
Lava – An Object-Or iented RAD Language
Designed for Ease of Learning, Use, and Program

Comprehension

Klaus D. Günther1, Irmtraut Günther1

1 GMD, Institute for Secure Telecooperation, Rheinstr. 75,
D-64295 Darmstadt, Germany

{Klaus.Guenther, Irmtraut.Guenther}@darmstadt.gmd.de

Abstract. The growing demand for new software calls for a considerable accel-
eration of the software production process and for a sensible relaxation at the
software maintenance front. These goals can be achieved only if we can deci-
sively increase the degree of modularity, variabilit y, comprehensibilit y of soft-
ware, or short: the degree of structured programming, as well as the simplicity
of program manipulation, restructuring, and transformation. The experimental
object-oriented language “Lava” and the associated programming environment
“LavaPE” attempt to achieve these goals by providing quite a number of un-
usual features. The most remarkable features are: 1. Text editors are completely
replaced with Lava-specific structure editors. 2. A Lava class consists of a pub-
lic “interface” and a completely separate, exchangeable “implementation”
which may be stored in a different file. 3. Frameworks and design patterns are
supported in a very natural way by allowing packages and interfaces to have
overridable type parameters.

1 Introduction

The continuously growing demand for new software can be supplied only if the pro-
ductivity of the programming process can be decisively increased. (Cf. section 3 of
the PITAC Report [10] to the American government, which assigns maximum prior-
ity to this goal.)

Moreover, the amount of work flowing into the continuous maintenance of large
commercial software products throughout their li fe cycle can be decisively reduced if
programming languages and programming environments encourage or even enforce
(to some degree) a clear and natural subdivision of programs into small , self-
contained, self-evident, independently comprehensible units.

All this means that we cannot be satisfied with the popular programming lan-
guages like C++ [11], Java [3], or Visual Basic. Rather, we have to aim for greatly
improved languages and RAD programming environments

• that relieve the programmers from clerical and error-prone work,
• that in particular replace text-editors with several kinds of structure-editors,
• that are easy to learn and get along with a minimum of orthogonal concepts,
• that facilit ate program comprehension,
• that facilit ate clear syntactic separation of abstraction levels

1. in the small , by favoring small , self-contained (possibly recursive) functions
rather than complicated, deeply nested loop constructs,

2. in the large, (a) by supporting nesting of declarations according to their pri-
mary or auxili ary nature, (b) by strictly separating interfaces from implemen-
tations, (c) by utili zing multiple inheritance to compose large classes in an
easily configurable way from specialized small base classes that can be im-
plemented independently,

• that clarify the control flow as well as the data flow of programs by appropriate
constructs and restrictions,

• that unify what should not be separated ("embedded SQL"),
• that separate what should not be intermingled (interfaces and implementations),
• and that support reuse and multiple versions of certified components and proven

design patterns from clearly documented component and pattern libraries.

The experimental programming language Lava and the associated LavaPE program-
ming environment offer solutions to quite a number of these problems. The open-
source project Lava is intended primarily to provide a public playground for experi-
menting with new ways of combining advanced object-oriented language features
with ease of use and comprehension. Everybody is invited to participate in this ex-
plorative process. Lava is particularly attractive for those researchers who are inter-
ested in program analysis, program synthesis, and program transformation, since
Lava programs are processed internally as “abstract syntax trees” all the time, begin-
ning from their construction in specific structure editors until their execution by the
Lava interpreter.

An early preview version of the Lava programming environment LavaPE (for
Windows 9X/NT/2000 platforms, including a few code samples) can be downloaded
from the Lava web site [8]. There you can find a more comprehensive online docu-
mentation and further papers. Cf. also [4].

Section 2 below deals with Lava contributions to the goals "ease of learning" and
"ease of use". Section 3 explains how program comprehension is facilit ated by quite a
number of different Lava features. Section 4 outlines how Lava copes with "generic-
ity" in a new way, based on “virtual types". These are particularly suited to provide
very natural specifications of "design patterns" and "frameworks", viewed as (groups
of mutually recursive) “virtualized” types. This capabilit y will play a much more
important role in future languages.

