
Pair Evaluation Algebras in Dynamic

Programming

Robert Giegerich and Peter Steffen

Faculty of Technology, Bielefeld University
Postfach 10 01 31, 33501 Bielefeld, Germany

{robert,psteffen}@techfak.uni-bielefeld.de

Abstract. Dynamic programming solves combinatorial optimization
problems by recursive decomposition and tabulation of intermediate re-
sults. The recently developed discipline of algebraic dynamic program-
ming (ADP) helps to make program development and implementation in
nontrivial applications much more effective. It raises dynamic program-
ming to a declarative level of abstraction, separates the search space
definition from its evaluation, and thus yields more reliable and versa-
tile algorithms than the traditional dynamic programming recurrences.
Here we extend this discipline by a pairing operation on evaluation al-
gebras, whose clue lies with an asymmetric combination of two different
optimization objectives. This leads to a surprising variety of applications
without additional programming effort.

1 Introduction

1.1 Motivation

Dynamic Programming is an elementary and widely used programming tech-
nique. Introductory textbooks on algorithms usually contain a section devoted
to dynamic programming, where simple problems like matrix chain multipli-
cation, polygon triangulation or string comparison are commonly used for the
exposition. This programming technique is mainly taught by example. Once de-
signed, all dynamic programming algorithms look kind of similar: They are cast
in terms of recurrences between table entries that store solutions to interme-
diate problems, from which the overall solution is constructed via a more or
less sophisticated case analysis. However, the simplicity of these small program-
ming examples is deceiving, as this style of programming provides no abstraction
mechanisms, and hence it does not scale up well to more sophisticated problems.

In biological sequence analysis, for example, dynamic programming algo-
rithms are used on a great variety of problems, such as protein homology search,
gene structure prediction, motif search, analysis of repetitive genomic elements,
RNA secondary structure prediction, or interpretation of data from mass spec-
trometry [6, 2]. The higher sophistication of these problems is reflected in a large
number of recurrences – sometimes filling several pages – using more complicated
case distinctions, numerous tables and elaborate scoring schemes.

An algebraic style of dynamic programming (ADP) has recently been in-
troduced, which allows to formulate dynamic programming algorithms over se-
quence data on a more convenient level of abstraction [4, 5]. In the ADP ap-
proach, the issue of scoring is cast in the form of an evaluation algebra, the
logical problem decomposition is expressed as a yield grammar. Together they
constitute a declarative, and notably subscript-free problem specification that
transparently reflects the design considerations. Written in a suitable notation,
these specifications can be implemented automatically – often more efficiently
and always more reliably than hand-programmed DP recurrences.

In this paper, we extend the ADP discipline by one further operator, a prod-
uct construction on evaluation algebras. Its clue lies with an asymmetric, nested
definition of the product of two objective functions, which allows to optimize ac-
cording to a primary and a secondary objective. Beyond this, when using some
non-optimizing algebras, it leads to an unexpected variety of applications, such
as backtracing, multiplicity of answers, ambiguity checking, and more.

1.2 Basic terminology

Alphabets. An alphabet A is a finite set of symbols. Sequences of symbols are
called strings. ε denotes the empty string, A1 = A, An+1 = {ax|a ∈ A, x ∈ An},
A+ =

⋃
n≥1A

n, A∗ = A+ ∪ {ε}.
Signatures and algebras. A signature Σ over some alphabet A consists of a

sort symbol S together with a family of operators. Each operator o has a fixed
arity o : s1...sko

→ S, where each si is either S or A. A Σ-algebra I over A,
also called an interpretation, is a set SI of values together with a function oI
for each operator o. Each oI has type oI : (s1)I ...(sko

)I → SI where AI = A.
A term algebra TΣ arises by interpreting the operators in Σ as constructors,

building bigger terms from smaller ones. When variables from a set V can take
the place of arguments to constructors, we speak of a term algebra with variables,
TΣ(V), with V ⊂ TΣ(V). By convention, operator names are capitalized in the
term algebra.

Trees and tree patterns. Terms will be viewed as rooted, ordered, node-labeled
trees in the obvious way. All inner nodes carry (non-nullary) operators from Σ,
while leaf nodes carry nullary operators from Σ or symbols from A. A term/tree
with variables is called a tree pattern. A tree containing a designated occurrence
of a subtree t is denoted C[...t...].

