
“Putback” is the Essence of Bidirectional
Programming

Sebastian Fischer
(joint work with Zhenjiang Hu and Hugo Pacheco)

Bidirectional transformations, programs with a forward and a backward trans-
formation that maintain consistency between input and output, are routinely
written in ways that do not let programmers specify their behavior completely.
Several bidirectional programming languages exist to aid programmers in writ-
ing bidirectional transformations with increased maintainability but decreased
expressiveness.

Such languages allow programmers to write bidirectional transformations as one
program for both directions, which is easier to maintain than separate programs
for each direction. However, the maintainability provided by existing bidirec-
tional languages comes at the cost of expressiveness because the ambiguity
of synchronization is solved by default strategies which are hidden from pro-
grammers. The programmers’ inability to influence synchronization strategies has
led to the proposal of a vast number of approaches that consider tailor-made
synchronization strategies for particular applications.

We argue that such ambiguity is essential for bidirectional transformation and ad-
vocate that the synchronization strategy should not be hidden from programmers
but considered from the start. We propose a novel approach to specifying so
called well-behaved bidirectional programs by their backward transformations,
capable of expressing all aspects of a bidirectional transformation completely,
while retaining maintainability.

Soundness of our approach results from a systematic analysis of the laws describ-
ing well-behaved bidirectional transformations based on existing mathematical
concepts. We show that well-behaved bidirectional transformations are uniquely
determined by their backward transformations and corresponding forward trans-
formations can be obtained for free.