2 LavaPE and Ease of Learning / Ease of Use

2.1 Replacing Text Editors with Structure Editors

Lava programs are no longer "written" but "constructed" from basic constructs,
using point/click/drag/drop/cut/copy/paste and menu selection operations, and this is
true also for the executable parts of Lava programs.

The Lava programming environment LavaPE is completely based on structure ed-
iting, with two dominating, primary views: the "declaration view" and the "exec
view" (see Fig.1, last page):
• The declaration view is used for declaring various kinds of Lava entities, in par-

ticular new packages, interfaces, implementations, and their respective sub-
structures.

• The exec view is used to construct the executable portions of Lava programs, i.e.,
1. "exec's", = bodies of functions and of "initiators" (= main programs),
2. "constraints", which may be associated with interfaces and must be fulfill ed

whenever a new object supporting the respective interface has been created.

The declaration view is a "tree view" to which everybody is accustomed, for instance
from the "Explorer" of Microsoft Windows. Declarations may be nested to any depth
in Lava. Tree construction is controlled by tool buttons corresponding to the basic
Lava notions, like "new package", "new interface", "new implementation", "new
member variable", "new member function", "new function parameter", etc. The prop-
erties of these entities are edited using appropriate property sheets. Subtrees can be
easily copied and moved by drag-and-drop operations or expanded/collapsed by spe-
cific tool buttons.

There are several auxili ary tree views the most important of which is used for
specifying the details of an interface or package/pattern derivation leading to a de-
rived interface or package/pattern. (See Fig.1, last page.)

The exec view is a quite normal textual representation of an "exec" or "constraint".
But although it uses the standard Windows "rich edit view", it is not editable directly
as text. The executable program text is rather constructed from a number of basic
statement, expression, and special constructs, which would typically contain
"placeholders" (= syntactic variables) <stm>, <expr>, <var>, <type>, <func>, <set>
... for statements, expressions, references... that may be inserted in these places.

In fact, there is no fixed textual syntax of Lava at all , nor is there a Lava parser or
compiler. The point-and click operations of the programmer generate and manipulate
an internal tree representation of the Lava program (an “AST” , short for “abstract
syntax tree”) directly. The readable representation of declarations, execs, and con-
straints is generated only on the fly as long as a corresponding declaration or exec
view is open.

No text entry whatsoever is required in LavaPE, except for comments, constants,
and new identifiers. Syntax errors cannot occur any longer. Context-related errors are
reported at the earliest possible time. References to be inserted are selected from
specific combo-boxes whose current content depends largely on the current selection.

So Lava is not a conventional textual language, but it is inseparably connected with
LavaPE.

2.2 Automatic Maintenance of References

Readable, textual identifiers are, in a sense, meaningless in Lava. Every Lava entity
has a unique internal identifier that is never changed. All references to Lava entities
are based solely on these internal identifiers. A readable textual name is associated
with such an immutable, unique, internal identifier at the place where the respective
Lava entity is declared, and it can be changed only there.

Since readable representations of Lava programs are generated only on the fly
when they are opened in one of the Lava structure editors, all references to Lava
entities will always be up to date: The textual name of a Lava entity is always
"fetched" from its actual declaration and inserted at the place of reference. Textual
names need not be unique even. But Lava tries to prevent you from using duplicate
names in Lava, of course, since they impair the comprehensibilit y of programs and
force you to use the "go to declaration" function of LavaPE to find the actual meaning
of the respective name.

Automatic maintenance of references is a quite important advantage for source
code maintenance. It happens very often that you would like to assign a more mean-
ingful name to an existing entity, but it is extremely laborious and boring to identify
all affected source files and to use string search and replacement in order to change
all affected references. This will often prevent you from introducing more significant
names. In Lava you need only change the name in the declaration of the respective
Lava entity.