A tree language over Σ is a subset of TΣ . Tree languages are described by
tree grammars, which can be defined in analogy to the Chomsky hierarchy of
string grammars. Here we use regular tree grammars, originally studied in [1],
with some algebraic flavoring added such that they describe term languages over
some signature Σ and some alphabet A.

2 Algebraic Dynamic Programming in a nutshell

ADP is a domain specific language for dynamic programming over sequence data.
In ADP, a dynamic programming algorithm is specified by a yield grammar

and an evaluation algebra. The grammar defines the search space as a term
language, the algebra the scoring of solution candidates. Their interface is a
common signature.

Our introduction here must be very condensed. For a complete presentation,
including the programming methodology that comes with ADP, the reader is
referred to [5] and to the ADP website at

http://bibiserv.techfak.uni-bielefeld.de/adp/.

Definition 1. (Tree grammar over Σ and A)
A regular tree grammar G = (V, Z, P) over Σ and A is given by

– a set V of nonterminal symbols,
– a designated nonterminal symbol Z, called the axiom, and
– a set P of productions of the form v → t, where v ∈ V and t ∈ TΣ(V).

v → t1| . . . |tn shall denote the short form for v → t1, . . . , v → tn.

The derivation relation for tree grammars is ⇒∗, with C[...v...] ⇒ C[...t...] if
v → t ∈ P . The language of v ∈ V is L(v) = {t ∈ TΣ|v ⇒

∗ t}, the language of
G is L(G) = L(Z).

For convenience, we add a lexical level to the grammar concept, allowing strings
from A∗ in place of single symbols. L = {char, string, empty} is the set of lexical
symbols. By convention, L(char) = A, L(string) = A∗, and L(empty) = {ε}.

The yield function y on the trees in TΣ is defined by y(a) = a for a ∈ A,
and y(f(x1, . . . , xn)) = y(x1) . . . y(xn), for f ∈ Σ and n ≥ 0. Note that nullary
constructors by definition have yield ε, hence y(t) is the string of leaf symbols
from A in left to right order.

We shall also allow conditional productions, where a simple predicate must
be satisfied by the yield string derived.

Definition 2. (Yield grammars and yield languages) Let G be a tree grammar
over Σ and A, and y the yield function. The pair (G, y) is called a yield grammar.
It defines the yield language L(G, y) = {y(t)|t ∈ L(G)}.

Definition 3. (Yield parsing) Given a yield grammar (G, y) over A and a se-
quence w ∈ A∗, the yield parsing problem is to find PG(w) = {t∈L(G)|y(t) = w}.

Note that the input string w is “parsed” into trees t ∈ L(G), each of which
in turn has a tree parse according to the tree grammar G. These tree parses
must exist – they ensure that each candidate t corresponds to a proper problem
decomposition – but otherwise, they are irrelevant and will play no part in the
sequel. The candidate trees t, however, represent the search space spanned by a
particular problem instance, and will be subject to scoring and choice under our
optimization objective.

Definition 4. (Evaluation algebra) Let Σ be a signature with sort symbol Ans.
A Σ-evaluation algebra I is a Σ-algebra augmented with an objective function
hI : L(AnsI)→ L(AnsI), where L(AnsI) denotes the set of lists with elements
from AnsI .

Given that yield parsing constructs the search space for a given input, all
that is left to do is to evaluate the candidates in a given algebra, and make our
choice via the objective function hI .

Definition 5. (Algebraic dynamic programming)

– An ADP problem is specified by a signature Σ over A, a yield grammar (G, y)
over Σ, and a Σ-evaluation algebra I with objective function hI .

– An ADP problem instance is posed by a string w ∈ A∗. The search space it
spawns is the set of all its parses, PG(w).

– Solving an ADP problem is computing hI{tI | t ∈ PG(w)} in polynomial
time and space with respect to |w|.

Bellman’s Principle1, when satisfied, allows the following implementation of
tree parsing: As the trees that constitute the search space are constructed in
a bottom up fashion, rather than building them explicitly as terms in TΣ , for
each constructor C the evaluation function CI is called. Thus, the tree parser
computes not trees, but answer values. To reduce their number (and thus to avoid
exponential explosion) the objective function may be applied at an intermediate
step where a list of alternative answers has been computed. Due to Bellman’s
Principle, the recursive intermediate applications of the choice function do not
affect the final result.

