
Efficient Implementation of Open Types

Christian Heinlein, Fakultät für Informatik, Universität Ulm

Introduction
Open types have been presented earlier as an alternative
data model for imperative programming languages that
overcomes several limitations of traditional record- and
class-based models. The basic idea is to separate type
definitions from the definition of their attributes in order
to allow incremental definitions of the latter. This implies
that attributes are generally optional, i. e., individual ob-
jects of a particular type need not possess values for all
attributes of the type. If a non-existent attribute is ac-
cessed, a well-defined null value representing the ab-
sence of any real value is returned.

Figure 1 shows a simple example of an open type Ex-
pr possessing various attributes for the representation of
arithmetic expressions. Furthermore, three user-defined
constructors to create objects of different kinds and three
branches of a global virtual function eval to inspect ob-
jects are shown. For more details, the reader is referred to
[1].

Attribute Management
Figure 2 illustrates the basic approach to implement open
type objects possessing values for different subsets of at-
tributes. Here, an open type value is actually a pointer to
an intermediate cell, which in turn references an associ-
ated data area containing the object’s attribute values (in
decreasing order of their alignment restrictions to avoid
any padding in between) and a shared object descriptor
describing its contents. For each attribute of the open
type (Expr in this example), an object descriptor con-
tains the information whether and where the correspond-
ing attribute value is stored in an object’s data area: If the
“slot” corresponding to the attribute contains a number, it
denotes the relative address of the attribute’s value in the
data area, while an empty gray slot indicates the absence
of the attribute.

Based on this information, an attribute access opera-
tion proceeds as follows: A unique ordinal number as-
signed to the attribute (e. g., 1 for op) is used to access
the corresponding slot of the object’s descriptor, and the
offset value found there is used to access the attribute’s
value in the object’s data area. If no offset value is found,
however, reading the attribute simply returns the null val-
ue of its target type, while a write access must extend the
object’s data area in order to obtain space for the new at-
tribute. (This might change the address of the data area,
but the address of the intermediate cell stored in open
type values remains stable.) Furthermore, the object’s de-
scriptor pointer must be redirected to the “successor” de-
scriptor that contains exactly the same attributes as the
current one plus the new attribute.

Since object descriptors are created dynamically on
demand, this extended descriptor might not yet exist. In
that case, it is created and inserted into the type’s de-
scriptor repository. Furthermore, it is compared with all
currently existing descriptors in order to find its “succes-
sors,” i. e., those descriptors containing the same subset
of attributes plus one extra attribute, as well as its “prede-
cessors,” i. e., those descriptors for which the new one is
a successor. These predecessor/successor relationships
are remembered by placing a reference to the successor
(indicated by an arrow in Fig. 2) in the predecessor’s slot
corresponding to the extra attribute. Using this informa-
tion, an already existing successor descriptor can be
found easily and efficiently later.

Typically, an object has to be extended a few times
during its initialization, while afterwards the set of its at-
tributes (but, of course, not necessarily their values) is
expected to remain rather stable. Similarly, the descriptor
“network” of an open type is expected to change a num-
ber of times during the initialization phase of a program,
until the object descriptors and their predecessor/succes-
sor relationships required for the typical object initializa-
tion patterns of the program have been built up. After-
wards, most object descriptors needed to perform an ob-
ject extension will be found immediately via these rela-
tionships.

If an attribute of a particular type is loaded dynamical-
ly (e. g., cache which is not shown in Fig. 1), all object
descriptors belonging to this type must be extended by a
new slot corresponding to this attribute. This can be
achieved by iterating through the descriptor repository
and reallocating each descriptor. To make sure that the
descriptor pointers of objects remain stable in that case,
an additional level of indirection is used that is not shown
in Fig. 2. Since loading new attributes is not expected to
happen very frequently, the effort for these reallocations
is acceptable. In order to reduce it even further, descrip-
tors are always allocated with a certain number of extra
slots in advance (indicated by the dashed boxes in
Fig. 2).

Performance Results
To compare the run time efficiency of the open type im-
plementation with standard class-based object-oriented
systems, a simple test program creating, inspecting, and
manipulating randomly structured object graphs has been
written in standard C++, Java, and C+++ (i. e., C++ with
open types). The main results of comparing the overall
run times of these programs with different parameter set-
tings can be summarized as follows:

• C+++ is between 1.9 and 2.5 times slower than C++.
Since C/C++ is usually regarded as a performance



typename Expr; // Arithmetic expression.
Expr −> integer val; // Value of a constant expression.
Expr −> character op; // Operator of a compound expression.
Expr −> Expr body; // Body of a unary expression.
Expr −> Expr left; // Left and right operand
Expr −> Expr right; // of a binary expression.

// Create constant/unary/binary expression.
Expr (integer v) { return Expr(@val, v); }
Expr (character o, Expr b) { return Expr(@op, o)(@body, b); }
Expr (Expr l, character o, Expr r) { return Expr(@left, l)(@op, o)(@right, r); }

// Evaluate constant/unary/binary expression.
virtual integer eval (Expr x) if (x@val) { return x@val; }
virtual integer eval (Expr x) if (x@body) {

if (x@op == ’+’) return eval(x@body);
if (x@op == ’−’) return −eval(x@body);

}
virtual integer eval (Expr x) if (x@left) {

if (x@op == ’+’) return eval(x@left) + eval(x@right);
if (x@op == ’−’) return eval(x@left) − eval(x@right);
if (x@op == ’*’) return eval(x@left) * eval(x@right);
if (x@op == ’/’) return eval(x@left) / eval(x@right);

}

Figure 1: Open type Expr with fiv e attributes, three constructors, and three branches of global virtual function eval

0

0

4 0

0

4 0

8 0 4

0

va
l

1

op

2

bo
dy

3

le
ft

4

ri
gh

t

attributes:

5

ca
ch

e

0

1

2

3

4

5

6

descriptor
repository

20
0 4

0 4
−

4 5

intermediate
cell

data
area

open type
value

Figure 2: Attribute management

yardstick, a slowdown of this magnitude appears ac-
ceptable when considering the significantly improved
flexibility provided by open types.

• C+++ is up to 2.5 times faster than Java running on the
Hotspot Virtual Machine. Since Java’s performance is
accepted for many practical applications these days,
this is a quite satisfying and encouraging result.

References
[1] C. Heinlein: “Open Types and Bidirectional Relationships
as an Alternative to Classes and Inheritance.” In: M. Hanus,
F. Huch (eds.): Programmiersprachen und Rechenkonzepte (22.
Workshop der GI-Fachgruppe 2.1.4; Bad Honnef, Mai 2005).
Bericht Nr. 0513, Institut für Informatik, Christian-Albrechts-
Universität zu Kiel, October 2005, 30−−39. www.informatik.
uni-kiel.de/uploads/tx_publication/2005_tr0513_01.pdf