Automatic maintenance of references applies also in cases where declarations are
moved (using drag-and-drop) within the Lava declaration tree or even between dif-
ferent files: The path-names of Lava interfaces, packages, functions, etc., that reflect
the position of these entities in the declaration tree, are changed accordingly in all
references to the affected entities. Cf. [1] for an alternative approach to identifier
change and maintenance.

2.3 Automatic Maintenance of Function Calls

Another kind of automatic maintenance of references applies to member functions of
interfaces and implementations. If you add or delete or permute formal parameters of
a function then all existing invocations of these functions are changed immediately or
as soon as the containing Lava file is opened: Placeholders for actual parameters are
inserted where new formal parameters have been inserted; actual parameters corre-
sponding to deleted formal parameters are deleted, likewise; the order of actual pa-
rameters is adapted to the new order of the permuted formal parameters.

This is again made possible by the fact that formal parameters of functions, like all
other Lava entities, have unique internal identifiers and actual parameters refer to
these internally.

3 Facili tating Program Comprehension

3.1 Synoptic Declaration Trees

In section 2.1 we have outlined the nested, tree-like structure of Lava declarations and
the associated structure editor. This way to deal with declarations offers decisive
advantages for program comprehension:
• You need not put all declarations on a single level but you can nest them according

to their primary or subordinate, auxili ary nature.
• You can expand and collapse entire subtrees and in this way switch easily between

nested details and "bird's eye view", just as you need.
• You can easily navigate forth and back between declarations and references by

clicking the tool buttons "go to declaration" (or double-clicking the reference) and
"return to reference".

• You can easily re-arrange the tree structure by applying drag-and-drop or
cut/copy/paste operations to individual tree items or to entire subtrees.

As for the “static” nested classes of Java, nesting of declarations does not establish a
special semantic relationship between inner and outer declarations but is only a means
to arrange primary and auxili ary declarations in a meaningful way. Inner declarations
can always be referenced also from outside, unless they are nested in an implementa-
tion, or in a package that has been declared opaque explicitly.

3.2 Ear lier and More Complete Err or Repor ting

Lava has no compilation phase but checks for errors after every individual structure
editing operation. So errors are detected and reported "in embryo", and errors in ex-
ecutable code are highlighted by displaying the erroneous construct (mostly a single
identifier or constant, rather than just an entire line of code) in boldface and red color.
Likewise, placeholders that have not yet been replaced with concrete constructs in
executable code are displayed in red font.

Erroneous declarations are highlighted by a small red rectangle that is aff ixed to
the right side of the corresponding declaration icon. Error messages belonging to the
current selection are displayed in a separate error window (for declarations as well as
for executable code).

So you have just to look for remaining red flags in declarations and for red por-
tions of executable code in order to figure out where your program calls for correc-
tion of errors or for completion. To this end, you can move the current selection to the
next or preceding error in the declaration tree view as well as in the exec view.

Moreover, comprehension of still i ncomplete and erroneous programs is greatly
facilit ated in Lava by providing several additional features that allow us to perform
more complete checks for semantic errors:

1. "Single-assignment" (section 3.5) prevents inadvertent reuse of the same variable
within the same program branch with different meanings; violations are reported as
errors; the last preceding conflicting assignment is highlighted on a button click.

2. Single-assignment, combined with a stringent phase-model of object creation,
initialization, customization and use enables complete initialization checks. In-
completely initialized objects may be passed as parameters only to "initializers"
(corresponding to constructors in Java/C++); they cannot be used for method calls.
Initializers must initialize all non-optional member variables; violations are re-
ported as errors.

3. The distinction between "value objects", that become immutable after initializa-
tion/customization, and "state objects", that may be changed again and again, pro-
vides another kind of redundancy, which enables valuable additional checks (cf.
section 3.4).

4. Lava supports an advanced notion of "virtual types" with covariant specialization
(section 4). This opens a new dimension of static type checking and early error re-
porting where you otherwise would have to resort to "type casts" and run time type
checks in C++ and Java.

