
KiCS — The Kiel Curry System

Bernd Braßel ‘bbr@informatik.uni-kiel.de‘

October 7, 2009

Contents

Getting Started 1

Requirements and Supported Platforms 1

Download and Installation . 1

Installing the Frontend . 2

Installing the Backend . 2

Using KiCSi 3

Commands . 4

Settings and how to change them . 5

Setters for Switches . 5

Setters for Modes . 6

Editing Commands and History . 7

Using KiCS 7

The Debugger B.i.O. 8

Example Sessions . 8

Declarative Debugging . 8

Step-by-Step Debugging and Virtual I/O 11

Overview Commands and Options of B.i.O. 13

Trusted Functions . 14

Concluding Remarks 15

1

Getting Started

Requirements and Supported Platforms

The Kiel Curry System (KiCS) is a compiler for the functional logic language
Curry.1 It generates code in the functional language Haskell2. KiCS makes use
of some extensions of the Glasgow Haskell Compilation System (GHC)3 and
requires a version greater or equal than 6.8.2 of that system. Currently, KiCS
only works on unix based systems.

Download and Installation

KiCS is divided into two parts: frontend and backend which are available sepa-
rately. Prior to starting the installation process of any of the parts, make sure
that the main binary of the Glasgow Haskell Compilation System (GHC)1 is
contained in the search path and is equal or greater to the required version of
6.8.2.

Test this by typing:

$ ghc --version

You should get something like:

The Glorious Glasgow Haskell Compilation System, version 6.8.2

You should also have cabal4 installed.

Installing the Frontend

The Curry frontend lives on hackage5. Therefore, the only thing you have to do
to install it is:

$ cabal install curry-frontend

Make sure that the cabal directory for binaries is in your path, e.g., by
1M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available

at http://www.informatik.uni-kiel.de/~curry, 2006.
2S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-

bridge University Press, 2003.
3http://www.haskell.org/ghc
4http://www.haskell.org/cabal
5http://hackage.haskell.org/package/curry-frontend

2

http://www.informatik.uni-kiel.de/~curry
http://www.haskell.org/ghc
http://www.haskell.org/cabal
http://hackage.haskell.org/package/curry-frontend

$ export PATH=~/.cabal/bin:$PATH

Note that you need to set the path for installation process only.

Test that you can access cymake now, e.g. by:

$ which cymake
/home/my_name/.cabal/bin/cymake

Instead of setting the path you can also change the information in the Makefile.
You can change one or both of the two lines

GHCBIN = $(shell which ghc)
CYMAKEBIN = $(shell which cymake)

to

GHCBIN = path_to_ghc/bin
CYMAKEBIN = path_to_cabal_bin

Installing the Backend

The backend’s source code is available from the internet.6 Make sure that both
commands, ghc --version and which cymake give the desired output, cf. the
prvious section.

Now unpack the tar ball and make it, e.g.:

$ gunzip kics_src.tgz
$ tar xf kics_src.tar
$ cd kics
$ make

If you want to use the b.i.o. debugger, cf. Section, you have to type additionally:

make bio

This procedure might take time (yes longer than building the main system.)

6http://www-ps.informatik.uni-kiel.de/~bbr/download/kics_src.tgz

3

http://www-ps.informatik.uni-kiel.de/~bbr/download/kics_src.tgz

Using KiCSi

There are two main binaries build by the make process described in the previous
section. The first is kics, a compiler from Curry to Haskell and the second is
kicsi, an interactive environment for KiCS.

After the make process is finished start the kicsi binary which has been gen-
erated in the directory

path_to_where_you_unpacked_tarfile/kics/bin

You will get a prompt which looks something like this:

_ _ _ _
/_\ /\ \ /\ \ / /\
/ / / _ \ \ \ / \ \ / / \

/ / / /_\ /\ _\ / /\ \ \ / / /\ __
/ / /__/ / / / /\/_/ / / /\ \ \ / / /\ ___\
/ /_____/ / / / / / / / \ _\ \ \ \ \/___/

/ /_______/ / / / / / / \/_/ \ \ \
/ / /\ \ \ / / / / / / _ \ \ \ The
/ / / \ \ \ ___/ / /__ / / /________ /_/__/ / / Kiel

/ / / \ \ \ /__\/_/___\/ / /_________\\ \/___/ / Curry
\/_/ __\\/_________/\/____________/ _____\/ System

Version 0.81893

>

At this prompt you can enter arbitrary Curry expressions to evaluate them, e.g.:

> 3+4
7
More?