In this paper, the reader is asked to take it for granted that the tree parsing
sketched here can be implemented efficiently. ADP comes with an ASCII notation
for yield grammars and evaluation algebras, which is either embedded in Haskell
or directly translated to C. In the examples at the aforementioned website we
explicitly annotate productions to the results of which the choice function is
to be applied, but for our presentation here the reader may assume that it is
applied wherever appropriate.

3 RNA secondary structure prediction

We need an example with a certain sophistication to illustrate well the variety of
applications we have in mind. The following is a simplified version of the RNA
structure analysis problem that plays an important role in biosequence analysis.

All genetic information in living organisms is encoded in long chain molecules.
DNA is the storage form of genetic information, its shape being the double helix
discovered by Watson and Crick. Mathematically, the human genome is a string
of length 3× 109 over a four letter alphabet. RNA is the active form of genetic
information. It is transcribed from a segment of the DNA as a chain of bases
or nucleotides A, C, G and U , denoting Adenine, Cytosine, Guanine, and Uracil.
Some bases can form base pairs by hydrogen bonds: G–C, A–U and also G–U.
RNA is typically single stranded, and by folding back onto itself, it forms the
structure essential for its biological function. Structure formation is driven by

1 See [5] for the formulation of Bellman’s Principle in the ADP framework.

the forces of hydrogen bonding between base pairs, and energetically favorable
stacking of base pairs in a helical pattern similar to DNA. While today the
prediction of RNA 3D structure is inaccessible to computational methods, its
secondary structure, given by the set of paired bases can be predicted quite reli-
ably. Mathematically, RNA secondary structures are approximate palindromes
that can be nested recursively.

In RNA structure prediction, our input sequence is a string over {A, C, G, U}.
The lexical symbols char and string are renamed to base and region. The pred-
icate basepairing checks whether the two bases mentioned in a production can
actually form a base pair.

The first approach to RNA structure prediction was based on the idea of
maximizing the number of base pairs [8]. Figure 1 (top) shows the grammar
nussinov78 which implements the algorithm of [8], with the evaluation algebra
designed for maximizing the number of base pairs.

nussinov78 Z = s

s → nil

empty

| left

base s

| right

s base

| pair

base s base

with basepairing
| split

s s

wuchty98 Z = struct

struct → str

comps

| str

ul

singlestrand

| str

nil

empty

block → strong | bl

region strong

comps → cons

block comps

| ul

block

| cons

block ul

singlestrand

singlestrand → ss

region

strong →

(
sr

base strong base

| sr

base weak base

) with basepairing

weak →

(

hl

base region3 base

| sr

base bl

region strong

base

| sr

base br

strong region

base

|

ml

base cons

block comps

base

| sr

base il

region strong region

base) with basepairing

region3 → region with minsize 3

Fig. 1. Yield grammars nussinov78 and wuchty98. Terminal symbols in italics.

Note that the case analysis in the Nussinov algorithm is redundant – even the
base string “A” is assigned the two structures Left(’A’, Nil) and Right(Nil,

’A’), which actually denote the same shape.

Base pair maximization ignores the favorable energy contributions from base
pair stacking, as well as the unfavorable contributions from loops. A non-redun-
dant algorithm based on energy minimization was presented by Wuchty et al.
[9]. Figure 1 (bottom) shows the grammar wuchty98. Here the signature has 8
operators, each one modeling a particular structure element, plus the list con-
structors (nil, ul, cons) to collect sequences of components in a unique way.
This grammar, because of its non-redundancy, can also be used to study com-
binatorics, such as the expected number of feasible structures of a particular
sequence of length n.

