
Formalizing Java’s Two’s-Complement Integral Type

in Isabelle/HOL

Nicole Rauch∗

Technische Universität Kaiserslautern
Burkhart Wolff

Albert-Ludwigs-Universität Freiburg

We present a formal model of the Java two’s-complement integral arithmetics. The formaliza-
tion is based on a direct analysis of the Java Language Specification (JLS) [GJSB00] and led to the
discovery of several underspecifications and ambiguities. Underspecifications are highly undesir-
able since even compliant Java compilers may interpret the same program differently, which leads
to unportable code.

The Java integral types are finite datatypes that possess a surprisingly rich theory (they form
a ring, for example) which comprises a number of highly non-standard and tricky laws with non-
intuitive and subtle preconditions. With respect to their formalization, we followed the so-called
wrap-around approach: integers are defined on [−2n−1 .. 2n−1 − 1], where in case of overflow the
results of the arithmetic operations are mapped back into this interval through modulo calculations.
These numbers can be equivalently realized by bitstrings of length n in the widely-used two’s-
complement representation system [Gol02].

The advantage of this approach is that it closely follows the definition of the Java type int in
the JLS, for which certain surprising properties like “Maxint + 1 = Minint” or crucial laws like
the associativity law “a + (b + c) = (a + b) + c” hold. The formal model should reflect these
properties. A “partial approach” (i.e. a modelling that does not allow overflows) is not able to
prove them. The wrap-around approach therefore gives better support for automated reasoning.

The theory is formally analyzed in Isabelle/HOL [Pau94], that is, machine-checked proofs for
the ring properties, divisor/remainder theorems etc. are provided. This work is a necessary pre-
requisite for machine-supported reasoning over arithmetic formulae in the context of Java source-
code verification, especially of efficient arithmetic Java programs such as encryption algorithms, in
particular in tools like Jive [MPH00] that generate verification conditions over arithmetic formulae
from such programs.

In the future, we strongly suggest to supplement informal language definitions by machine-
checked specifications like the one referred to in this abstract as a part of the normative basis of a
programming language.

References

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Specifi-
cation – Second Edition. Addison-Wesley, June 2000.

[Gol02] D. Goldberg. Computer arithmetic. In J.L. Hennessy and D.A. Patterson, editors,
Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, third
edition, 2002.

[MPH00] Jörg Meyer and Arnd Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 276 of Lecture Notes in Computer Science,
pages 63–77. Springer Verlag, 2000.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer Verlag, New York, NY, USA, 1994.

∗Partially funded by IST VerifiCard (IST-2000-26328)

1


