use lists of variables in a abstraction instead of several nested λs: λxy.e instead
of λx.λy.e

Note: There are no constants (predefined functions) or if-then-else structures. They all
can be defined within the pure λ-calculus, as we will see later. As a consequence the pure
λ-calculus is minimal and universal.

1.2 Substitution

The semantics of the pure λ-calculus is defined as known from functional programming
languages: λx.e relatex to an anonymous function \x -> e. Hence, we get the semantics
of a function application as (λx.x)z z, where in the body of the function (x) the
variable x is substituted by z. Unfortunately, this rule cannot be realised that simple, as
the following example shows. Substituting variables can result in name clashes:

(λf.λx.fx)x 6 λx.xx conflict
(λf.λx.fx)x λy.xy no conflict

1

A prior free variable (which could be bound outside or can be seen as a constant) can be
the application rule be substituted into a λ abstraction for the same varibale and hence,
as a mistake get bound.
To formalise this, it is reasonable to first introduce the notions of free and bound variables :

free(v) = {v} bound(v) = ∅
free((e e′))= free(e) ∪ free(e′) bound((e e′))= bound(e) ∪ bound(e′)
free(λv.e) = free(e) \ {v} bound(λv.e) = bound(e) ∪ {v}

An expression e is called closed (or combinator), if free(e) = ∅.
Important: In an application we may only replace a variable by a parameter expression,
if no free variable within the parameter expression gets bound by another λ abstraction.
We precise this by the formal definition of substitution:
Let e, f ∈ Exp, v ∈ Var. Then the application of a substitution e[v/f] (replace v by f in
e) is defined by:

v[v/f] = f
x[v/f] = x für x 6= v

(e e′)[v/f] = (e[v/f] e′[v/f])
λv.e[v/f] = λv.e
λx.e[v/f] = λx.(e[v/f]) for x 6= v, x /∈ free(f)
λx.e[v/f] = λy.(e[x/y][v/f]) for x 6= v, x ∈ free(f),

y /∈ free(e) ∪ free(f)

Particulary the last rule guarantees, that no free variable (of f) get bound by another λ.
Instead we rename the variable bound in this λ to a fresh variable.
Note, that this definition is not really a function, since in the last rule an arbitrary fresh
variable can be introduced to solve the name conflict. However, if the variable, which
has to be substituted, does not occur in the expression, the expression stays unchanged:
if v /∈ free(e), then e[v/f] = e.
Using substitutions, we can now formalise the reduction for function application.

1.3 Reduction Rules

We define Beta-Reduction (β-Reduction) as the following relation:

→β ⊆ Exp× Exp with (λv.e)f →β e[v/f]

Example:
(λf.λx.fx)x→β λy.xy

and
(λf.λx.fx)x→β λz.xz

2

Hence, →β is not confluent1! However, the names of the formal parameters are irrelevant
for the meaning of a function. In other words, two syntactically different functions, e.g.
λx.x and λy.y are semantically equivalent (both represent the identity function).
This semantical equivalence can be integrated in our reduction semantics by introducing
reduction rules for the renaming of bound variables. The result is a confluent relation.
We define Alpha-Reduction (α-Reduction) as the following relation:

→α ⊆ Exp× Exp with λx.e →α λy.(e[x/y]) (if y /∈ free(e))

Examples:
λx.x→α λy.y, λy.xy →α λz.xz, λy.xy 6→α λx.xx

We obtain e ↔∗α e′ (e and e′ are α-equivalent) if and only if e und e′ can only be
distinguished by the names of the occurring bound variables.
In the following we consider α-equivalent expressions to be equivalent, i.e. we calculate
on α-equivalence-classes instead of λ-expressions.
So far, β-reduction can evaluate expressions. However, this is only possible in the
outer-most position. Therefore, we extend β-reduction to arbitrary positions within the
expressions (and similarly for α-Reduction):

If e→β e
′ then also ef →β e

′f
and fe →β fe

′

and λx.e →β λx.e
′

The last extension of β-reduction to the body of a λ-abstraction is often omitted, if one
is only interested in pure computations. For confluence considerations and a theory for
program equivalence it is, however, important.
Properties of β-reduction:

• The relation →β is confluent.

• Every expression has at most one normalform, with respect to →β (considering
α-equivalence classes).

However, there are also expression without normal-forms. This is important for the
equivalence with Turing-machine, and corresponds to non-termination. An example for
an expression, which has no normalform is

(λx.xx)(λx.xx)→β (λx.xx)(λx.xx)

It contains a so called self-application: λx.xx. In the programming language Haskell this
program would not be accepted, because of a type error.
For finding a normal-form, if it exists, strategies are used, as we already know from the
evaluation of functional programs. We recapitulate these strategies in the context of the
λ-calculus.