As Curry is a functional logic language it has an integrated search for solutions.
In the standard setting you will be asked whether you want the search to proceed
to the next solutions. Typing anything but a word beginning with n will let the
search proceed, either by printing the next solution or by the message that no
further solution was found:

> 3+4
7
More?

No more Solutions

4

Another example has more than one solution:

> 3+(4?5)
7
More?

8
More?

No more Solutions

Commands

Apart from evaluating expressions, KiCSi supports a number of commands
which all begin with typing a colon : before either using the short one let-
ter version or the longer one. The following table subsumes the supported
commands:

Short Long Description
:l <module>+ :load load some Curry modules
:r :reload repeat last load command
:a <module>+ :add add modules to list of loaded modules
:t <expression> :type print type of expression
:h, :? :help print some useful information
:i :info print interface of loaded modules
:set <setting> change current settings (see below)
:s :save save settings to ~/.kicsrc (see below)
:!<command> execute command in shell
:q :quit exit KiCSi

For the :load and :add command, all files and all modules the given modules
depend upon will be compiled if necessary. The first module in the list will be
the main module, e.g., for System.getProgName. After loading, the prompt will
enumerate all modules that could be loaded.

Settings and how to change them

There are two different kind of settings for KiCSi: switches and modes. A switch
is a setting that can either be on or off. A mode is a selection within a greater
range of options than just yes/no. All settings are generally changed by the
:set command followed by at least one space and then a setter. If :set is not
followed by a setter, a list of current settings is printed.

5

Setters for Switches

Each switch has a short, i.e, one letter, and a long name. Short names can be
combined in ANSI command line style. For example, the command

:set +td-ef

is short for

:set +t
:set +d
:set -e
:set -f

As a result, long names for settings have to be preceded by a double switch
indicator, e.g.:

:set ++time

which is the long version of

:set +t

The switches supported by KiCSi are:

Short Long Description
t time print elapsed time after evaluation
e eval switch evaluation/compile mode
d debug turn on debugging (Section B.i.O.)
f force force recompilation of all KiCS-files

Most often you will want to use +t together with -e. Otherwise you will include
startup and compilation time for ghci in your measurement.

With +e, KiCSi will use the expression evaluation mode of GHC. The time
until the evaluation is started will generally be shorter. With -e, KiCSi will
create a binary (called request) via GHC. Compiling takes longer but overall
performance increases.

With the flag force, the files generated by the frontend, are not recreated.

6

Setters for Modes

Modes are settings with more than a +/- range of alternatives. KiCSi supports
the following modes, where the column “Mode” indicates the relation between
the settings. For example, any setter effecting the “Strategy” after a :set df
command overwrites that setting.

Short Long Mode Description
df depth first Strategy search strategy depth first
bf breadth first Strategy search strategy breadth first
all all solutions Solutions print list of all solutions
first first solution Solutions print first solution only
i interactive Solutions ask for more after each

solution
st search tree Strategy

Solutions
print whole search tree

path search path for modules
v verbosity output level for KiCS
cmd command command line options for

executed program
rts runtime settings for GHC
rts+ append rts instead of replace
ghc compile options for GHC
ghc+ append ghc instead of replace

For the verbosity level of output, the range is from “0=be quiet” to “6=print
all you can think of”.

The option command is useful only in combination with the --eval switch (see
the section on switches above) and if the program uses System.getArgs.

The run time settings (rts) effect, e.g., the stack and heap reserved for the
execution. The settings will be included between +RTS and -RTS in the call to
GHC.7

Editing Commands and History

KiCSi supports the readline framework.8 As an additional feature KiCSi sup-
ports an initialization of the edit history. Upon start up, KiCSi will read a file
kicsi.hist and add its content to the edit history. Expressions contained in
the file will be enumerated beginning with 1, e.g., 3+4 could be added to the his-
tory as {-2-} 3+4 if it is the second expression in the file. This feature is useful
for demonstrations using KiCSi. The presenter should also be accustomed to
the standard readline features.