3.3 Str ict Separation of Interfaces and Implementations

Older, non-object-oriented languages like Modula-2 and the original version of Ada
that were based on "abstract data types", had already achieved a clean syntactic sepa-
ration of "interfaces/definitions" and "implementations" according to the important
"principle of information hiding", which we deem to be of vital importance for pro-
gram comprehension and software maintainabilit y / evolvabilit y.

This clear separation has been lost again in object-oriented languages like C++ and
Java. Although Java provides an interface notion, while Java classes contain the im-
plementations of their member functions, you can still use classes to declare the types
of variables. A Java interface does not have member variables but only member
functions and thus is not suited for specifying a data structure together with a collec-
tion of methods that can be applied to it.

In contrast to this, Lava interfaces may contain member functions and member
variables, and they are the only means to declare the types of variables.

Unlike Java classes, Lava implementations implement exactly one interface (and
thus have the same name as the interface), They serve only for implementing their
corresponding interface and they do not inherit from other implementations. They
may contain private member variables and functions; these are not exposed to the
outside world by the corresponding interface.

An interface may be marked as being "creatable". Then it may be used in "new"
operations to specify the type of the objects to be created. It is the job of the Lava run
time system to find an implementation of a given interface, as well as implementa-
tions of all direct and indirect base interfaces. On creation, a Lava object is composed
from all these inherited interfaces and the associated implementations. Lava supports
multiple inheritance with "virtual base classes", as you would say in C++: If a Lava

interface A inherits the same base interface B several times on several inheritance
paths then an object of type A contains only one base object of type B. See Fig.1 (last
page) for an example involving interfaces, implementations, and multiple inheritance.

3.4 Distinction Between State and Value Objects

One of the most unusual (and experimental) features of Lava is its distinction be-
tween "value objects", that become immutable after initialization/customization, and
"state objects", that may be changed again and again. This requires some additional
consideration to be invested by the programmers but we believe that this extra cost
will pay off later (during program maintenance) by increased comprehensibilit y of the
program.

It is just a big help in understanding the purpose and role of a variable if we know
that it does not represent a variable state that can be changed again and again, but just
a complex value (therefore "value object") that is constructed and completed once and
that is never changed thereafter during the run time of the application. Moreover, as
we have pointed out already in section 3.3, point 3, this distinction enables additional,
valuable semantic checks.

3.5 Data Flow, Globals, Single-Assignment

Lava prevents all kinds of implicit data flow through global variables or static mem-
ber variables by relinquishing these concepts and by allowing only explicit data flow
through parameter passing and local variables.

 Single-assignment, applied to parameters and local variables occurring in the
same exec, makes sure that those variables cannot be reused in different meanings
within the same branch of this exec. (See section 2.1 for an explanation of the “exec”
notion.) Single-assignment has far reaching consequences. It enforces, for instance, a
more standardized and regular way to deal with branching constructs:

 set b
�
 true;

 ...
 if ...
 then set b

�
 false // error: b has already been set

 #if

violates the single-assignment rule and would have to be replaced by

if ...
then set b

�
 false // OK

else set b
�
 true // OK

#if

Single-assignment excludes also traditional sequential loops that forward information
from one pass of the loop to the next by explicitly assigning new values to certain
variables in every pass. In Lava, the role of traditional loop constructs is taken over
by logical quantifiers "exists" and "foreach" running over finite sets of objects, and by
recursive functions. Existential and universal quantifiers replace search loops and
exhaustive loops, respectively, whose passes are independent of each other and could
be executed concurrently therefore. All other kinds of repetitive algorithms are ex-
pressed by recursive functions.

This shift of perspective away from multiple assignment and loop constructs to-
wards a more mathematical view of algorithms, based on exclusive logical distinc-
tions, quantifiers and recursive functions will certainly require some relearning. But it
promises to lead to smaller, more self-contained functions eventually and it will
greatly facilit ate program comprehension if programmers learn to think in these
terms.

Absence of global variables and single-assignment cause the data flow to be
strictly directed from top to bottom within executable code: The data flow of pro-
grams is clarified in a similar way as the control flow has been clarified by abandon-
ing "go to".