1A relation →∗ is confluent, if for all u, v, w with u →∗ v and u →∗ w there exists z, such that v →∗ z
and w →∗ z.

3

A β-redex is a sub-expression of the form (λx.e)f . Then a reduction strategy is a function
from the set of expressions into the set of β-redexes. It expresses which redex is supposed
to be evaluated in the next step. Important reduction strategies are:

• Outermost-Strategy (LO, non-strict, normal-order-reduction):
Choose the outermost redex

• Innermost-Strategy (LI, strict, applicative-order-reduction):
Choose the innermost redex

(λx.z)((λx.xx)(λx.xx)) →LI (λx.z)((λx.xx)(λx.xx))
(λx.z)((λx.xx)(λx.xx)) →LO z

Since all function abstractions have arity one, redexes cannot be distinguished with
respect to left/right. However, also in the context of the λ-calculus the strategies are
called LI and LO.

Lemma: Let e′ be a normal-form of e, i.e. e →∗β e′ 6→β e
′′. Then there exists an

LO-derivation from e to e′.
Hence, LO computes the normal-form, if it exists, in contrast to LI, which may not
terminate, although a normal form exists.
An important aspect (for optimisations, transformations, verification) is the equivalence
of expressions.2 Intuitively, two expressions e and e′ are equivalent, if e and e′ can be
exchanged in every context, without changing the semantics of the whole expression.
Examples:

• λx.x is equivalent to λy.y

• λf.λx.((λy.y)f)((λz.z)x) is equivalent to λf.λx.fx

It would be nice if we could show equivalence of two expressions by means of a kind
of evaluation. α- and β-equivalence are unfortunately not expressive enough, as the
following example shows (first in Haskellnotation): (+1) is equivalent with λx.(+) 1 x.
In every context, these two expressions will behave similarly. Applying both expressins
to an argument z, we obtain:

(+1) z , (+) 1 z and (λx.(+) 1 x)z →β (+) 1 z

But both expressions are not α- or β-equivalent. To express this equivalence, the theory
of the λ-calculus is extended by Eta-reduction (η-reduction):

→η ⊆ Exp× Exp with λx.ex →η e (if x /∈ free(e))

There are the following two views to η-reduction:
2In the following we only consider the equivalence on terminating expressions (expressions, which do

have a normal-form). Otherwise, it is not clear, what a result of a computation is and what exactly is
supposed to be equivalent.

4

• η-reduction is an anticipated β-reduction:
(λx.ex)f →β ef , if x /∈ free(e).

• Extensionality: functions are equivalent, if they have a similar function-graph
(their set of argument-result-pairs). If fx ↔∗β gx3 holds, then f ↔∗β,η g (with
x ∈ free(f) ∩ free(g)), since:

f ←η λx.fx↔∗β λx.gx→η g

There are some more relations, from which the Delta-reduction (δ-reduction) if important
in the context of functional programming. It defines, how predefined functions can be
integrated into the calculus. For instance, (+) 1 2→δ 3. Predefined functions and data
types are, however, not necessary for the expressiveness of the pure λ-calculus. The can
be defined within the λ-calculus, as we will sketch in the next chapter.
Summary of Reductions in λ-calculus:

• α-reduction: renaming of parameters

• β-reduction: function application

• η-reduction: elimination of redundant λ-abstractions

• δ-reduction: calculation with predefined function on predefined data types

1.4 data objects in the pure λ-calculus

Data types are objects with operations, idea here: represent these objects by closed
λ-expressions and define fitting operations, in the sense of an abstract data type.
We start with the data type of boolean values: The objects are True and False and
the most important operation is branching, the if-then-else-function:

if_then_else(b, e1, e2) =
{
e1 , falls b = True
e2 , falls b = False

The branching function is a projecting to the second or third argument. Hence, we can
implement True and False as projection functions as well:

True ≡ λx.λy.x take the first argument
False ≡ λx.λy.y take the second argument

Then the if-then-else-function can simply be realised as an application of the boolean
value

Cond ≡ λb.λx.λy.bxy

3To be more precise, u ↔∗
β v means that there exists a w, such that u →∗

β w and v →∗
β w.