7See http://www.haskell.org/ghc/docs/latest/html/users_guide/ for details
8http://tiswww.case.edu/php/chet/readline/rltop.html

7

http://www.haskell.org/ghc/docs/latest/html/users_guide/
http://tiswww.case.edu/php/chet/readline/rltop.html

Using KiCS

The second main binary coming with the KiCS distribution is the compiler kics.
It is used to generate binaries for Curry programs. Assume, for example, that
you have a module MyCurryModule containing a function main of type IO ().
Then you would write the following line to obtain an executable called test
executing main.

kics -executable -o test MyCurryModule

Here is the full table of options for kics.

Option Description
-main name of main function
-frontend path to frontend binary
-kicspath path to kics compiler
-userlibpath path to curry libraries
-nouserlibpath only standard curry libraries
-ghc path to ghc
-make chase imported modules
-nomake do not chase imported modules
-executable create executable
-noexecutable do not create executable
-v set verbosity level to n, e.g., -v 3
-q scarce output
-force force recompilation
-noforce do not force recompilation
-all df print all solutions depth first
-all bf print all solutions breadth first
-st print solutions as search tree
-i df interactively show solutions depth first
-i bf interactively show solutions breadth first
-o name of output file

The Debugger B.i.O.

The KiCS system comes with a debugger called B.i.O. which is short for Believe
in Oracles. To find out more about the oracle technique have a look at the
corresponding papers.9 10.

9B. Braßel, S. Fischer, M. Hanus, F. Huch, and G. Vidal. Lazy call-by-value evaluation. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’07), pages 265 — 276, 2007.

10Bernd Braßel and Holger Siegel. Debugging Lazy Functional Programs by Asking the
Oracle. In Olaf Chitil, editor, Proc. Implementation of Functional Languages (IFL 2007),
Lecture Notes in Computer Science. Springer, 2008.

8

Before you can start the debugger, remember that you have to execute make bio
in addition to building KiCS, as explained in the section about the installation
procedure.

B.i.O. supports two major modes. The first is an implementation of the well
known declarative debugging method. The second is a step-by-step tracer allow-
ing us to follow a program’s execution as if the underlying semantics was strict,
skipping uninteresting sub computations. In addition, the tool gives some sup-
port for finding bugs in programs employing I/O. Both modes are described in
the following section.

Example Sessions

The next pages exemplify the usage of B.i.O.. If you prefer a compact description
of commands and options, jump ahead to the overview section.

Declarative Debugging

Consider the following small example program containing an intentional error
to demonstrate the declarative debugging mode.

module Example where

import Prelude hiding (length)

length [] = 0
length (_:xs) = length xs

fiblist x = fib x : fiblist (x+1)

fib :: Int -> Int
fib _ = error "this will not be evaluated"

The function fiblist creates a potentially infinite list of delayed calls to func-
tion fib. Due to laziness, fib is never evaluated in our example, so we omit its
definition. The infinite list is cut to the first two elements by a call to function
take, which is defined in the usual way. On top level, function length is applied
to count the elements of the resulting list.

It is to be expected that the program returns the number 2.

> :l Example
Example> length (take 2 (fiblist 0))
0

9

We see that running the program reveals the result 0, which indicates that there
must be a bug somewhere. Therefore, we switch on the debug mode and execute
the program once again.

Example> :set +d
Example> length (take 2 (fiblist 0))

In the background, our example program and all the modules it depends on are
transformed to new modules which are then compiled. This may take some
time if you debug an expression in the context of a larger project. Don’t
worry; the next time you will debug within this project the startup will be
much faster. Upon completion of the compilation processes the actual debug-
ging session starts.

____ ____ _____
(_ \ (_ _) (_) Believe
) _ < _)(_)(_)(in

(____/()(____)()(_____)() Oracles
--------type ? for help----------

main

Initially, we only see a call to function main which was added by the system to
refer to the expression we entered at the prompt in our example. Pressing i
turns on inspect mode. In inspect mode, the result of every sub computation is
directly shown and can be “inspected” by the user, i.e., rated as correct or wrong.
Inspect mode therefore corresponds to the declarative debugging method. But
as we will see in the next section, the display of results of sub computations can
be turned on and off at any time. Of course, there is a help menu available,
showing a list of all possible inputs.

