
Searching Bugs by Visualizing Computations∗

Bernd Braßel

May 15, 2006

1 The Problem

It is the basic credo of declarative programming that
abstracting from certain aspects of program execu-
tions greatly improves the quality of the written code:
Typical sources of errors are principally omitted, like
issues of memory management, type errors and mul-
tiple allocation of variables. The program is much
nearer to the logic of the implemented algorithm than
to its execution. This makes code much more read-
able, comprehensive and maintainable.

There seems to be at first glance, however, a great
drawback to these techniques: As there is such a far
abstraction from the actual program execution, the
executed program becomes a black box. Where an
imperative programmer is able to step through his
program’s execution and recognize parts of his pro-
grams, the declarative programmer is usually not able
to draw any such connections. This is of course an es-
pecially severe problem for debugging.

As a very simple example we can see that at run
time it is not easy to see how a run-time failure came
to pass:

main = print (last (take 10 (repeat

(head (tail [0])))))

repeat x = x:repeat x

take n (x:xs) | n==0 = []

| otherwise = x:take (n-1) xs

last [x] = x

last (:(x:xs)) = last (x:xs)

This example is written in the language Curry, which
is a functional logic language, employing advanced
features like higher order, lazy evaluation and con-
currency by constraint solving. The exact semantics
of the given functions is not so relevant, apart from
the meaning of the head and tail. Both functions
are selectors on non-empty lists, e.g. (head [0]) = 0

and (tail [0]) = []. Consequently, neither func-
tion is defined on the empty list. The point of
the example is that there is a run-time error for
(head (tail [0])) = head [], which is undefined. In
an imperative language the run-time system would
be able to give a good error message for this ex-
ample by simply printing the function stack. This

∗This work has been partially supported by the DFG under
grant Ha 2457/5-1.

stack would show a connection from print over
last, take, repeat to the undefined call to head, giv-
ing the programmer a good idea where to look for the
bug. In the context of lazy evaluation, in contrast,
the run-time system is not able to give a comparably
good message. Printing the function stack miserably
amounts to:

at print

non-exhaustive patterns in function head

There can be no mention of last, take, repeat be-
cause in a lazy context their task is done early and
their further evaluation is suspended.

But laziness is not the only hindrance to under-
stand what is going on in the run-time system. Higher
order also has a great impact on the “blackness of the
box.” To see this, consider the slightly altered exam-
ple in a strict declarative language:

main = print $ last $ replicate 10

$ head $ tail $ [True]

f $ x = f x

replicate n x | n==0 = []

| otherwise = x:replicate (n-1) x

Executing this program would produce the stack:

at $

at $

at $

non-exhaustive patterns in function head

This stack is just as uninformative as the lazy one
before.

Printing execution stack is only the tip of the ice-
berg. When debugging real world applications, there
is of course much more need of ways to “look into the
black box.”

2 Our Approach

There is a way to turn the draw back into an advan-
tage. We have extended an approach to debugging for
the functional language Haskell by features to cope
with logic languages. The basic idea is as follows:

• A program transformation instruments a given
program such that

• its execution records a trace of what was going
on in the run-time system.

• This trace can be interpreted in different ways,

i.e., degrees of abstraction from the actual oper-
ational semantics.

• Each interpretation can be browsed by different
views, giving the user the possibility to choose
the kind of information he is interested in.

For instance, the very simple failstack view will –
when employed with the interpretation leftmost inner-

most with oracle on (a mix of) the above example(s)
– produce the following output:

main

at (print $)

at (last $)

at (take 10 $)

at (repeat $)

head []

FAIL

Note, that main is also included in the output, giving
the proper context from the beginning of the execu-
tion, but omitting successful sub derivations like the
one of (tail [0]). Like the other views, failstack is
adaptable. For instance, one can limit the depth up to
which argument terms are printed, keeping the output
readable also for the execution of complex programs.

More sophisticated views allow the user to in-
teractively browse the program’s interpretation, en-
abling him to open and close sub derivations and non-
deterministic choices at will. When he suspects an
error in his program’s logic he will choose an inter-
pretation like the innermost mentioned above. When
his problem seems to be rooted in the operational se-
mantics of his program, e.g., concerning efficiency, the
search strategy or sharing, he will rather choose to
browse an outermost interpretation of his program al-
though eventually using the same interactive view to
browse it.

3 A Glimpse at the Implementation

The trace produced by an instrumented program is
not human readable. It represents – by means of a vast
number of numerical references – a graph. This graph
has a direct connection to the executed program. For
instance, in Figure 1 contains a small cut-out of the
trace for the above example. There are two kinds of

Figure 1: Section of the Trace Graph

arrows visible. Arrows with a black dot are argument
pointers, whereas arrows without dot identify a reduc-
tion. For example, in the clip one can see that func-
tion head was called with a call to tail as argument.

tail reduces to a pattern matching (“fcase”) which
then reduces to []. Function head also performs a
matching which fails. There is a whole forest of nodes
referencing the head function. This is because head is
the argument throughout the whole recursive decent
of functions take and repeat.

Although we are able to make a connection between
execution and program, the graph is not something we
whish to show to the user. The more abstract concept
of an interpretation is in terms of steps. There are
three kinds of steps as depicted in Figure 2

Figure 2: The three kinds of Steps

Simple steps denote a function unfolding, forks
denote the non-deterministic branchings induced by
logic search and shortcuts embed sub computations.
Furthermore, in interpretations the pattern matching
is only used to compute the interpretation but not
included explicitly in the result.

Figure 3: Innermost Interpretation of the example

For the example the result is shown in Figure 3.
It is easy to see how to extract useful information
from this view. The failstack for the above example
is obtained by taking the shortest path from main to
the first failure node.