5

Example:

Cond True e1e2 ≡ (λbxy.bxy)(λxy.x)e1e2 →3
β (λxy.xe1e2) →2

β e1
Cond False e1e2 ≡ (λbxy.bxy)(λxy.y)e1e2 →3

β (λxy.ye1e2) →2
β e2

The next task is a represenation of natural numbers: We use the encoding as Church-
Numerals: a number n ∈ N is represented as a functional, that applies a given Function
f exactly n times to another given argument:

0 ≡ λf.λx.x
1 ≡ λf.λx.fx
2 ≡ λf.λx.f(fx)
3 ≡ λf.λx.f(f(fx))
n ≡ λf.λx.fnx

For this representation it is possible to define functions for computation:

• The most important function is the successor function succ:

succ ≡ λn.λf.λx.nf(fx)

Example: we compute the successor of one:

succ 1 ≡ (λn.λf.λx.nf(fx))(λf.λx.fx)

→β λf.λx.(λf.λx.fx)f(fx)

→β λf.λx.(λx.fx)(fx)

→β λf.λx.f(fx) ≡ 2

• For branching, it is also important to have a test, whether a number is zero or not:

is_Null ≡ λn.n(λx.False)True

Example: :

is_Null 0 = (λn.n(λx.False)True)(λf.λx.x)

→β (λf.λx.x)(λx.False)True

→β (λx.x)True

→β True

1.5 Expressiveness of the λ-calculus

It remains to show, that the pure λ-calculus is computational universal. We do not
prove this here, but argue for this by showing, that recursion can be realised, which is
formalised with the folowing Fixed-point theorem:

6

Lemma: For every F ∈ Exp there exists an expression X, such that FX ↔∗β X.

Proof: For instance, choose X = Y F with Fixed-point combinator Y :

Y ≡ λf.(λx.f(xx))(λx.f(xx))
It remains to proof, that Y F ↔β F (Y F) holds. Exercise.
The pure λ-calculus is minimal, but computational universal. However, his relevance is
more of theoretical nature (Barendregt 1984). We do not want to prove this here. The
represenation of booleans, natural numbers and recursion, should however illustrate, a
universal programming is possible in the pure λ-calculus.
Although self application is not possible in Haskell we can implement the Y-combinator
be means of a record definition:

newtype Fix a = Fix { app : : Fix a −> a }

f i x = \ f −> (\ x −> f (app x x)) (Fix (\ x −> f (app x x)))

To show, how the Y-combinator (from pure λ-calculus) can be used to realised a recursive
function definiton, we implement the factorial function using this fix function. For
simplicity, we use Haskell numbers instead of Church numerals and Haskells data type
Bool.

f a c = f i x (\ f −> \ x −> i f x==0 then 1 else x∗ f (x−1))

We define a functional for the factorial function using the Y-combinator, which least
fixed-point can be computed at any possible argument position.
Within the pure λ-calculus, this program can be defined similarly. Unfortunately, the
definition for the predecessor function is not straight forward (see exercises). Although,
we were able to represent the Y-combinator in Haskell, there occur further type problems,
implementing this example and similar examples with Church numerals in Haskell. Hence
not every program from pure λ-calculus can be realised within Haskell.
For programming in the pure λ-calculus, we provide an interpreter in the iLearn page.

1.6 Enriched λ-calculus

For functional programming, an enriched λ-calculus, which also contains constants (pre-
defined objects and functions), let, if-then-else and a built in fixed-point combinator,
is more relevant.
Syntax of the enriched λ-calculus:

e ::= v Variable
| k constant symbols
| (e e′) applikation
| let v = e in e′ local definitions
| if e then e1 else e2 alternative

(sometimes also case)
| µv.e fixed-point combinator

7

The operational semantics consists of α-, β- and η-reduction and the following rules

• δ-reduction for constants, z.B. (+) 21 21→δ 42

• let v = e in e′ → e′[v/e]

• if True then e1 else e2 → e1
if False then e1 else e2 → e2

• µv.e→ e[v/µv.e]

Example: Factorial function:

fac ≡ µf.λx. if ((==) x 0) then 1 else ((∗) x (f ((−) x 1)))

The enriched λ-calculus is the basis for the implementation of functional languages
(Peyton, Jones 1987):

1. Programs are translated into this calculus (Core-Haskell in ghc):

• Pattern-Matching is translated into if-then-else (or case),

• f x1 . . . xn = e is translated into f = λx1 . . . xn.e,

• and recursive Functions are realised by a special fixed-point combinator.

• A Program is then a list of let-declarations and an expression, which is
supposed to be evaluated.

2. The calculus is then implemented by means of a special abstract Machine, e.g. the
SECD-Machine by Landin in ghc or by means of other graph-reduction-machines.

Further Applications of the enriched λ-calculus are denotational semantics and type
theory (typed λ-calculus).
The fixed-point combinator fix, is also available in Haskell (library Data.Function) and
can be used to compute the fixed-point of a functional. Since Haskell provides recursion,
it can be defined easier, than using self-application:

f i x : : (a −> a) −> a
f i x f = f (f i x f)

It can be used to implement recursive functions, as we used fix in the definition of the
factorial function above.

8

	Theoretical Foundations: the Lambda Calculus
	Syntax of the lambda-calculus
	Substitution
	Reduction Rules
	data objects in the pure lambda calculus
	Expressiveness of the lambda calculus
	Enriched lambda calculus