After pressing i, the debugger evaluates the expression and displays the result.

main ~> 0

We expected main to have value 2, but the program returned value 0. Thus,
we enter w (wrong) in order to tell the debugger that the result was wrong.
The debugging tool stores this choice. As the value of main depends on several
function calls on the right hand side of its definition, the tool now displays the
first of these calls in a leftmost, innermost order:

fiblist 0 ~> _ : (_ : _)

10

The line above shows that the expression fiblist 0 has been evaluated to a list
that has at least two elements. This might be correct, but we are not too sure,
since this result depends strongly on the evaluation context. A “don’t know” in
declarative debugging actually corresponds to the skipping of sub computations
in the step-by-step mode, as described in the next section. We therefore press
s (skip).

take 2 (_ : (_ : _)) ~> [_,_]

Actually, this looks quite good. By entering c (correct) we declare that this sub
computation meets our expectation. Now the following calculation is displayed:

length [_,_] ~> 0

The function length is supposed to count the elements in a list. Since the
argument is a two-element list, the result should be 2, but it is actually 0.
By pressing w we therefore state that this calculation is erroneous. Now the
debugger asks for the first sub computation leading to this result:

length [_] ~> 0

This is also wrong, but for the sake of demonstration we delay our decision. By
pressing the space bar (step into) we move to the sub expressions of length [_].
We now get to the final question:

length [] ~> 0

The length of an empty list [] is zero, so by pressing c (correct) we state that
this evaluation step is correct. Now we have reached the end of the program
execution, but a bug has not been isolated yet. We have narrowed down the error
to the function call length [_,_], but still there are unrated sub computations
which might have contributed to the erroneous result. The tool asks if the user
wants to restart the debugging session re-using previously given ratings:

end reached. press ’q’ to abort or any other key to restart.

After pressing <SPACE>, the debugger restarts and asks for the remaining func-
tion calls. There is only one unrated call left within the erroneous sub compu-
tation:

length [_] ~> 0

Now we provide the rating we previously skipped. After entering w (wrong) it
is evident which definition contains the error:

found bug in rule:
lhs = length [_]
rhs = 0

11

Step-by-Step Debugging and Virtual I/O

A further interesting advantage of our approach to reexecute the program with a
strict evaluation strategy is the possibility to include “virtual I/O”.11 During the
execution of the original program, all externally defined I/O-actions with non-
trivial results, i.e., other than IO (), are stored in a special file. These values are
retrieved during the debugging session. In addition, selected externally defined
I/O-actions, e.g., putChar, are provided with a “virtual implementation”. To
show what this means, we demonstrate how the main action of the following
program is treated by our debugging tool.

module IOExample where

import Prelude hiding (getLine)

getLine :: IO String
getLine = getChar >>= testEOL

testEOL :: Char -> IO String
testEOL c = if c==’\n’ then return []

else getLine >>= \ cs -> return (c:cs)

main = getLine >>= writeFile "userInput"

As the example program contains user interaction, we also have to enter a line.
We type abc for this demonstration.
Now the debugging tool is started, and we look at the first two single steps by
typing <SPACE> twice. This is what the tool displays at this point:

main
getLine
getLine ~> getChar >>= testEOL
main ~> (getChar >>= testEOL) >>= writeFile "userInput"
initial action computed. press any key to execute it

In step-by-step mode, we only get to see results when a subcomputation is
finished. The above lines mean that the evaluation of both, getLine and main
is now complete. The results are partial calls of the bind operator (>>=) waiting
for the world, so to speak. We press an arbitrary key to start the action followed
by a <SPACE> to make one more single step and get:

getChar >>= testEOL
getChar

11Note that an installation of tcl/tk is needed to use virtual I/O.

12

When we hit <SPACE> now, two things happen at once. First, the value ’a’ is
retrieved from the file and, second, a GUI called B.I.O.tope is started, which
represents the virtual I/O environment. B.I.O.tope is told that someone has
typed an a on the console, which is the “virtual I/O-action” we connected with
getChar. The B.I.O.tope window is shown in the following picture.