Ansenum = TΣ

enum = (str, ..., h) where

str(s) = Str s
ss((i,j)) = Ss (i,j)

hl(a,(i,j),b) = Hl a (i,j) b
sr(a,s,b) = Sr a s b

bl((i,j),s) = Bl (i,j) s
br(s,(i,j)) = Br s (i,j)
il((i,j),s,(i’,j’)) = Il (i,j) s (i’,j’)

ml(a,s,b) = Ml a s b
nil((i,j)) = Nil (i,j)

cons(s,s’) = Cons s s’
ul(s) = Ul s
h([s1, . . . , sr]) = [s1, . . . , sr]

Ansbpmax = IN

bpmax = (str, ..., h) where
str(s) = s
ss((i,j)) = 0

hl(a,(i,j),b) = 1
sr(a,s,b) = s + 1

bl((i,j),s) = s
br(s,(i,j)) = s
il((i,j),s,(i’,j’)) = s

ml(a,s,b) = s + 1
nil((i,j)) = 0

cons(s,s’) = s + s’
ul(s) = s

h([s1, . . . , sr]) = [max
1≤i≤r

si]

Anspretty = {(,), .}∗

pretty = (str, ..., h) where
str(s) = s
ss((i,j)) = dots(j-i)

hl(a,(i,j),b) = "("++dots(j-i)++")"
sr(a,s,b) = "("++s++")"

bl((i,j),s) = dots(j-i)++s
br(s,(i,j)) = s++dots(j-i)

il((i,j),s,(i’,j’)) = dots(j-i)++s++
dots(j’-i’)

ml(a,s,b) = "("++s++")"

nil((i,j)) = ""
cons(s,s’) = s++s’

ul(s) = s
h([s1, . . . , sr]) = [s1, . . . , sr]

Anscount = IN

count = (str, ..., h) where

str(s) = s
ss((i,j)) = 1

hl(a,(i,j),b) = 1
sr(a,s,b) = s

bl((i,j),s) = s
br(s,(i,j)) = s
il((i,j),s,(i’,j’)) = s

ml(a,s,b) = s
nil((i,j)) = 1

cons(s,s’) = s * s’
ul(s) = s
h([s1, . . . , sr]) = [s1 + · · · + sr]

Fig. 2. Four evaluation algebras for grammar wuchty98. Arguments a and b denote
bases, (i,j) represents the input subword xi+1 . . . xj , and s denotes answer values.
Function dots(r) in algebra pretty yields a string of r dots (’.’).

This algorithm is widely used for structure prediction via energy minimiza-
tion. Unfortunately, the thermodynamic model is too elaborate to be presented
here, and we will stick with base pair maximization as our optimization objective
for the sake of this presentation. Figure 2 shows four evaluation algebras that
we will use with grammar wuchty98. We illustrate their use via the following
examples, where g(a,x) denotes the application of grammar g and algebra a to
input x, as defined in Definition 5. Appendix A shows all results for an example
sequence.

wuchty98(enum,x): the enumeration algebra enum yields unevaluated terms.
Since the choice function is identity, this call enumerates all candidates in the

search space spanned by x. This is mainly used in program debugging, as it
visualizes the search space actually traversed by our program.

wuchty98(pretty,x): the pretty-printing algebra pretty yields a string rep-
resentation of the same structures as the above, but in the widely used notation
"..(((...)).)", where pairing bases are indicated by matching brackets.

wuchty98(bpmax,x): the base pair maximization algebra is bpmax, such that
this call yields the maximal number of base pairs that a structure for x can
attain. Here the choice function is maximization, and it can be easily shown to
satisfy Bellman’s Principle. Similarly for grammar nussinov78.

wuchty98(count,x): the counting algebra is count. Its choice function is
summation, and tcount = 1 for all candidates t. However, the evaluation func-
tions are written in such a way that they satisfy Bellman’s Principle. Thus,
[length(wuchty98(enum,x))] == wuchty98(count,x), where the righthand
side is polynomial to compute, while the lefthand side typically is exponential
due to the large number of answers.

4 Pair evaluation algebras

We now create an algebra of evaluation algebras by introducing a product oper-
ation *** that joins two evaluation algebras into a single one.

Definition 6. (Product operation on evaluation algebras) Let M and N be eval-
uation algebras over Σ. Their product M***N is an evaluation algebra over Σ

and has the functions fM,N ((m1, n1)...(mk , nk)) = (fM (m1, ..., mk), fN(n1, ..., nk))
for each f in Σ, and the choice function hM,N([(m1, n1)...(mk, nk)]) = [(l, r)|l ∈
L, r ∈ hN([r|(l, r) ← [(m1, n1)...(mk, nk)], l ∈ L])] where L = hM ([m1, ..., mk]).