4 Design Patterns and Genericity

Lava allows declarations to be grouped in "packages" similar to Java packages. Lava
packages are contained completely in one Lava file and are just a special type of
nodes in the Lava declaration tree. Packages and interfaces may be endowed with
type parameters, called "virtual types". These may be overridden in derived interfaces
and packages by assigning more derived types to them. The types of member vari-
ables and method parameters may be such virtual types. Based on this virtual type
notion, Lava allows you to define groups of mutually recursive interfaces with "co-
variant specialization" of (virtual) member and method parameter types. This is a
very natural way to support reusable "design patterns" in the sense of [2] (cf. also [6],
[12], [13]) and a powerful alternative to the traditional parametric types/templates of
C++ [11], Eiffel [9], and the Java genericity extension GJ [5]. Another highly desir-
able consequence of using patterns is that "covariant specialization" renders the ubiq-
uitous "type casts" of C++ and Java programs superfluous.

The extension of the derivation and (multiple) inheritance notions from interfaces
to patterns/packages, combined with declaration nesting, is perhaps also an appropri-
ate way to describe the derivation / descendence relations between the individual
patterns of a "pattern language" [6] or at least certain aspects thereof.

5 Conclusion

Quite a number of unusual features establish the novel and experimental nature of
Lava. The use of structure editors instead of text editors relieves the programmers
from syntax learning and prevents syntax errors from the beginning. The synoptic
tree representation of nested declarations with its collapse/expand, drag-and-drop, go-
to-declaration, override support and other functions will greatly facilit ate program
(re)structuring and program comprehension. The distinction between immutable
value and variable state objects allows us to express more semantics in Lava. The
more stringent object initialization/customization discipline, the single-assignment
concept, the absence of global variables and traditional sequential loop constructs will
clarify the data flow and enforce more standardized program structures based on
small recursive functions. Some of these features enable more detailed semantic
checks and early error reporting. Advanced support of genericity by "virtual types"
opens a new dimension of program structuring by reusable design patterns. It avoids
ugly "type casts" and enables a higher amount of static type checking.

Although not treated in this paper: The purely declarative treatment of
concurrency, synchronization and transactions and the seamlessly integrated support
for database queries, based on logical conjunctions, quantifiers and a "select" expres-
sion (as a substitute for "embedded SQL") promise to greatly reduce the learning
effort of database programmers and to remove the root of many potential errors.

References

1. Caprile, B., Tonella, P.: Restructuring Program Identifier Names. Proceedings IEEE
ICSM'00, 2000, ISBN 0-7695-0753-0

2. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995, ISBN 0201633612

3. Gosling, J., Joy, B., and Steele, G., Bracha, G.: The Java Language Specification. Addison-
Wesley, 2000, 896 pages, ISBN 0201310082

4. Günther, Klaus D.: Lava – Programmieren im Lego-Stil . Proceedings Component Develop-
ers and Users Forum 2001

5. GJ: http://www.cs.bell -labs.com/who/wadler/pizza/gj/Documents/index.html
6. Hill side Group, Pattern Home Page: http://hill side.net/patterns/
7. Java: http://www.javasoft.com
8. Lava: http://www.darmstadt.gmd.de/~guenthk/Lava/
9. Meyer, B.: Eiffel: The Language. Prentice Hall Europe, 1992, ISBN 0132479257
10. PITAC Report to the American Government: http://www.ccic.gov/ac/report/
11. Stroustrup, B.: The C++ Programming Language, Special Edition. Addison-Wesley (2000),

ISBN 020170073
12. Thorup, K.K., Torgersen, M.: Unifying Genericity (Combining the Benefits of Virtual

Types and Parameterized Classes). Proceedings ECOOP’99, 186-204
13. Tonella, P., Antoniol, G.: Object-Oriented Design Pattern Inference. Proceedings IEEE

ICSM'99, 1999, ISBN 0-7695-0016-1

F
ig

. 1
:

L
av

a
ex

ec
, d

ec
la

ra
ti

on
, a

nd
 o

ve
rr

id
e

vi
ew

