
Type Constructor Classes

-- Imports necessary to compile this file in ghc
import Prelude hiding (Functor(..), map)
import System.Environment (getArgs)

So far, we have used classes to overload functions for different types. This idea can be
transfered to type constructors. For example, we’ve already seen two map functions: one
for lists

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

and one for trees.

data Tree a = Empty | Node (Tree a) a (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree _ Empty = Empty
mapTree f (Node l x r) =

Node (mapTree f l) (f x) (mapTree f r)

What both definitions have in common is that the map function can be defined for type
constructors with arity one and we can generalise the type of map, which can be modeled
by means of a type constructor class as follows.

class Functor f where
fmap :: (a -> b) -> f a -> f b

Here the variable f is a variable for type constructor. It does not abstract from a type,
but from a type constructor of arity one.

Then we can define the following Functor instances.

instance Functor [] where
fmap = map

instance Functor Tree where
fmap = mapTree

Also for Maybe it is possible to define an instance as follows.

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

We apply the given function to the (possibly present) value in the container.

Using the class Functor, it is now possible to define functions like the following.

1



inc :: Functor f => f Int -> f Int
inc = fmap (+1)

This function can then be applied to lists, trees or maybe values.

Also IO is a unary type constructor and there is also Functor instance.

instance Functor IO where
fmap f a = do x <- a

return (f x)

With this instance at hand, we can write the following program.

main = do x <- fmap length getLine
print x

It reads a string from the user and prints its length.

ghci> main
abc
3

Another example, which prints the first parameter from the console, can be defined as
follows.

main2 = do x <- fmap head getArgs
print x

Saving this program as a file print-first-arg.hs, we can execute with the following
command.

bash# runhaskell print-first-arg.hs 42 43 44
42

The class Functor and all presented instances (except the one for trees) are predefined
in Haskell. You can directly use them and easily define new instances for your own data
types.

Instances of class Functor have to fulfil the following laws (called functor laws).

fmap id = id
fmap (f . g) = fmap f . fmap g

These laws basically capture that fmap is a homomorphism.

As an example we check these laws for the Maybe instance.

fmap id Nothing = Nothing = id Nothing
fmap id (Just x) = Just (id x) = id (Just x)

fmap (f . g) Nothing
= Nothing

2



= fmap f (fmap g Nothing)
= (fmap f . fmap g) Nothing

fmap (f . g) (Just x)
= Just ((f . g) x)
= Just (f (g x))
= fmap f (fmap g (Just x))
= (fmap f . fmap g) (Just x)

For recursive data structures like lists or trees we have to use structural induction to
prove the functor laws. To prove the functor laws for IO we need other laws for the do
notation, which we do not know yet. However we will discuss them later.

3


	Type Constructor Classes