Above, ∈ denotes set membership and hence ignores duplicates2, while ← de-
notes list membership and respects duplicates. Our first observation is that this
definition preserves identity and ordering:

Theorem 1. (1) For any algebras M and N , and answer list x, (idM∗∗∗idN)(x)
is a permutation of x. (2) If hM and hN minimize wrt. some order relations ≤M

and ≤N , then hM,N minimizes wrt. the lexicographic ordering (≤M ,≤N). (3) If
both M and N minimize and satisfy Bellman’s Principle, then so does M***N .

Proof. (1) According to Def. 6, the elements of x are merely re-grouped according
to their first component. For this to hold, it is essential that duplicate entries
in the first component are ignored. (2) follows directly from Def. 6. (3) In the
case of minimization, Bellman’s Principle is equivalent to (strict) monotonicity
of fM and fN with respect to ≤M and ≤N , and this carries over to the combined
functions (trivially) and the lexicographic ordering (because of (2)). ut

In the above proof, strict monotonicity is required only if we ask for multiple
optimal, or the k best, solutions rather than a single optimal one [7].

2 This may require some extra effort in the implementation, but when a choice function
does not produce duplicates anyway, it comes for free.

Theorem 1 essentially says that *** behaves as expected in the case of op-
timizing evaluation algebras. This is very useful, but not too surprising. The
interesting situations are when *** is used with algebras that do not do opti-
mization, like enum, count, and pretty. Applications of pair algebras are subject
to the following

Proof scheme: The declarative semantics of (i.e. the problem specified by)
G(M***N, x) is given by Definition 5. Its operational semantics (the tabulating
yield parser) is correct only if M***N satisfies Bellman’s Principle. This requires
an individual proof unless covered by Theorem 1.

That a proof is required in general is witnessed by the fact that, for example,
wuchty98(count***count,x) delivers no meaningful result.

With this in mind, we now turn to applications of pair algebras. Appendix A
shows all results for an example RNA sequence.

Application 1: Backtracing and co-optimal solutions Often, we want not only
the optimal answer value, but also a candidate which achieves the optimum. We
may ask if there are several such candidates. If yes, we may want to see them
all, maybe even including some near-optimal candidates. They can be retrieved
if we store a table of intermediate answers and backtrace through the optimizing
decisions made. This backtracing can become quite intricate to program if we ask
for more than one candidate. There are simpler ways to answer these questions:

wuchty98(bpmax***count,x) computes the optimal number of base pairs,
together with the number of candidate structures which achieve it.

wuchty98(bpmax***enum,x) computes the optimal number of base pairs,
together with all structures for x that achieve this maximum, in their represen-
tation as terms from TΣ.

wuchty98(bpmax***pretty,x) does the same as the previous call, producing
the string representation of structures.

It is a nontrivial consequence of Definition 6 that the above pair algebras
in fact give multiple co-optimal solutions. Should only a single one be desired,
we would use enum or pretty with a choice function h that retains only one
(arbitrary) element. Note that our replacement of backtracing by a “forward”
computation does not affect asymptotic efficiency.

Application 2: Testing ambiguity Dynamic programming algorithms can often be
written in a simpler way if we do not care whether the same solution is considered
many times during the optimization. This does not affect the overall optimum.
A dynamic programming algorithm is then called redundant or ambiguous. In
such a case, the computation of a list of near-optimal solutions is cumbersome, as
it contains duplicates whose number often has an exponential growth pattern.
Also, search space statistics become problematic – for example, the counting
algebra speaks about the algorithm rather than the problem space, as it counts
considered, but not necessarily distinct solutions. Yield grammars with a suitable
probabilistic evaluation algebra implement stochastic context free grammars.
The frequently used statistical scoring schemes, when trying to find the answer
of maximal probability (the Viterbi algorithm, cf. [2]), are fooled by the presence

of redundant solutions. In principle, it is clear how to control ambiguity [3]. One
needs to show unambiguity of the tree grammar3 in the language theoretic sense,
and the existence of an injective mapping from TΣ to a canonical model of the
search space. However, the proofs involved are not trivial. On the practical side,
one would like to implement a check for ambiguity in the implementation of the
ADP approach, but this is rendered futile by the following observation:

Theorem 2. Non-redundancy in dynamic programming is formally undecidable.