Meanwhile, on the console we see the result of the call to testEOL ’a’, which
we skip by typing s.

testEOL ’a’ ~> (getChar >>= testEOL) >>= testEOL_lambda ’a’
(getChar >>= testEOL) >>= testEOL_lambda ’a’

Admittedly, the expression testEOL_{}lambda ’a’ shows that the source code
binding is improvable. Now we wonder, whether or not the current sub compu-
tation is interesting. We type r to have a look at the result and get:

(getChar >>= testEOL) >>= testEOL_lambda ’a’ ~> IO "abc"

This is fine, so we decide to skip the computation by pressing s. Note, that as
soon as a result is shown, we can also rate the sub computation, i.e., tell the tool
that this result is correct or wrong. This information will then be considered if
we restart the debugging session in inspect mode as described in the previous
section. It is also noteworthy that the virtual I/O commands are never issued
twice, even if we had decided to go into the sub computation instead of skipping
it.

The final action of our program is:

writeFile "userInput" "abc"

Executing this action brings another change to the B.I.O.tope as shown in
the next picture. There we can see the GUI has switched to the file dialog.
It contains a list of files which have been read (R:) or written (W:) during the
debugging session and clicking a file in this list makes the file contents visible
as they are at the current point of the debugging session.

13

Overview Commands and Options of B.i.O.

B.i.O. supports the following commands where an entry in column “Restric-
tion” means that the command is only available under certain conditions. For
example, you can only rate a result as correct if B.i.O. actually shows the result
of the current expression.

Key Restriction Description
s - skip current sub computation
<SPACE> - step into current sub computation
b - take back last command
i step mode switch to inspect mode
i inspect mode leave inspect mode, enter step mode
r step mode show result
c result shown rate the shown result as correct
w result shown rate the shown result as wrong
q - quit debugging session
d - set max depth to print terms
- - pressing (almost) any other key results in

printing helpful hints.

The skip command can also be understood as “don’t know” in declarative de-
bugging mode. For the back command you can take back your last decision,
i.e., not the last setting, in arbitrary depth. Even if you are not currently doing
declarative debugging, looking at the result with the result command might be
useful in order to decide whether or not to enter into the current sub compu-
tation. For the depth-command, after pressing d you are supposed to enter a
number and then hit <RETURN>. A depth of 0 means that there is no restriction
to the terms shown.

Trusted Functions

A trusted function will not appear during debugging. All the functions in stan-
dard modules are trusted, for example.

For each module M you can add a file M.trust in the same directory. A .trust
file contains the names of functions, possibly lead by a bang.

14

Let, for example, M contain functions f1, f2, f3. If you write in M.trust

!f1
f2

Then f1 is not trusted, while f2 is trusted.

The default for all functions is defined by the first entry in the trust file. If the
first entry is lead by a bang then the default is that functions are trusted. If the
first entry has no bang then the default is “not trusted”. In the above example
f3 is, therefore, trusted (and the second line superfluous). The reasoning is that
you’d rather like to write the exceptions to the file than to repeat the usual
case all over. Along the same line, an empty .trust file simply means: trust the
whole module.

And sometimes one of the arguments of a function is just not interesting. Imag-
ine a dictionary carried around at all times.

You can omit such arguments in a trust file like this

!mysuperfun _ x _ _ y

Now from the function “mysuperfun” you will only see the second and fifth
argument. Actually, you will also see any remaining arguments if the function
has more than five. Thus, you could also have written

!mysuperfun _ x _ _

for the same effect.

Don’t worry about what to call x or y. Every string but _ will be interpreted
as “I want to see this”. Thus, its still the same to write:

!mysuperfun _ showmethismostimportantargumentatallcalls _ _

During debugging, trusted arguments are shown as green underscores (so that
you won’t confuse it with an unneeded argument).

Concluding Remarks

Thanks for looking into KiCS and for any feedback, cheers blames or bug reports,
contact me at bbr@informatik.uni-kiel.de.

15

mailto:bbr@informatik.uni-kiel.de

This document has been generated by
Pandoc.

16

http://johnmacfarlane.net/pandoc/

	Getting Started
	Requirements and Supported Platforms
	Download and Installation
	Installing the Frontend
	Installing the Backend

	Using KiCSi
	Commands
	Settings and how to change them
	Setters for Switches
	Setters for Modes

	Editing Commands and History

	Using KiCS
	The Debugger B.i.O.
	Example Sessions
	Declarative Debugging
	Step-by-Step Debugging and Virtual I/O

	Overview Commands and Options of B.i.O.
	Trusted Functions

	Concluding Remarks