Proof. For lack of space, we can only sketch the idea of the proof. Ambiguity
of context free language is a well-known undecidable problem. For an arbitrary
context free grammar, we may construct an ADP problem where the context
free language serves as the canonical model, and show that the language is
unambiguous if and only if the ADP problem is non-redundant. ut

Given this situation, we turn to the possibility of testing for (non-)redundancy.
The required homomorphism from the search space to the canonical model may
be coded as another evaluation algebra. This is, for example, the case with
pretty. A pragmatic approach to this question of ambiguity is then to test

wuchty98(pretty***count,x) on a number of inputs x. If any count larger
than 1 shows up in the results, we have found a case of ambiguity. Clearly, this
test can be automated.

Application 3: Classification of candidates A shape algebra is a version of pretty
that maps structures onto more abstract shapes. This allows to analyze the num-
ber of possible shapes, the size of their membership, and the (near-)optimality
of members. Let bpmax(k) be bpmax with a choice function that retains the best
k answers (without duplicates).

wuchty98(shape***count,x) computes all the shapes in the search space
spanned by x, and the number of structures that map onto each shape.

wuchty98(bpmax(k)***shape,x) computes the best k base pair scores, to-
gether with their candidate’s shapes.

wuchty98(bpmax(k)***(shape***count),x) computes base pairs and shapes
as above, plus the number of structures that achieve this number of base pairs
in the given shape.

wuchty98(shape***bpmax,x) computes for each shape the maximum num-
ber of base pairs among all structures of this shape.

5 Conclusion

We hope to have demonstrated that the evaluation algebra product as intro-
duced here adds a significant amount of flexibility to dynamic programming.
The mathematical properties of *** are not yet fully explored. Moreover, Defi-
nition 6 is not without alternatives. One might consider to make in M***N the

3 Not the yield grammar – it is always ambiguous, else we did not have an optimization
problem.

results of M available to the choice function hN . This leads to parameterized
evaluation algebras and is a challenging subject for further study.

A Results for examples

The following table shows the application of grammar wuchty98 with different
algebras on input x = cgggauaccacu.

Algebra Result

enum [Str (Ul (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,10)

’c’) ’u’))),Str (Ul (Bl (0,2) (Sr]

pretty [".((.......))","..((......))",".((....))...",

"..((...))...","............"]

bpmax [2]

count [5]

count***count [(1,1)]

bpmax***count [(2,4)]

bpmax***enum [(2,Str (Ul (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,10)

’c’) ’u’)))),(2,Str (Ul (Bl (0,2)]

bpmax***pretty [(2,".((.......))"),(2,"..((......))"),

(2,".((....))..."),(2,"..((...))...")]

pretty***count [(".((.......))",1),("..((......))",1),

(".((....))...",1),("..((...))...",1),

("............",1)]

shape***count [(" []",2),(" [] ",2),(" ",1)]

bpmax(5)***shape [(2," []"),(2," [] "),(0," ")]

bpmax(5)***(shape***count) [(2,(" []",2)),(2,(" [] ",2)),(0,(" ",1))]

shape***bpmax [(" []",2),(" [] ",2),(" ",0)]

References

1. W. S. Brainerd. Tree generating regular systems. Information and Control, 14:217–
231, 1969.

2. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998.

3. R. Giegerich. Explaining and controlling ambiguity in dynamic programming. In
Proc. Combinatorial Pattern Matching, pages 46–59. Springer LNCS 1848, 2000.

4. R. Giegerich. A systematic approach to dynamic programming in bioinformatics.
Bioinformatics, 16:665–677, 2000.

5. R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming over
sequence data. Science of Computer Programming, 51(3):215–263, 2004.

6. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

7. T. L. Morin. Monotonicity and the principle of optimality. Journal of Mathematical

Analysis and Applications, 86:665–674, 1982.
8. R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for loop

matchings. SIAM J. Appl. Math., 35:68–82, 1978.
9. S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal

folding of RNA and the stability of secondary structures. Biopolymers, 49:145–165,
1999.

